首页 > 最新文献

Turkish Journal of Chemistry最新文献

英文 中文
Cytotoxicity of norstictic acid derivatives, a depsidone from Ramalina anceps Nyl. 从 Ramalina anceps Nyl.中提取的一种去苷酮--去甲睾酮酸衍生物的细胞毒性。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-05 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3694
Danielle Bogo, Isabel Máximo C Alcântara, Glaucia B Alcantara, Ana Camila Micheletti, Neli K Honda, Maria de Fátima C Matos

Structural modifications in lichen phenolic compounds have been one of the tools to potentiate their biological activity. In the present work, seven alkyl derivatives of norstictic acid were prepared and evaluated against eight cell lines. Norstictic acid was isolated from the lichen Ramalina anceps and the alkyl derivatives were obtained through reactions with alcohols. Cytotoxicity was evaluated against the 786-0 (kidney carcinoma), MCF7 (breast carcinoma), HT-29 (colon carcinoma), PC-03 (prostate carcinoma), HEP2 (laryngeal carcinoma), B16-F10 (murine melanoma), UACC-62 (human melanoma), and NIH/3T3 (mouse embryonic fibroblast) cell lines using the sulforhodamine B assay. Norstictic acid exhibited poor activity, while the 8'-O-n-butyl-norstictic acid and 8'-O-sec-butyl-norstictic acid derivatives showed potential activity (GI50 values of 6.37-45.0 μM and 6.8-52.40 μM, respectively) and high selectivity (selectivity index (SI) values of 13.88-98.11 and SI 11.30-87.40, respectively) against all tumor cells. The 8'-O-n-hexyl-norstictic acid showed good activity (5.96-9.53 μM) and moderate selectivity (SI 9.2-5.76) against MCF7, HT-29, PC-03, and HEP2 cells, while 8'-O-isopropyl-norstictic acid demonstrated high activity and selectivity against PC-03 cells (GI50 1.28 μM and SI 33.8), and was highly active but moderately selective against UACC, HEP2, and B16-F10 cells (GI50 6.2, 7.78, and 9.65 μM; SI 7.0, 5.5, and 4.5, respectively). Additionally, 8'-O-n-pentyl- and 8'-O-tert-butyl-norstictic acids were active and selective against PC-03 cells (GI50 8.77 and 7.60 μM; SI 6.53 and 5.0, respectively). Chemometric analysis revealed a clear relationship between all compounds and their biological activities. The insertion of a four-carbon alkyl chain (n-butyl and sec-butyl) produced potentially active compounds on all tested tumor cells.

地衣酚类化合物的结构修饰是增强其生物活性的工具之一。在本研究中,制备了七种诺司替考酸烷基衍生物,并对八种细胞系进行了评估。诺斯替酸是从地衣中分离出来的,而烷基衍生物则是通过与醇反应获得的。使用磺基罗丹明 B 检测法评估了 786-0(肾癌)、MCF7(乳腺癌)、HT-29(结肠癌)、PC-03(前列腺癌)、HEP2(喉癌)、B16-F10(鼠黑色素瘤)、UACC-62(人黑色素瘤)和 NIH/3T3 (小鼠胚胎成纤维细胞)细胞系的细胞毒性。去甲乌头酸的活性较差,而 8'-O- 正丁基去甲乌头酸和 8'-O- 仲丁基去甲乌头酸衍生物对所有肿瘤细胞都显示出潜在的活性(GI50 值分别为 6.37-45.0 μM 和 6.8-52.40 μM)和高选择性(选择性指数 (SI) 值分别为 13.88-98.11 和 SI 11.30-87.40)。8'-O-n-hexyl-norstictic acid 对 MCF7、HT-29、PC-03 和 HEP2 细胞表现出良好的活性(5.96-9.53 μM)和中等的选择性(SI 9.2-5.76),而 8'-O-isopropyl-norstictic acid 对 PC-03 细胞表现出较高的活性和选择性(GI50 1.28 μM 和 SI 33.8),对 UACC、HEP2 和 B16-F10 细胞具有高活性和中等选择性(GI50 分别为 6.2、7.78 和 9.65 μM;SI 分别为 7.0、5.5 和 4.5)。此外,8'-O-正戊基-和 8'-O- 叔丁基-正丁基酸对 PC-03 细胞具有活性和选择性(GI50 分别为 8.77 和 7.60 μM;SI 分别为 6.53 和 5.0)。化学计量分析表明,所有化合物与其生物活性之间都存在明确的关系。插入四碳烷基链(正丁基和仲丁基)的化合物对所有测试的肿瘤细胞都具有潜在的活性。
{"title":"Cytotoxicity of norstictic acid derivatives, a depsidone from <i>Ramalina anceps</i> Nyl.","authors":"Danielle Bogo, Isabel Máximo C Alcântara, Glaucia B Alcantara, Ana Camila Micheletti, Neli K Honda, Maria de Fátima C Matos","doi":"10.55730/1300-0527.3694","DOIUrl":"https://doi.org/10.55730/1300-0527.3694","url":null,"abstract":"<p><p>Structural modifications in lichen phenolic compounds have been one of the tools to potentiate their biological activity. In the present work, seven alkyl derivatives of norstictic acid were prepared and evaluated against eight cell lines. Norstictic acid was isolated from the lichen <i>Ramalina anceps</i> and the alkyl derivatives were obtained through reactions with alcohols. Cytotoxicity was evaluated against the 786-0 (kidney carcinoma), MCF7 (breast carcinoma), HT-29 (colon carcinoma), PC-03 (prostate carcinoma), HEP2 (laryngeal carcinoma), B16-F10 (murine melanoma), UACC-62 (human melanoma), and NIH/3T3 (mouse embryonic fibroblast) cell lines using the sulforhodamine B assay. Norstictic acid exhibited poor activity, while the 8'-<i>O</i>-<i>n</i>-butyl-norstictic acid and 8'-<i>O</i>-<i>sec</i>-butyl-norstictic acid derivatives showed potential activity (GI<sub>50</sub> values of 6.37-45.0 μM and 6.8-52.40 μM, respectively) and high selectivity (selectivity index (SI) values of 13.88-98.11 and SI 11.30-87.40, respectively) against all tumor cells. The 8'-<i>O</i>-<i>n</i>-hexyl-norstictic acid showed good activity (5.96-9.53 μM) and moderate selectivity (SI 9.2-5.76) against MCF7, HT-29, PC-03, and HEP2 cells, while 8'-<i>O</i>-isopropyl-norstictic acid demonstrated high activity and selectivity against PC-03 cells (GI<sub>50</sub> 1.28 μM and SI 33.8), and was highly active but moderately selective against UACC, HEP2, and B16-F10 cells (GI<sub>50</sub> 6.2, 7.78, and 9.65 μM; SI 7.0, 5.5, and 4.5, respectively). Additionally, 8'-<i>O</i>-<i>n</i>-pentyl- and 8'-O-<i>tert</i>-butyl-norstictic acids were active and selective against PC-03 cells (GI<sub>50</sub> 8.77 and 7.60 μM; SI 6.53 and 5.0, respectively). Chemometric analysis revealed a clear relationship between all compounds and their biological activities. The insertion of a four-carbon alkyl chain (<i>n</i>-butyl and <i>sec</i>-butyl) produced potentially active compounds on all tested tumor cells.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"748-755"},"PeriodicalIF":1.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild acidic charcoal: adsorption, analysis, and application. 弱酸性木炭:吸附、分析和应用。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-01 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3692
Rajendra Patil, Jagdish Chavan, Shivnath Patel, Anil Beldar

The adsorption of glacial acetic acid over a charcoal support was investigated. The amount of adsorption was analyzed using a traditional titration method and the prepared adsorbed system was employed as a heterogeneous catalyst for organic reactions as a viable application. Different 14-aryl-14H-dibenzo[a,j]xanthenes were synthesized using mild acidic charcoal as a catalyst and yields of 88%-94% were obtained. The advantages of this method include the easy preparation of a cheaper and environmentally safe catalyst system, a simple work-up procedure, and excellent catalytic efficacy.

研究了木炭载体对冰醋酸的吸附。利用传统的滴定法分析了吸附量,并将制备的吸附体系用作有机反应的异相催化剂,这是一种可行的应用方法。使用弱酸性木炭作为催化剂合成了不同的 14-芳基-14H-二苯并[a,j]呫吨,并获得了 88%-94% 的产率。该方法的优点包括:容易制备出成本更低且对环境安全的催化剂体系,工作步骤简单,以及催化效果极佳。
{"title":"Mild acidic charcoal: adsorption, analysis, and application.","authors":"Rajendra Patil, Jagdish Chavan, Shivnath Patel, Anil Beldar","doi":"10.55730/1300-0527.3692","DOIUrl":"https://doi.org/10.55730/1300-0527.3692","url":null,"abstract":"<p><p>The adsorption of glacial acetic acid over a charcoal support was investigated. The amount of adsorption was analyzed using a traditional titration method and the prepared adsorbed system was employed as a heterogeneous catalyst for organic reactions as a viable application. Different 14-aryl-14<i>H</i>-dibenzo[a,j]xanthenes were synthesized using mild acidic charcoal as a catalyst and yields of 88%-94% were obtained. The advantages of this method include the easy preparation of a cheaper and environmentally safe catalyst system, a simple work-up procedure, and excellent catalytic efficacy.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"726-732"},"PeriodicalIF":1.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators. 新型六氢喹啉衍生物的合成和表征,以及对其细胞毒性、细胞内 ROS 生成和炎症介质抑制作用的评估。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3686
Ezgi Pehlivanlar, Deniz Arca Çakir, Sonia Sanajou, Hülya Tezel Yalçin, Terken Baydar, Pınar Erkekoğlu, Hanife Avci, Rahime Şimşek

Inflammation is a response to injury and infection in an organism. It can be categorized as acute or chronic. Chronic inflammation is the underlying cause of many diseases such as Alzheimer disease, diabetes, rheumatoid arthritis, atherosclerosis, and cardiovascular diseases. Recent studies have proven the antiinflammatory properties of 1,4-dihydropyridines (1,4-DHPs) and their derivatives, which have many biological activities including the blocking of calcium channels. In this study, 15 compounds that are condensed derivatives of 1,4-DHPs, with the general structure of hexahydroquinoline-3-carboxylate, were synthesized. These compounds, expected to show inhibitory activity against inflammatory mediators, were obtained by the reaction of 4-(difluoromethoxy)benzaldehyde, substituted/nonsubstituted 1,3-cyclohexanedione derivatives, and appropriate alkyl acetoacetate compounds in the presence of ammonium acetate as a nitrogen source according to the Hantzsch synthesis method. The structures of the synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, and HRMS methods. The cytotoxic properties of the compounds were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in the 3T3 cell line. Among the 15 compounds, the three compounds with the lowest levels of cytotoxic effects were selected for further experiments. Inflammation was induced by lipoxygenase and the effects of the selected compounds on the levels of reactive oxygen species, cytokines, and complement C3 and C9 regulatory proteins were investigated. It was found that the three selected compounds decreased the levels of transforming growth factor-beta 1 (TGF-β1). Among these compounds, compound 3e provided the most significant decrease in this cytokine. Moreover, 3e increased both C3 and C9 levels. Molecular modeling studies also showed that 3e had better affinity for TGF-β1. When the binding modes of these compounds in the active site of TGF-β1 were analyzed, it was found that compound 3e had hydrophobic interactions with amino acids Leu142, Tyr84, and Ile13; halogen bond interactions with Asp92; and hydrogen bond interactions with Ser89, Gly88, and Gly14 in the active binding site. Further in vitro and in vivo studies are needed to show the possible mechanism of action of compound 3e.

炎症是机体对损伤和感染的一种反应。炎症可分为急性和慢性两种。慢性炎症是许多疾病的根本原因,如老年痴呆症、糖尿病、类风湿性关节炎、动脉粥样硬化和心血管疾病。最近的研究证明了 1,4-二氢吡啶(1,4-DHPs)及其衍生物的抗炎特性,它们具有多种生物活性,包括阻断钙通道。本研究合成了 15 种 1,4-DHPs 的缩合衍生物,其一般结构为六氢喹啉-3-羧酸酯。这些化合物是由 4-(二氟甲氧基)苯甲醛、取代/未取代的 1,3-Cyclohexanedione 衍生物和适当的乙酰乙酸烷基化合物在醋酸铵作为氮源的条件下,按照汉茨合成法反应得到的,预计对炎症介质具有抑制活性。通过红外光谱、1H NMR、13C NMR 和 HRMS 方法阐明了合成化合物的结构。用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑(MTT)法测定了这些化合物在 3T3 细胞系中的细胞毒性。在这 15 种化合物中,选取了细胞毒性作用最低的三种化合物进行进一步实验。通过脂氧合酶诱导炎症,研究了所选化合物对活性氧、细胞因子、补体 C3 和 C9 调节蛋白水平的影响。研究发现,所选的三种化合物降低了转化生长因子-β1(TGF-β1)的水平。在这些化合物中,化合物 3e 对该细胞因子的降低作用最为显著。此外,3e 还能提高 C3 和 C9 的水平。分子建模研究还表明,3e 对 TGF-β1 具有更好的亲和力。在分析这些化合物在 TGF-β1 活性部位的结合模式时,发现化合物 3e 与氨基酸 Leu142、Tyr84 和 Ile13 有疏水相互作用;与 Asp92 有卤键相互作用;与活性结合部位的 Ser89、Gly88 和 Gly14 有氢键相互作用。还需要进一步的体外和体内研究来显示化合物 3e 的可能作用机制。
{"title":"Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators.","authors":"Ezgi Pehlivanlar, Deniz Arca Çakir, Sonia Sanajou, Hülya Tezel Yalçin, Terken Baydar, Pınar Erkekoğlu, Hanife Avci, Rahime Şimşek","doi":"10.55730/1300-0527.3686","DOIUrl":"https://doi.org/10.55730/1300-0527.3686","url":null,"abstract":"<p><p>Inflammation is a response to injury and infection in an organism. It can be categorized as acute or chronic. Chronic inflammation is the underlying cause of many diseases such as Alzheimer disease, diabetes, rheumatoid arthritis, atherosclerosis, and cardiovascular diseases. Recent studies have proven the antiinflammatory properties of 1,4-dihydropyridines (1,4-DHPs) and their derivatives, which have many biological activities including the blocking of calcium channels. In this study, 15 compounds that are condensed derivatives of 1,4-DHPs, with the general structure of hexahydroquinoline-3-carboxylate, were synthesized. These compounds, expected to show inhibitory activity against inflammatory mediators, were obtained by the reaction of 4-(difluoromethoxy)benzaldehyde, substituted/nonsubstituted 1,3-cyclohexanedione derivatives, and appropriate alkyl acetoacetate compounds in the presence of ammonium acetate as a nitrogen source according to the Hantzsch synthesis method. The structures of the synthesized compounds were elucidated by IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS methods. The cytotoxic properties of the compounds were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in the 3T3 cell line. Among the 15 compounds, the three compounds with the lowest levels of cytotoxic effects were selected for further experiments. Inflammation was induced by lipoxygenase and the effects of the selected compounds on the levels of reactive oxygen species, cytokines, and complement C3 and C9 regulatory proteins were investigated. It was found that the three selected compounds decreased the levels of transforming growth factor-beta 1 (TGF-β1). Among these compounds, compound <b>3e</b> provided the most significant decrease in this cytokine. Moreover, <b>3e</b> increased both C3 and C9 levels. Molecular modeling studies also showed that <b>3e</b> had better affinity for TGF-β1. When the binding modes of these compounds in the active site of TGF-β1 were analyzed, it was found that compound <b>3e</b> had hydrophobic interactions with amino acids Leu142, Tyr84, and Ile13; halogen bond interactions with Asp92; and hydrogen bond interactions with Ser89, Gly88, and Gly14 in the active binding site. Further in vitro and in vivo studies are needed to show the possible mechanism of action of compound <b>3e</b>.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"659-675"},"PeriodicalIF":1.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of graphene oxide-based biosensing platforms for label-free bioelectronic detection of pathogenic microorganisms. 开发基于氧化石墨烯的生物传感平台,用于病原微生物的无标记生物电子检测。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-17 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3693
Sezin Yüksel, Fethiye Ferda Yilmaz, Hüseyin Taşli, Pınar Kara

A novel electrochemical nanogenosensor devoted to clinical analysis is reported for label-free detection of pathogenic microorganisms in the present work. The designed biosensor is composed of graphene oxide-modified disposable pencil graphite electrodes as a sensing platform. Escherichia coli is used as a model case. A 5'-aminohexyl-linked 22-base sequence probe representing the E. coli amplicon is immobilized onto sensor surfaces via carbodiimide chemistry. Hybridization is performed with denatured PCR amplicons of the bacteria. Detection is realized by transduction with the electrochemical impedance spectrometry technique. The selectivity of the designed genosensor is measured using Mycobacterium tuberculosis and Klebsiella pneumoniae sequences. Outstanding sensitivity is achieved with this genosensor array platform with a detection limit of 102 nM. This platform offers promise for rapid, simple, and cost-effective detection of various pathogenic microorganisms.

本研究报告了一种用于临床分析的新型电化学纳米传感器,可对病原微生物进行无标记检测。所设计的生物传感器由氧化石墨烯修饰的一次性铅笔石墨电极作为传感平台。以大肠杆菌为模型。代表大肠杆菌扩增子的 5'-aminohexyl 链接 22 碱基序列探针通过碳二亚胺化学方法固定在传感器表面。与变性的细菌 PCR 扩增子进行杂交。检测是通过电化学阻抗谱技术进行的。利用结核分枝杆菌和肺炎克雷伯菌序列测量了所设计的基因传感器的选择性。该基因传感器阵列平台具有出色的灵敏度,检测限为 102 nM。该平台有望快速、简单、经济地检测各种病原微生物。
{"title":"Development of graphene oxide-based biosensing platforms for label-free bioelectronic detection of pathogenic microorganisms.","authors":"Sezin Yüksel, Fethiye Ferda Yilmaz, Hüseyin Taşli, Pınar Kara","doi":"10.55730/1300-0527.3693","DOIUrl":"https://doi.org/10.55730/1300-0527.3693","url":null,"abstract":"<p><p>A novel electrochemical nanogenosensor devoted to clinical analysis is reported for label-free detection of pathogenic microorganisms in the present work. The designed biosensor is composed of graphene oxide-modified disposable pencil graphite electrodes as a sensing platform. <i>Escherichia coli</i> is used as a model case. A 5'-aminohexyl-linked 22-base sequence probe representing the <i>E. coli</i> amplicon is immobilized onto sensor surfaces via carbodiimide chemistry. Hybridization is performed with denatured PCR amplicons of the bacteria. Detection is realized by transduction with the electrochemical impedance spectrometry technique. The selectivity of the designed genosensor is measured using <i>Mycobacterium tuberculosis</i> and <i>Klebsiella pneumoniae</i> sequences. Outstanding sensitivity is achieved with this genosensor array platform with a detection limit of 102 nM. This platform offers promise for rapid, simple, and cost-effective detection of various pathogenic microorganisms.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"733-747"},"PeriodicalIF":1.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic solid-phase extraction technique based on Fe3O4@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages. 基于Fe3O4@coPPy-PTH纳米复合材料的磁性固相萃取技术,用于用微样品进样系统-火焰原子吸收光谱法测定酒精饮料和非酒精饮料中的钴、铬和镍。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-14 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3683
Melike Küçüksakalli, Qamar Salamat, Buket Tireli, Şükrü Gökhan Elçi

A novel Fe3O4@coPPy-PTH nanocomposite-based sorbent was prepared via in situ oxidative polymerization using Fe3O4 nanoparticles with spherical and flower-like morphologies of thiophene and pyrrole as the feedstocks. The synthesized nanocomposite displayed sensitive extraction and determination of metal ions Co(II), Cr(III), and Ni(II) without a chelating agent, followed by microsample injection system-flame atomic absorption spectrometry. Advanced spectroscopic and imaging techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy were used to characterize the composition and morphology of the Fe3O4@coPPy-PTH nanocomposite. SEM observations showed that the size of the Fe3O4 nanoparticles changed from 30 nm to 120 nm in diameter after copolymer (PPy-PTH) coating. The Fe3O4@coPPy-PTH nanocomposite has good dispersion properties and stability in strong acid solutions. For effective extraction of the studied analytes, the influence of sample pH, volume of sample solution and eluent, amount of adsorbent, and interference of coexisting metal ions were optimized. Under the optimum conditions, preconcentration factors were obtained as 25 for all analytes. The calibration curves were linear in the range of 0.0-10.0 μg L-1 with coefficients of determination (R2) greater than 0.9957 for all three analytes. Limits of detection (S/N = 3) were calculated in the range of 0.17-0.23 μg L-1. Precision values, expressed as relative standard deviations, were lower than 3.0%, and relative recoveries were obtained in the range of 88.6%-103.6%. The proposed method (Fe3O4@coPPy-PTH/MSPE/MIS-FAAS) was successfully applied to extract and determine the studied metal ions in beer, wine, and nonalcoholic beverage samples.

以噻吩和吡咯为原料,通过原位氧化聚合制备了一种新型的Fe3O4@coPPy-PTH纳米复合吸附剂。合成的纳米复合材料在不使用螯合剂的情况下灵敏地萃取和测定了金属离子钴(II)、铬(III)和镍(II),然后通过微量样品进样系统-火焰原子吸收光谱法进行了测定。扫描电子显微镜(SEM)和傅立叶变换红外光谱等先进的光谱和成像技术用于表征 Fe3O4@coPPy-PTH 纳米复合材料的组成和形态。扫描电镜观察结果表明,共聚物(PPy-PTH)涂层后,Fe3O4 纳米粒子的直径从 30 纳米变为 120 纳米。Fe3O4@coPPy-PTH纳米复合材料在强酸溶液中具有良好的分散性和稳定性。为了有效萃取所研究的分析物,对样品的 pH 值、样品溶液和洗脱液的体积、吸附剂的用量以及共存金属离子的干扰等因素进行了优化。在最佳条件下,所有分析物的预浓缩因子均为 25。校准曲线在 0.0-10.0 μg L-1 范围内呈线性关系,所有三种分析物的测定系数 (R2) 均大于 0.9957。计算得出的检测限(S/N = 3)范围为 0.17-0.23 μg L-1。以相对标准偏差表示的精密度值低于 3.0%,相对回收率在 88.6%-103.6% 之间。所提出的方法(Fe3O4@coPPy-PTH/MSPE/MIS-FAAS)成功地应用于啤酒、葡萄酒和非酒精饮料样品中金属离子的提取和测定。
{"title":"Magnetic solid-phase extraction technique based on Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages.","authors":"Melike Küçüksakalli, Qamar Salamat, Buket Tireli, Şükrü Gökhan Elçi","doi":"10.55730/1300-0527.3683","DOIUrl":"https://doi.org/10.55730/1300-0527.3683","url":null,"abstract":"<p><p>A novel Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite-based sorbent was prepared via in situ oxidative polymerization using Fe<sub>3</sub>O<sub>4</sub> nanoparticles with spherical and flower-like morphologies of thiophene and pyrrole as the feedstocks. The synthesized nanocomposite displayed sensitive extraction and determination of metal ions Co(II), Cr(III), and Ni(II) without a chelating agent, followed by microsample injection system-flame atomic absorption spectrometry. Advanced spectroscopic and imaging techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy were used to characterize the composition and morphology of the Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite. SEM observations showed that the size of the Fe<sub>3</sub>O<sub>4</sub> nanoparticles changed from 30 nm to 120 nm in diameter after copolymer (PPy-PTH) coating. The Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite has good dispersion properties and stability in strong acid solutions. For effective extraction of the studied analytes, the influence of sample pH, volume of sample solution and eluent, amount of adsorbent, and interference of coexisting metal ions were optimized. Under the optimum conditions, preconcentration factors were obtained as 25 for all analytes. The calibration curves were linear in the range of 0.0-10.0 μg L<sup>-1</sup> with coefficients of determination (R<sup>2</sup>) greater than 0.9957 for all three analytes. Limits of detection (S/N = 3) were calculated in the range of 0.17-0.23 μg L<sup>-1</sup>. Precision values, expressed as relative standard deviations, were lower than 3.0%, and relative recoveries were obtained in the range of 88.6%-103.6%. The proposed method (Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH/MSPE/MIS-FAAS) was successfully applied to extract and determine the studied metal ions in beer, wine, and nonalcoholic beverage samples.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"620-630"},"PeriodicalIF":1.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of blood at simulated crime scenes using silver nanoparticles with SERS. 利用银纳米粒子和 SERS 识别模拟犯罪现场的血液。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-14 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3687
Uğur Köroğlu, Necdet Sağlam, Uğur Tamer, Ramazan Akçan, İsmail Hakkı Boyaci, Eylül Evran

The analysis of substances and samples obtained from a crime scene is very important in solving forensic cases. To determine the variables involved in a crime and to expedite the investigation process, the rapid analysis of body fluids in small quantities and within environments containing diverse components is particularly necessary. For this reason, it is of great importance to analyze biological fluids with rapid, noncontaminating, nondestructive, low-cost, and accurate techniques. In recent years, with advancements in laser technology, spectroscopic methods have been introduced as analytical techniques in forensic medicine and chemical studies. This study focuses on surface-enhanced Raman spectroscopy (SERS) to demonstrate the detection of blood samples in simulated crime scenes. To minimize the background signal from fluorescent biomolecules in blood, dilution was performed with two different components and Raman analysis was performed for four different concentrations of blood. In general, a decrease in noise in the spectra was observed as the blood was diluted. Crime scenes consisting of pure blood, blood diluted with ethanol and distilled water (1:2, 1:4, and 1:8), a blood-mineral water mixture, a blood-cherry juice mixture, and silver nanoparticle-added mixtures were simulated, and their spectra were examined. Chemometric analyses of the data were performed. Despite high noise and low peak intensities, blood-identifying signals were detected when examining different blood concentrations. It was observed that silver nanoparticles provided high enhancement of blood peaks thanks to their strong plasmonic properties.

对从犯罪现场获得的物质和样本进行分析,对于侦破法医案件非常重要。为了确定犯罪所涉及的变量并加快调查进程,尤其需要在含有不同成分的环境中对少量体液进行快速分析。因此,采用快速、无污染、无损伤、低成本和准确的技术分析生物液体就显得尤为重要。近年来,随着激光技术的发展,光谱方法已被引入法医学和化学研究中作为分析技术。本研究主要利用表面增强拉曼光谱(SERS)来展示模拟犯罪现场中血液样本的检测。为了尽量减少血液中荧光生物分子的背景信号,使用两种不同的成分进行稀释,并对四种不同浓度的血液进行拉曼分析。一般来说,随着血液的稀释,光谱中的噪声会减小。模拟的犯罪现场包括纯血、用乙醇和蒸馏水稀释的血液(1:2、1:4 和 1:8)、血液-矿泉水混合物、血液-樱桃汁混合物以及添加银纳米粒子的混合物,并对它们的光谱进行了检测。对数据进行了化学计量分析。尽管噪声大、峰值强度低,但在检测不同浓度的血液时仍能检测到血液识别信号。据观察,由于银纳米粒子具有很强的等离子特性,因此能很好地增强血液峰值。
{"title":"Identification of blood at simulated crime scenes using silver nanoparticles with SERS.","authors":"Uğur Köroğlu, Necdet Sağlam, Uğur Tamer, Ramazan Akçan, İsmail Hakkı Boyaci, Eylül Evran","doi":"10.55730/1300-0527.3687","DOIUrl":"https://doi.org/10.55730/1300-0527.3687","url":null,"abstract":"<p><p>The analysis of substances and samples obtained from a crime scene is very important in solving forensic cases. To determine the variables involved in a crime and to expedite the investigation process, the rapid analysis of body fluids in small quantities and within environments containing diverse components is particularly necessary. For this reason, it is of great importance to analyze biological fluids with rapid, noncontaminating, nondestructive, low-cost, and accurate techniques. In recent years, with advancements in laser technology, spectroscopic methods have been introduced as analytical techniques in forensic medicine and chemical studies. This study focuses on surface-enhanced Raman spectroscopy (SERS) to demonstrate the detection of blood samples in simulated crime scenes. To minimize the background signal from fluorescent biomolecules in blood, dilution was performed with two different components and Raman analysis was performed for four different concentrations of blood. In general, a decrease in noise in the spectra was observed as the blood was diluted. Crime scenes consisting of pure blood, blood diluted with ethanol and distilled water (1:2, 1:4, and 1:8), a blood-mineral water mixture, a blood-cherry juice mixture, and silver nanoparticle-added mixtures were simulated, and their spectra were examined. Chemometric analyses of the data were performed. Despite high noise and low peak intensities, blood-identifying signals were detected when examining different blood concentrations. It was observed that silver nanoparticles provided high enhancement of blood peaks thanks to their strong plasmonic properties.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"676-690"},"PeriodicalIF":1.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of 3-methyl-3-buten-1-ol by supercritical CO2 in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction. 利用超临界二氧化碳与 HZSM-5 催化的甲醛-异丁烯 Prins 反应合成 3-甲基-3-丁烯-1-醇。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3682
Hang Yuan, Gui-Ping Cao, Hui Lv

The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO2 was investigated using CsH2PO4-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO2 with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.

在以甲醛和异丁烯为原料合成 3-甲基-3-丁烯-1-醇(MBO)的普林斯反应中,反应溶剂和催化剂起着至关重要的作用。我们使用 CsH2PO4 改性 HZSM-5 研究了甲醛和异丁烯在超临界 CO2 中固体碱催化 Prins 缩合反应的反应活性。我们发现,碱负载催化剂的碱性位点可以萃取异丁烯上的α-H,生成烯烃碳负离子,而具有弱路易斯酸性的超临界二氧化碳可以将甲醛活化为碳正离子,碳正离子更容易与碳负离子异丁烯结合反应,从而提高反应体系的反应活性。
{"title":"Synthesis of 3-methyl-3-buten-1-ol by supercritical CO<sub>2</sub> in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.","authors":"Hang Yuan, Gui-Ping Cao, Hui Lv","doi":"10.55730/1300-0527.3682","DOIUrl":"https://doi.org/10.55730/1300-0527.3682","url":null,"abstract":"<p><p>The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO<sub>2</sub> was investigated using CsH<sub>2</sub>PO<sub>4</sub>-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO<sub>2</sub> with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"597-619"},"PeriodicalIF":1.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Ketoenamine-linked covalent organic framework for efficient iodine capture. 用于高效捕获碘的β-酮胺连接共价有机框架。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-15 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3684
Onur Büyükçakir

Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a β-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g-1 at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g-1 in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.

探索能有效捕获放射性碘的材料对于管理核电站产生的核废料至关重要。本研究报告称,β-酮烯胺连接共价有机框架(bCOF)是一种有效的吸附剂,可从蒸汽和溶液中捕获碘。bCOF 的高孔隙率和富含杂原子的骨架使其在 75 °C 环境压力下的碘蒸气吸收能力高达 2.51 g-1。此外,经过五个连续的吸附-解吸循环后,bCOF 表现出较高的可重复使用性能,碘蒸气容量保持率显著提高。我们还利用各种原位结构表征技术对吸附机理进行了研究,这些机理研究表明,bCOF 与碘之间存在很强的化学作用。bCOF 还表现出良好的碘吸收性能,在环己烷中的吸收率高达 512 mg g-1,并且具有很高的去除率。bCOF 在吸附蒸汽和溶液中的碘方面的性能使其有望成为一种有效的吸附剂,用于捕捉核电站排放的放射性碘。
{"title":"<i>β</i>-Ketoenamine-linked covalent organic framework for efficient iodine capture.","authors":"Onur Büyükçakir","doi":"10.55730/1300-0527.3684","DOIUrl":"https://doi.org/10.55730/1300-0527.3684","url":null,"abstract":"<p><p>Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a <i>β</i>-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g<sup>-1</sup> at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g<sup>-1</sup> in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"631-642"},"PeriodicalIF":1.3,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LaCoO3 is a promising catalyst for the dry reforming of benzene used as a surrogate of biomass tar. LaCoO3 是一种很有前途的催化剂,可用于作为生物质焦油替代物的苯的干转化。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-15 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3685
Başar Çağlar, Deniz Üner

Tar build-up is one of the bottlenecks of biomass gasification processes. Dry reforming of tar is an alternative solution if the oxygen chemical potential on the catalyst surface is at a sufficient level. For this purpose, an oxygen-donor perovskite, LaCoO3, was used as a catalyst for the dry reforming of tar. To circumvent the complexity of the tar and its constituents, the benzene molecule was chosen as a model compound. Dry reforming of benzene vapor on the LaCoO3 catalyst was investigated at temperatures of 600, 700, and 800 °C; at CO2/C6H6 ratios of 3, 6, and 12; and at space velocities of 14,000 and 28,000 h-1. The conventional Ni(15 wt.%)/Al2O3 catalyst was also used as a reference material to determine the relative activity of the LaCoO3 catalyst. Different characterization techniques such as X-ray diffraction, N2 adsorption-desorption, temperature-programmed reduction, and oxidation were used to determine the physicochemical characteristics of the catalysts. The findings demonstrated that the LaCoO3 catalyst has higher CO2 conversion, higher H2 and CO yields, and better stability than the Ni(15 wt.%)/γ-Al2O3 catalyst. The improvement in activity was attributed to the strong capacity of LaCoO3 for oxygen exchange. The transfer of lattice oxygen from the surface of the LaCoO3 catalyst facilitates the oxidation of carbon and other surface species and leads to higher conversion and yields.

焦油堆积是生物质气化工艺的瓶颈之一。如果催化剂表面的氧化学势达到足够的水平,焦油干重整是一种替代解决方案。为此,我们使用了一种供氧型过氧化物 LaCoO3 作为焦油干重整的催化剂。为避免焦油及其成分的复杂性,选择苯分子作为模型化合物。研究了苯蒸气在 LaCoO3 催化剂上的干重整过程,温度分别为 600、700 和 800 °C,二氧化碳/C6H6 比率分别为 3、6 和 12,空间速度分别为 14,000 和 28,000 h-1。传统的 Ni(15 wt.%)/Al2O3 催化剂也被用作参考材料,以确定 LaCoO3 催化剂的相对活性。为了确定催化剂的物理化学特性,研究人员采用了不同的表征技术,如 X 射线衍射、N2 吸附-解吸、温度编程还原和氧化。研究结果表明,与 Ni(15 wt.%)/γ-Al2O3 催化剂相比,LaCoO3 催化剂具有更高的 CO2 转化率、更高的 H2 和 CO 产率以及更好的稳定性。活性的提高归功于 LaCoO3 强大的氧交换能力。LaCoO3 催化剂表面晶格氧的转移促进了碳和其他表面物质的氧化,从而提高了转化率和产率。
{"title":"LaCoO<sub>3</sub> is a promising catalyst for the dry reforming of benzene used as a surrogate of biomass tar.","authors":"Başar Çağlar, Deniz Üner","doi":"10.55730/1300-0527.3685","DOIUrl":"https://doi.org/10.55730/1300-0527.3685","url":null,"abstract":"<p><p>Tar build-up is one of the bottlenecks of biomass gasification processes. Dry reforming of tar is an alternative solution if the oxygen chemical potential on the catalyst surface is at a sufficient level. For this purpose, an oxygen-donor perovskite, LaCoO<sub>3</sub>, was used as a catalyst for the dry reforming of tar. To circumvent the complexity of the tar and its constituents, the benzene molecule was chosen as a model compound. Dry reforming of benzene vapor on the LaCoO<sub>3</sub> catalyst was investigated at temperatures of 600, 700, and 800 °C; at CO<sub>2</sub>/C<sub>6</sub>H<sub>6</sub> ratios of 3, 6, and 12; and at space velocities of 14,000 and 28,000 h<sup>-1</sup>. The conventional Ni(15 wt.%)/Al<sub>2</sub>O<sub>3</sub> catalyst was also used as a reference material to determine the relative activity of the LaCoO<sub>3</sub> catalyst. Different characterization techniques such as X-ray diffraction, N<sub>2</sub> adsorption-desorption, temperature-programmed reduction, and oxidation were used to determine the physicochemical characteristics of the catalysts. The findings demonstrated that the LaCoO<sub>3</sub> catalyst has higher CO<sub>2</sub> conversion, higher H<sub>2</sub> and CO yields, and better stability than the Ni(15 wt.%)/γ-Al<sub>2</sub>O<sub>3</sub> catalyst. The improvement in activity was attributed to the strong capacity of LaCoO<sub>3</sub> for oxygen exchange. The transfer of lattice oxygen from the surface of the LaCoO<sub>3</sub> catalyst facilitates the oxidation of carbon and other surface species and leads to higher conversion and yields.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"643-658"},"PeriodicalIF":1.3,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring sustainable synthesis paths: a comprehensive review of environmentally friendly methods for fabricating nanomaterials through green chemistry approaches. 探索可持续合成之路:通过绿色化学方法制造纳米材料的环境友好型方法综述。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3691
Vishu Girotra, Pritam Kaushik, Dipti Vaya

This comprehensive review delves into the burgeoning field of nanotechnology, where the synthesis of nanoparticles (NPs) is strategically tailored to specific applications. Embracing the principles of green chemistry, nanotechnology increasingly utilizes environmentally friendly materials, such as plant extracts or microorganisms, as capping or reducing agents and solvents in the synthesis process. Notably, plant-based synthesis demonstrates enhanced stability and faster rates compared to microorganisms. The synthesized materials exhibit unique properties ranging from antimicrobial and catalytic effects to antioxidant activities and they are finding applications across diverse fields. Green synthesis processes, characterized by mild conditions in terms of temperature and reagents, stand in stark contrast to traditional chemical synthesis methods. This review focuses on the synthesis of various metal and metal oxide NPs, including Ag, Au, Zn, Fe, Mg, Ti, Sn, Cu, Cd, Ni, Co, and Ag NPs and their oxides, using plant extracts and microorganisms. We provide a comprehensive analysis of the advantages, disadvantages, and applications associated with each synthesis method. Additionally, we explore the future prospects of green synthesis and its limitations and challenges, offering insights into its evolving role in nanotechnology.

本综述深入探讨了蓬勃发展的纳米技术领域,在这一领域中,纳米粒子(NPs)的合成是根据特定应用进行战略定制的。纳米技术秉承绿色化学的原则,在合成过程中越来越多地利用植物提取物或微生物等环保材料作为封端剂、还原剂和溶剂。值得注意的是,与微生物相比,以植物为基础的合成具有更高的稳定性和更快的速度。合成的材料表现出独特的性能,从抗菌、催化效应到抗氧化活性,它们正被广泛应用于各个领域。绿色合成工艺的特点是温度和试剂条件温和,与传统的化学合成方法形成鲜明对比。本综述重点介绍利用植物提取物和微生物合成各种金属和金属氧化物 NPs 的方法,包括 Ag、Au、Zn、Fe、Mg、Ti、Sn、Cu、Cd、Ni、Co 和 Ag NPs 及其氧化物。我们全面分析了每种合成方法的优缺点和相关应用。此外,我们还探讨了绿色合成的未来前景及其局限性和挑战,为其在纳米技术中不断发展的作用提供了见解。
{"title":"Exploring sustainable synthesis paths: a comprehensive review of environmentally friendly methods for fabricating nanomaterials through green chemistry approaches.","authors":"Vishu Girotra, Pritam Kaushik, Dipti Vaya","doi":"10.55730/1300-0527.3691","DOIUrl":"https://doi.org/10.55730/1300-0527.3691","url":null,"abstract":"<p><p>This comprehensive review delves into the burgeoning field of nanotechnology, where the synthesis of nanoparticles (NPs) is strategically tailored to specific applications. Embracing the principles of green chemistry, nanotechnology increasingly utilizes environmentally friendly materials, such as plant extracts or microorganisms, as capping or reducing agents and solvents in the synthesis process. Notably, plant-based synthesis demonstrates enhanced stability and faster rates compared to microorganisms. The synthesized materials exhibit unique properties ranging from antimicrobial and catalytic effects to antioxidant activities and they are finding applications across diverse fields. Green synthesis processes, characterized by mild conditions in terms of temperature and reagents, stand in stark contrast to traditional chemical synthesis methods. This review focuses on the synthesis of various metal and metal oxide NPs, including Ag, Au, Zn, Fe, Mg, Ti, Sn, Cu, Cd, Ni, Co, and Ag NPs and their oxides, using plant extracts and microorganisms. We provide a comprehensive analysis of the advantages, disadvantages, and applications associated with each synthesis method. Additionally, we explore the future prospects of green synthesis and its limitations and challenges, offering insights into its evolving role in nanotechnology.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"703-725"},"PeriodicalIF":1.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Turkish Journal of Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1