Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae084
Maurizio Mencuccini
{"title":"Editorial from the Editor-in-Chief.","authors":"Maurizio Mencuccini","doi":"10.1093/treephys/tpae084","DOIUrl":"10.1093/treephys/tpae084","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae071
Dan Wang, Yuting Jin, Chaonan Guan, Qi Yang, Gang He, Nan Xu, Xuemin Han
Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.
自植物登陆陆地以来,植物酶对迅速多样化的新陈代谢做出了重要贡献。羧基酯酶(CXE)是一种无处不在的多功能古老酶类,在植物进化过程中的多样性尤为突出。这项研究提供了病毒植物体内 CXE 的状况。研究人员从代表 9 个主要植物品系的 31 种植物基因组中鉴定出 784 个 CXE,并根据系统进化分析将其分为 5 个支系。支系 I 的 CXE 基因可能起源于细菌,然后在植物进化过程中扩展和多样化。第 II 支系最早出现在被植物移居陆地后的骨干植物祖先中,第 III 支系和第 IV 支系出现在被认为是最先进的无籽维管植物的蕨类植物中,而第 V 支系则出现在种子植物中。迄今为止,CXE 基因在木本植物中的功能仍不清楚。本研究从杨树基因组中鉴定出 51 个 CXE 基因,并进一步将其分为八类。串联复制和节段复制事件都促成了杨树中 CXE 基因的扩增。虽然 CXE 基因已被证明能增强许多草本植物对病原体的抵抗力,但对林木的相关研究仍有待进行。在这项研究中,病原体培养试验表明,在红豆杉中过表达六种第六类 CXE 或多或少地减少了真菌 Cytospora chrysosperma 在脱落叶片上的定殖。不同基因复制事件所产生的基因在功能分化模式上也存在明显差异。通过体内生理学分析,首次证实了杨树中重复的 CXE 基因的功能分化。潜在抗真菌 PtoCXE06 基因的鉴定也为促进林木抗病性状的遗传改良奠定了理论基础。
{"title":"Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus.","authors":"Dan Wang, Yuting Jin, Chaonan Guan, Qi Yang, Gang He, Nan Xu, Xuemin Han","doi":"10.1093/treephys/tpae071","DOIUrl":"10.1093/treephys/tpae071","url":null,"abstract":"<p><p>Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae073
Rachael H Nolan, Charlotte C Reed, Sharon M Hood
{"title":"Mechanisms of fire-caused tree death are far from resolved.","authors":"Rachael H Nolan, Charlotte C Reed, Sharon M Hood","doi":"10.1093/treephys/tpae073","DOIUrl":"10.1093/treephys/tpae073","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
类黄酮(尤其是花青素和儿茶素)和氨基酸是促进健康的高含量代谢物。虽然我们观察到 ABA 在紫色茶叶中积累,而在白化茶叶中含量较低,但其对风味化合物影响的具体机制仍不清楚。在本研究中,我们用外源 ABA 和 ABA 生物合成抑制剂(Flu)处理茶叶,测量生理指标,并进行全面的转录组和代谢组分析,以阐明颜色变化的潜在机制。结果表明,ABA 处理会诱导茶叶变色,而 Flu 处理会导致茶叶变色。代谢组学分析表明,与对照组相比,ABA 处理组的四种花青素和六种儿茶素含量更高。此外,流感处理组的 15 种氨基酸含量也显著增加。值得注意的是,黄酮类化合物和氨基酸的含量在两种处理之间呈反比关系。处理组与对照组的转录组比较显示,在 ABA 处理组中,编码 DFR 和 UFGT 的差异表达基因(DEGs)上调,导致花青素和儿茶素的积累。与此相反,编码 NR 和 NRT 的 DEGs 在用 Flu 处理的组中表现出较高的表达量,从而促进了氨基酸(特别是 L-茶氨酸和 L-谷氨酰胺)的积累。此外,我们的共表达网络分析表明,MYB 和 bHLH 转录因子(TFs)可能在调控参与类黄酮和氨基酸生物合成的 DEGs 表达中发挥了关键作用。这项研究为有针对性地开展基因工程以提高茶叶的营养和市场价值,以及将紫色和白化茶叶作为功能性饮料的潜在应用提供了启示。它还为未来的育种计划和生产提供了指导。
{"title":"Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant.","authors":"Chenxi Gao, Zhihui Wang, Weiwei Wu, Zhe Zhou, Xuming Deng, Zhidan Chen, Weijiang Sun","doi":"10.1093/treephys/tpae065","DOIUrl":"10.1093/treephys/tpae065","url":null,"abstract":"<p><p>Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae064
Marko Stojanović, Georg Jocher, Natalia Kowalska, Justyna Szatniewska, Ina Zavadilová, Otmar Urban, Josef Čáslavský, Petr Horáček, Manuel Acosta, Marian Pavelka, John D Marshall
Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.
{"title":"Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest.","authors":"Marko Stojanović, Georg Jocher, Natalia Kowalska, Justyna Szatniewska, Ina Zavadilová, Otmar Urban, Josef Čáslavský, Petr Horáček, Manuel Acosta, Marian Pavelka, John D Marshall","doi":"10.1093/treephys/tpae064","DOIUrl":"10.1093/treephys/tpae064","url":null,"abstract":"<p><p>Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae069
Ya Liu, Qinzheng Zhou, Di Wu, Caixia Liu, Xiaolin Wu, Zheng Wang, Huimin Wang, Quan Lu
With climate warming and economic globalization, insect-microbe assemblages are becoming increasingly responsible for various devastating forest diseases worldwide. Japanese larch (Larix kaempferi) is extensively cultivated in China because of its high survival rate, rapid maturation and robust mechanical properties. Endoconidiophora fujiensis, an ophiostomatoid fungus associated with Ips subelongatus, has been identified as a lethal pathogen of L. kaempferi in Japan. However, there is a dearth of research on the pathogenicity of E. fujiensis in larches in China. Therefore, we investigated the pathogenicity of E. fujiensis in introduced L. kaempferi and indigenous larch (Larix olgensis) trees and compared the induced resistance responses to the pathogen in both tree species in terms of physiology and gene expression. Five-year-old saplings and 25-year-old adult trees of L. olgensis and L. kaempferi were inoculated in parallel during the same growing season. Endoconidiophora fujiensis exhibited high pathogenicity in both larch species, but particularly in L. kaempferi compared with L. olgensis adult trees; adult L. olgensis was more resistant to E. fujiensis than adult L. kaempferi, which was reflected in higher accumulation of defensive monoterpenes, such as myrcene, 3-carene and limonene and the earlier induction of defense genes catalase (CAT) and pathogenesis-related protein 1 (PR1). This study contributes to our understanding of the interactions between bark beetle-associated ophiostomatoid fungi and host larches, from phenotypic responses to alterations in secondary metabolites via defense- and metabolism-related gene activation, providing a valuable foundation for the management of larch diseases and pests in the future.
{"title":"Pathogenicity and induced resistance in Larix kaempferi and Larix olgensis inoculated with Endoconidiophora fujiensis.","authors":"Ya Liu, Qinzheng Zhou, Di Wu, Caixia Liu, Xiaolin Wu, Zheng Wang, Huimin Wang, Quan Lu","doi":"10.1093/treephys/tpae069","DOIUrl":"10.1093/treephys/tpae069","url":null,"abstract":"<p><p>With climate warming and economic globalization, insect-microbe assemblages are becoming increasingly responsible for various devastating forest diseases worldwide. Japanese larch (Larix kaempferi) is extensively cultivated in China because of its high survival rate, rapid maturation and robust mechanical properties. Endoconidiophora fujiensis, an ophiostomatoid fungus associated with Ips subelongatus, has been identified as a lethal pathogen of L. kaempferi in Japan. However, there is a dearth of research on the pathogenicity of E. fujiensis in larches in China. Therefore, we investigated the pathogenicity of E. fujiensis in introduced L. kaempferi and indigenous larch (Larix olgensis) trees and compared the induced resistance responses to the pathogen in both tree species in terms of physiology and gene expression. Five-year-old saplings and 25-year-old adult trees of L. olgensis and L. kaempferi were inoculated in parallel during the same growing season. Endoconidiophora fujiensis exhibited high pathogenicity in both larch species, but particularly in L. kaempferi compared with L. olgensis adult trees; adult L. olgensis was more resistant to E. fujiensis than adult L. kaempferi, which was reflected in higher accumulation of defensive monoterpenes, such as myrcene, 3-carene and limonene and the earlier induction of defense genes catalase (CAT) and pathogenesis-related protein 1 (PR1). This study contributes to our understanding of the interactions between bark beetle-associated ophiostomatoid fungi and host larches, from phenotypic responses to alterations in secondary metabolites via defense- and metabolism-related gene activation, providing a valuable foundation for the management of larch diseases and pests in the future.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1093/treephys/tpae074
Huili Shi, Ulrike Lipka, Andrea Polle
Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.
树木的生长往往受到磷(P)供应的限制。磷平衡与生长之间的权衡关系尚不清楚。外生菌根(EM)真菌有利于磷的供应,但这一特性在不同的真菌种类和分离物之间存在差异。在此,我们测试了以下假设:(i) EMF 的定殖可促进植物在 P 有限条件下的生长;(ii) 杨树表现出 P 平衡,因为增加的 P 吸收用于生长,而不是组织中的 P 积累。除了未接种的杨树植株(NI)外,我们还使用了两种钾处理(HP:64 μM Pi;LP:营养液中含有 0.64 μM Pi)和四种真菌处理(内卷毛孢菌 MAJ、内卷毛孢菌 NAU、Laccaria bicolor dikaryon LBD、Laccaria bicolor monokaryon LBM)来测量生长、生物量、气体交换和钾含量。与 LP 条件相比,HP 能促进生长。接种了 MAJ、NAU 和 NI 的杨树比接种了 LBD 或 LBM 的杨树表现出更高的生长和生物量。生物量产量较低的杨树的光合作用速率与生长速率较高的植物相似或更高。在 HP 条件下,组织中 P 的浓度高于 LP 条件下,并且很少受到外生菌根定殖的影响。在低浓度条件下,植物单位钾的生物量比高浓度条件下高 44%。在给定的钾供应量下,无论生长速度如何,组织浓度都很稳定,这表明钾平衡。而 L. bicolor 则会抑制生长,与钾的供应量无关。这些结果表明,在杨树幼苗中,不同物种特有的外生菌根特性掩盖了潜在的生长益处。
{"title":"Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply.","authors":"Huili Shi, Ulrike Lipka, Andrea Polle","doi":"10.1093/treephys/tpae074","DOIUrl":"10.1093/treephys/tpae074","url":null,"abstract":"<p><p>Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1093/treephys/tpae062
Capucine Marion, Mana Gharun, Matthias S Brennwald, Rolf Kipfer
Trees transport gases from below ground into the atmosphere through the process of transpiration. Tracing gases transported through this mechanism continuously and under field conditions remains an experimental challenge. Here we measured gases dissolved in tree sap in-situ and in real time, aiming to simultaneously analyse the transport of several gases (He, Ar, Kr, N2, O2, CO2) from the soil, through the trees, into the atmosphere. We constructed and inserted custom-made semi-permeable membrane probes in the xylem of a fir tree and measured gas abundances at different heights using a portable gas equilibrium membrane-inlet mass spectrometer ('miniRUEDI'). With this method we were able to continuously measure the abundances of He, Ar, Kr, N2, O2, CO2 in sap over several weeks. We observed diurnal variations of CO2 and O2 concentrations that reflected tree physiological activities. As a proof of concept that trees do uptake dissolved gases in soil water, we irrigated the tree with He-enriched water in a tracer experiment, and were able to determine upwards sap flow velocity. Measurements of inert gases together with reactive species as CO2 and O2 allows to separate physical transport and exchange of gases derived from the soil or the atmosphere from biological reactions. We discuss the opportunities that our technique provides for continuous in-situ measurements of gases in tree sap.
树木通过蒸腾作用将气体从地下输送到大气中。在野外条件下持续追踪通过这种机制运输的气体仍然是一项实验挑战。在这里,我们对溶解在树液中的气体进行了现场实时测量,旨在同时分析几种气体(He、Ar、Kr、N2、O2、CO2)从土壤通过树木进入大气的传输过程。我们在一棵杉树的木质部建造并插入了定制的半透膜探针,并使用便携式气体平衡膜入口质谱仪('miniRUEDI')测量了不同高度的气体丰度。利用这种方法,我们能够在数周内连续测量树液中 He、Ar、Kr、N2、O2 和 CO2 的丰度。我们观察到二氧化碳和氧气浓度的昼夜变化反映了树木的生理活动。为了证明树木确实吸收了土壤水中的溶解气体,我们在示踪实验中用富含氦气的水灌溉树木,并测定了树液向上流动的速度。通过对惰性气体以及二氧化碳和氧气等活性物质的测量,可以将来自土壤或大气的气体的物理传输和交换与生物反应区分开来。我们讨论了我们的技术为连续现场测量树液中的气体提供的机会。
{"title":"In-situ measurements of dissolved gases in xylem sap as tracers in plant physiology.","authors":"Capucine Marion, Mana Gharun, Matthias S Brennwald, Rolf Kipfer","doi":"10.1093/treephys/tpae062","DOIUrl":"https://doi.org/10.1093/treephys/tpae062","url":null,"abstract":"<p><p>Trees transport gases from below ground into the atmosphere through the process of transpiration. Tracing gases transported through this mechanism continuously and under field conditions remains an experimental challenge. Here we measured gases dissolved in tree sap in-situ and in real time, aiming to simultaneously analyse the transport of several gases (He, Ar, Kr, N2, O2, CO2) from the soil, through the trees, into the atmosphere. We constructed and inserted custom-made semi-permeable membrane probes in the xylem of a fir tree and measured gas abundances at different heights using a portable gas equilibrium membrane-inlet mass spectrometer ('miniRUEDI'). With this method we were able to continuously measure the abundances of He, Ar, Kr, N2, O2, CO2 in sap over several weeks. We observed diurnal variations of CO2 and O2 concentrations that reflected tree physiological activities. As a proof of concept that trees do uptake dissolved gases in soil water, we irrigated the tree with He-enriched water in a tracer experiment, and were able to determine upwards sap flow velocity. Measurements of inert gases together with reactive species as CO2 and O2 allows to separate physical transport and exchange of gases derived from the soil or the atmosphere from biological reactions. We discuss the opportunities that our technique provides for continuous in-situ measurements of gases in tree sap.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1093/treephys/tpae057
Dehui Qu, Fanlin Wu, Yingtian Guo, Jin Zhang, Mengyuan Li, Lina Yang, Lei Wang, Hongyan Su
Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals and materials. Enhancing the content of plant biomass through endophyte symbiosis can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG), and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase, increased. In addition, the contents of glucose, fructose, starch, and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.
{"title":"Dark septate endophyte Anteaglonium sp. T010 promotes biomass accumulation in poplar by regulating sucrose metabolism and hormones.","authors":"Dehui Qu, Fanlin Wu, Yingtian Guo, Jin Zhang, Mengyuan Li, Lina Yang, Lei Wang, Hongyan Su","doi":"10.1093/treephys/tpae057","DOIUrl":"10.1093/treephys/tpae057","url":null,"abstract":"<p><p>Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals and materials. Enhancing the content of plant biomass through endophyte symbiosis can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG), and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase, increased. In addition, the contents of glucose, fructose, starch, and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1093/treephys/tpae056
Huimin Wang, Ya Liu, Tiantian Wang, Duanchong Liu, Quan Lu
Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.
{"title":"Pathophysiology and transcriptomic responses of Pinus armandii defenses to ophiostomatoid fungi.","authors":"Huimin Wang, Ya Liu, Tiantian Wang, Duanchong Liu, Quan Lu","doi":"10.1093/treephys/tpae056","DOIUrl":"10.1093/treephys/tpae056","url":null,"abstract":"<p><p>Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}