The escalating challenge of antibiotic resistance significantly threatens global health, underscoring the critical need for new antimicrobial agents. Venoms, increasingly recognized as reservoirs of bioactive compounds with diverse pharmacological effects, have been the focus of recent research. This work evaluates the use of various screening methodologies in assessing the antimicrobial activities of 185 venoms against some gram positive and gram negative bacteria, including E. coli ATCC 8739, B. subtilis ATCC 6633, P. aeruginosa ATCC 9027, and S. aureus ATCC 6538P species and explores the influence of settings on the findings. Furthermore, the research explored the possibility of purifying antimicrobial molecules from venoms through HPLC. Several fractions demonstrated antimicrobial activity against the tested strains.
Our results reveal that the measured antimicrobial efficacy of venoms varies according to:i) venom concentration, ii) the detection method, including microdilution and radial diffusion assays, and iii) the choice of culture medium, specifically LB or MH.
This strategy has allowed us, for the first time, to identify antimicrobial activity in: i) Bitis arietans venom against P. aeruginosa ATCC 9027, ii) Naja nubiae and Bothrops lanceolatus against B. subtilis ATCC 6633, P. aeruginosa ATCC 9027, and S. aureus ATCC 6538P, and iii) Hadogenes zuluanus, Mesobuthus caucasicus, Nebo hierichonticus, Opistophthalmus wahlbergii scorpions, and Mylabris quadripunctata beetles against S. aureus ATCC 6538P.
These findings highlight venoms potential as effective antimicrobial resources and improve our understanding of key factors critical for an accurate detection of venoms antimicrobial properties.