Pub Date : 2021-12-01DOI: 10.21776/ub.pengairan.2021.012.02.09
Jordy G. Makunimau, Dolly W. Karels, Denik S. Krisnayanti
Bolok village is a village in Kupang district that have not served by water supply. The unavailable water supply is a problem that people should deal with in fulfill their daily water requirements. This research aims to planning water supply system to help people of Bolok village to fulfill their daily water requirements. The system planned by the Epanet 2.0 software using Hazen William Method. 2 water sources that can be used for the system planning that are Taman Eden bored-well owned by Bolok village with the discharge is 1,314 ltrs/sec and bored-well owned by Kupang District PDAM with the discharge is 5 ltrs/sec. Its population projection in 2028 done by arithmetic method, geometric, and least square. Based on the deviation
{"title":"Perencanaan Jaringan Air Bersih di Desa Bolok Kecamatan Kupang Barat Kabupaten Kupang","authors":"Jordy G. Makunimau, Dolly W. Karels, Denik S. Krisnayanti","doi":"10.21776/ub.pengairan.2021.012.02.09","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.02.09","url":null,"abstract":"Bolok village is a village in Kupang district that have not served by water supply. The unavailable water supply is a problem that people should deal with in fulfill their daily water requirements. This research aims to planning water supply system to help people of Bolok village to fulfill their daily water requirements. The system planned by the Epanet 2.0 software using Hazen William Method. 2 water sources that can be used for the system planning that are Taman Eden bored-well owned by Bolok village with the discharge is 1,314 ltrs/sec and bored-well owned by Kupang District PDAM with the discharge is 5 ltrs/sec. Its population projection in 2028 done by arithmetic method, geometric, and least square. Based on the deviation","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130131891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.21776/ub.pengairan.2021.012.02.06
Delivean Rakha Dermawan, Evi Nur Cahya, Dian Sisinggih
In the physical model testing Pomalaa Dam spillway, the series 4 energy dissipator which has a base elevation of +41,00 m has been able to dissipate the flow energy well at the Q 100y , Q 1000y , and Q PMF , but it is necessary to try alternative designs that more effective and efficient. The method used is a numerical model simulation using an application based on Computational Fluid Dynamics (CFD), then the result will be verified with physical model using Brier-Skill Score (BSS). After that, an alternative design was carried out in the form of a variation in the base elevation of the energy dissipator, that are +42,00 m; +43,00 m; and +44,00 m, then the best model is selected as a recommendation from the simulation result. The result of the verification of the numerical model using BSS show that numerical model is quite capable of representing the physical model. The best simulation result is an energy dissipator with a base elevation of +42,00 with efficiency of energy dissipation at Q 100y , Q 1000y
{"title":"Pemodelan Numerik Bangunan Peredam Energi Bendungan Pomalaa dengan Analisa Komputasi Fluida Dinamis","authors":"Delivean Rakha Dermawan, Evi Nur Cahya, Dian Sisinggih","doi":"10.21776/ub.pengairan.2021.012.02.06","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.02.06","url":null,"abstract":"In the physical model testing Pomalaa Dam spillway, the series 4 energy dissipator which has a base elevation of +41,00 m has been able to dissipate the flow energy well at the Q 100y , Q 1000y , and Q PMF , but it is necessary to try alternative designs that more effective and efficient. The method used is a numerical model simulation using an application based on Computational Fluid Dynamics (CFD), then the result will be verified with physical model using Brier-Skill Score (BSS). After that, an alternative design was carried out in the form of a variation in the base elevation of the energy dissipator, that are +42,00 m; +43,00 m; and +44,00 m, then the best model is selected as a recommendation from the simulation result. The result of the verification of the numerical model using BSS show that numerical model is quite capable of representing the physical model. The best simulation result is an energy dissipator with a base elevation of +42,00 with efficiency of energy dissipation at Q 100y , Q 1000y","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132371566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.21776/ub.pengairan.2021.012.02.05
Ennisa Dzisofi Amelia, Sri Wahyuni, Donny Harisuseno
Reservoir evaporation information is important to determine the significance of water loss due to evaporation which reaches 90-95% of the total water loss in the reservoir. The problem that is often faced with evaporation data is the lack of data availability. To overcome these problems, the GLDAS-2.1 and CFS-V2 satellites have the ability to estimate evaporation on the surface. The satellite has a high spatial and temporal resolution, wide-area coverage, near real-time data and recorded continuously, fast accessibility, and economical. However, satellite data can be used if it has a strong coherence with the observation data. The purpose of this research is to evaluate the suitability of the evaporation data from the GLDAS-2.1 and CFS-V2 satellites to the observational evaporation data and to recommend which satellite is appropriate for estimating evaporation so that it can be used as an alternative to the availability of evaporation data in the Wonorejo Reservoir. The evaluation carried out in this study uses statistical analysis at the Wonorejo Geophysical Station. Results of data calibration on the GLDAS-2.1 and CFS-V2 satellite produce a correction factor in the form of a polynomial regression equation. At
{"title":"Evaluasi Kesesuaian Data Satelit sebagai Alternatif Ketersediaan Data Evaporasi di Waduk Wonorejo","authors":"Ennisa Dzisofi Amelia, Sri Wahyuni, Donny Harisuseno","doi":"10.21776/ub.pengairan.2021.012.02.05","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.02.05","url":null,"abstract":"Reservoir evaporation information is important to determine the significance of water loss due to evaporation which reaches 90-95% of the total water loss in the reservoir. The problem that is often faced with evaporation data is the lack of data availability. To overcome these problems, the GLDAS-2.1 and CFS-V2 satellites have the ability to estimate evaporation on the surface. The satellite has a high spatial and temporal resolution, wide-area coverage, near real-time data and recorded continuously, fast accessibility, and economical. However, satellite data can be used if it has a strong coherence with the observation data. The purpose of this research is to evaluate the suitability of the evaporation data from the GLDAS-2.1 and CFS-V2 satellites to the observational evaporation data and to recommend which satellite is appropriate for estimating evaporation so that it can be used as an alternative to the availability of evaporation data in the Wonorejo Reservoir. The evaluation carried out in this study uses statistical analysis at the Wonorejo Geophysical Station. Results of data calibration on the GLDAS-2.1 and CFS-V2 satellite produce a correction factor in the form of a polynomial regression equation. At","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125319308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-21DOI: 10.21776/ub.pengairan.2021.012.01.07
Aldio Dhiva Pratama, Entin Hidayah, Retno Utami Agung Wiyono
Pipa pesat merupakan saluran penghubung antara bak penenang dengan turbin pada rumah pembangkit. Meminimalisir kehilangan energi pada pipa pesat sangat penting untuk mengoptimalkan bangkitan energi listrik. Tujuan penelitian ini adalah melakukan optimasi diameter dan tebal pipa pesat untuk mencari hasil yang paling efisien, yang dikaji dari aspek hidrolika dan biayanya. Metode pemilihan pipa pesat yang optimal dapat ditentukan berdasarkan hubungan secara empiris, antara berbagai formula dari diameter dan tebal pipa pesat yang dinilai terhadap energi yang dihasilkan serta harga pipa pesat itu sendiri. Hasil penelitian menunjukkan bahwa besar diameter berbanding lurus dengan besar energi yang dihasilkan dan harga pipa pesat. Berdasarkan perbandingan, didapatkan diameter optimum pipa pesat sebesar 0,45 meter dengan tebal 0,0018 meter yang dihitung menggunakan formula dari Moffat, serta daya bangkitan sebesar 52,16 kW dan energi sebesar 456.914,33 kWh per tahunnya dengan harga pipa IDR 3.610.900 per meter pipa pesat. Penstock is the connecting channel between the forebay and the turbine in the power house. Minimizing the energy loss in the penstock is very important to optimize the generation of electrical energy. The purpose of this research is to optimize the diameter and thickness of penstock to find the most efficient results, which are examined from the aspects of hydraulics and costs. The optimal method of penstock selection can be determined based on the empirical relationship between the various formulas of the diameter and thickness of the penstock as assessed by the energy produced and the price of the penstock itself. The results showed that the diameter was directly proportional to the amount of energy produced and penstock price. Based on the comparison, the optimum diameter of the penstock is 0,45 meters with a thickness of 0,0018 meters which is calculated using the formula from Moffat, as well as a generation power of 52,16 kW and energy of 456.914,33 kWh yearly with the price of IDR 3.610.900 per meter penstock pipe.
这条抽油管是消声器和发电机涡轮机之间的连接管道。将气管的损失降到最低是充分利用电能的关键。该研究的目的是对直径和管道厚度进行最大的利用,以确定水力学和成本方面的最有效成果。最佳的快速选择方法可以通过经验来决定,从直径的不同配方到生产的快速管道的厚度以及快速管道本身的价格。研究表明,直径与由此产生的巨大能量成正比,价格迅速。相比之下,它的最佳直径为0.45米,厚度为0.0018米,使用的是莫夫特配方计算出来的,其复苏能力为每年456,914.33千瓦时,其价格为23英尺(3610900米)的IDR管。Penstock是连接海湾和turbine之间的电源。在penstock中最小化掉的能量对乐观一代电子能源非常重要。这项研究的目的是利用生命的直径和存量来找到最值得尊敬的结果匹配的最佳方法可以建立在不同强度强度的度量和度量之间的经验关系上结果表明,其直径与能源生产和股票价格的比例相反。最佳直径》改编自《不那么可怜,penstock是45米的with a thickness 0.0018从莫法特米,这是用的计算公式,as well as a generation 52.16 kW的电力和能源的456.914,33千瓦时yearly每米penstock with the price of IDR 3610900管。
{"title":"Penentuan Desain Optimum Penstock untuk Pembangkit Listrik Tenaga Mikrohidro di Sungai Poreng, Jember","authors":"Aldio Dhiva Pratama, Entin Hidayah, Retno Utami Agung Wiyono","doi":"10.21776/ub.pengairan.2021.012.01.07","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.07","url":null,"abstract":"Pipa pesat merupakan saluran penghubung antara bak penenang dengan turbin pada rumah pembangkit. Meminimalisir kehilangan energi pada pipa pesat sangat penting untuk mengoptimalkan bangkitan energi listrik. Tujuan penelitian ini adalah melakukan optimasi diameter dan tebal pipa pesat untuk mencari hasil yang paling efisien, yang dikaji dari aspek hidrolika dan biayanya. Metode pemilihan pipa pesat yang optimal dapat ditentukan berdasarkan hubungan secara empiris, antara berbagai formula dari diameter dan tebal pipa pesat yang dinilai terhadap energi yang dihasilkan serta harga pipa pesat itu sendiri. Hasil penelitian menunjukkan bahwa besar diameter berbanding lurus dengan besar energi yang dihasilkan dan harga pipa pesat. Berdasarkan perbandingan, didapatkan diameter optimum pipa pesat sebesar 0,45 meter dengan tebal 0,0018 meter yang dihitung menggunakan formula dari Moffat, serta daya bangkitan sebesar 52,16 kW dan energi sebesar 456.914,33 kWh per tahunnya dengan harga pipa IDR 3.610.900 per meter pipa pesat. Penstock is the connecting channel between the forebay and the turbine in the power house. Minimizing the energy loss in the penstock is very important to optimize the generation of electrical energy. The purpose of this research is to optimize the diameter and thickness of penstock to find the most efficient results, which are examined from the aspects of hydraulics and costs. The optimal method of penstock selection can be determined based on the empirical relationship between the various formulas of the diameter and thickness of the penstock as assessed by the energy produced and the price of the penstock itself. The results showed that the diameter was directly proportional to the amount of energy produced and penstock price. Based on the comparison, the optimum diameter of the penstock is 0,45 meters with a thickness of 0,0018 meters which is calculated using the formula from Moffat, as well as a generation power of 52,16 kW and energy of 456.914,33 kWh yearly with the price of IDR 3.610.900 per meter penstock pipe.","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"12 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113977371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-21DOI: 10.21776/ub.pengairan.2021.012.01.06
Rahmah Dara Lufira, Lilik Zuhriyah, Satwika Desantina Muktiningsih, Aldila Putri Rahayu, Denny Ahmad Fauzi
Menabung air hujan adalah salah satu upaya untuk mengendalikan kekurangan air dimusim kemarau. Sistem penjernih air hujan menjadi air bersih ini adalah rangkaian kegiatan gerakan menabung air hujan dan menggunakannya kembali untuk konservasi air tanah serta kebutuhan sehari-hari. Desa Arjosari mengalami kekurangan air bersih pada saat musim kemarau, maka dari itu peneliti membuat sistem penjernih air ini dengan memanfaatkan air hujan. Metode yang digunakan adalah tandon air kemudian pipa penjernih yang terdiri dari Zeolit, kerikil, Arang, ijuk dan spoons. Hasil analisa yang telah dilakukan dilaboratorium menggunakan parameter logam metode AAS (atomic absorbance spectrofotometri), parameter anion (spectrofotometer uv vis), dan parameter fisik (water quality checker dan tss meter). Didapatkan rata-rata nilai untuk pH 6.71, TSS 0, TDS 40,3, CaCO3 0, kandungan besi 0,032, Mangan 0,113. Pengujian yang telah dilakukan, mendapatkan hasil yang sesuai dengan persyaratan menurut Peraturan Menteri Kesehatan Republik Indonesia No. 492/MENKES/PER/IV/2010. Sehingga Air yang dipakai memenuhi syarat penggunaan air bersih.
{"title":"Model Penjernih Air Hujan Untuk Air Bersih","authors":"Rahmah Dara Lufira, Lilik Zuhriyah, Satwika Desantina Muktiningsih, Aldila Putri Rahayu, Denny Ahmad Fauzi","doi":"10.21776/ub.pengairan.2021.012.01.06","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.06","url":null,"abstract":"Menabung air hujan adalah salah satu upaya untuk mengendalikan kekurangan air dimusim kemarau. Sistem penjernih air hujan menjadi air bersih ini adalah rangkaian kegiatan gerakan menabung air hujan dan menggunakannya kembali untuk konservasi air tanah serta kebutuhan sehari-hari. Desa Arjosari mengalami kekurangan air bersih pada saat musim kemarau, maka dari itu peneliti membuat sistem penjernih air ini dengan memanfaatkan air hujan. Metode yang digunakan adalah tandon air kemudian pipa penjernih yang terdiri dari Zeolit, kerikil, Arang, ijuk dan spoons. Hasil analisa yang telah dilakukan dilaboratorium menggunakan parameter logam metode AAS (atomic absorbance spectrofotometri), parameter anion (spectrofotometer uv vis), dan parameter fisik (water quality checker dan tss meter). Didapatkan rata-rata nilai untuk pH 6.71, TSS 0, TDS 40,3, CaCO3 0, kandungan besi 0,032, Mangan 0,113. Pengujian yang telah dilakukan, mendapatkan hasil yang sesuai dengan persyaratan menurut Peraturan Menteri Kesehatan Republik Indonesia No. 492/MENKES/PER/IV/2010. Sehingga Air yang dipakai memenuhi syarat penggunaan air bersih.","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124696434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.21776/ub.pengairan.2021.012.01.03
K. Safitri, Evi Nur Cahya, Riyanto Haribowo
Abstrak Peningkatan pembangunan infrastruktur mengakibatkan perubahan tata guna lahan yang meminimalkan laju infiltrasi dan meningkatkan limpasan permukaan. Dibutuhkan alternatif penanganan yang tepat dalam mengatasi genangan air yaitu dengan penggunaan beton porous sebagai tutupan lahan. Limbah beton dimanfaatkan dalam pembuatan beton porous sebagai pengganti agregat kasar, yang disebut Recycled Coarse Aggregate (RCA). Untuk mengetahui kemampuan beton porous dalam mengatasi limpasan air pada permukaan miring dilakukan penelitian mengenai pengaruh kemiringan beton porous dengan agregat daur ulang terhadap kemampuan infiltrasi dan permeabilitasnya. Pengujian infiltrasi dilakukan pada kemiringan horizontal 2% dan kemiringan vertikal 0%, 10%, 20%, 30% menggunakan standar ASTM C 1701/C 1701M – 09. Dari hasil pengujian yang dilakukan, diketahui bahwa kemiringan vertikal dan horizontal beton porous mempengaruhi kemampuan infiltrasinya. Laju infiltrasi pada beton porous semakin berkurang seiring dengan bertambahnya kemiringan vertikal. Jenis agregrat juga diketahui mempengaruhi kemampuan permeabilitas beton porous. Beton porous dengan recycled coarse aggregate (RCA) memiliki kemampuan permeabilitas yang lebih besar dibandingkan dengan beton porous dengan natural coarse aggregate (NCA). Abstract Increased infrastructure constructions have resulted in land-use change which minimizes water infiltration into the soil and increases the amount of surface runoff. An alternative solution is needed to handle puddles, which is by using pervious concrete as land cover. Concrete waste is used as a substitute for coarse aggregate, which is called Recycled Coarse Aggregate (RCA). To determine the ability of pervious concrete to overcome water runoff on sloping surfaces, a study was conducted to identify the effect of the tilt position of pervious concrete on its infiltration rate and permeability. The infiltration test is carried out with a 2% of horizontal tilt and 0%, 10%, 20%, 30% vertical tilt following the procedures of ASTM C 1701/C 1701M – 09. Based on the results of the research, it can be concluded that the vertical and horizontal tilt position on previous concrete affects the infiltration rate. And the type of aggregate does affect the permeability of pervious concrete, pervious concrete with recycled coarse aggregate (RCA) has greater permeability than pervious concrete with natural coarse aggregate (NCA).
基础设施建设的抽象增加导致土地规划的改变,减少了含水量和表面积流失。在处理水坑时,需要适当的替代处理方法,即使用胶质混凝土作为土壤覆盖。混凝土废物被用来代替胶质混凝土,这是一种被称为回收器聚合体的粗聚合物。为了确定坡坡混凝土在水阻力上的作用,研究了水化混凝土斜率与可循环再集对其渗透能力和吸收能力的影响。采用标准ASTM C 1701/C 1701M - 09进行的水平水平测试和垂直水平水平0%、10%、20%、30%进行。从测试结果来看,孔混凝土的垂直倾斜度和水平水平影响其渗透能力。porous混凝土的渗透速度随着垂直倾斜率的增加而下降。已知的一种骨密度还会影响混凝土渗透性的渗透性。回流混凝土聚丙烯聚丙烯具有比天然震颤混凝土更大的渗透性。增加的基础设施建设被建议在地面上改变最小的水渗透到土壤中,增加浮出水面的上升上升。一种替代方案需要处理水坑,这是通过使用像陆地覆盖一样的被子来解决的。这种浮渣被用作农业联合企业的替代品,即回收农业联合。为了确定水在缓慢流动的表面流动的渗透性性,研究确定了水在吸收速率和渗透性上的可行性。渗透测试结果显示,有2%的水平tilt和0%,10%,20%,30%的垂直tilt遵循了ASTM C 1701/C 1701M - 09的进程。根据研究的结果,可以得出结论,垂直和水平的位置处于有利的影响水平。aggregate的性质确实影响了渗透性、回顾性和自然碰撞性的渗透性。
{"title":"Pengaruh Posisi Kemiringan Vertikal dan Horizontal terhadap Kemampuan Infiltrasi dan Permeabilitas Beton Porous dengan Recycled Aggregate The Effect of Vertical and Horizontal Tilt Position on Infiltration Rate and Permeability of Pervious Concrete with Recycled Aggregate","authors":"K. Safitri, Evi Nur Cahya, Riyanto Haribowo","doi":"10.21776/ub.pengairan.2021.012.01.03","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.03","url":null,"abstract":"Abstrak Peningkatan pembangunan infrastruktur mengakibatkan perubahan tata guna lahan yang meminimalkan laju infiltrasi dan meningkatkan limpasan permukaan. Dibutuhkan alternatif penanganan yang tepat dalam mengatasi genangan air yaitu dengan penggunaan beton porous sebagai tutupan lahan. Limbah beton dimanfaatkan dalam pembuatan beton porous sebagai pengganti agregat kasar, yang disebut Recycled Coarse Aggregate (RCA). Untuk mengetahui kemampuan beton porous dalam mengatasi limpasan air pada permukaan miring dilakukan penelitian mengenai pengaruh kemiringan beton porous dengan agregat daur ulang terhadap kemampuan infiltrasi dan permeabilitasnya. Pengujian infiltrasi dilakukan pada kemiringan horizontal 2% dan kemiringan vertikal 0%, 10%, 20%, 30% menggunakan standar ASTM C 1701/C 1701M – 09. Dari hasil pengujian yang dilakukan, diketahui bahwa kemiringan vertikal dan horizontal beton porous mempengaruhi kemampuan infiltrasinya. Laju infiltrasi pada beton porous semakin berkurang seiring dengan bertambahnya kemiringan vertikal. Jenis agregrat juga diketahui mempengaruhi kemampuan permeabilitas beton porous. Beton porous dengan recycled coarse aggregate (RCA) memiliki kemampuan permeabilitas yang lebih besar dibandingkan dengan beton porous dengan natural coarse aggregate (NCA). Abstract Increased infrastructure constructions have resulted in land-use change which minimizes water infiltration into the soil and increases the amount of surface runoff. An alternative solution is needed to handle puddles, which is by using pervious concrete as land cover. Concrete waste is used as a substitute for coarse aggregate, which is called Recycled Coarse Aggregate (RCA). To determine the ability of pervious concrete to overcome water runoff on sloping surfaces, a study was conducted to identify the effect of the tilt position of pervious concrete on its infiltration rate and permeability. The infiltration test is carried out with a 2% of horizontal tilt and 0%, 10%, 20%, 30% vertical tilt following the procedures of ASTM C 1701/C 1701M – 09. Based on the results of the research, it can be concluded that the vertical and horizontal tilt position on previous concrete affects the infiltration rate. And the type of aggregate does affect the permeability of pervious concrete, pervious concrete with recycled coarse aggregate (RCA) has greater permeability than pervious concrete with natural coarse aggregate (NCA).","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131585084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.21776/ub.pengairan.2021.012.01.05
Reza Renaldhy, I. W. Yasa, Ery Setiawan
This study aims to evaluate the rain station rationalization method using Kagan. In its application, the Kagan method can give results in the form of the number of stations and the location of the placement of the rain station network in an area. However, in its application in the field, the recommendation in the form of placement points does not meet the location criteria for the construction of a rain station. The results of the evaluation carried out at WS Sumbawa show that there are 116 rain stations that need to be added, but after being evaluated using Google Earth to see the suitability of the location against the criteria for the location of the rain station construction, only 36 points meet the criteria. To optimize this method, the recommendation points that do not meet the requirements are moved to the nearest water structure location such as a dam, embung or weir, so that 19 points are moved to the nearest water structure and 61 points are not recommended for the construction of a rain station. These results prove that the recommended number and placement points from the rationalization analysis of the Kagan method cannot be directly applied in the field, the recommendations given must be re-evaluated by taking into account the principles in determining the location of rain post construction.
{"title":"Evaluasi Rasionalisasi Stasiun Hujan Metode Kagan Rodda dengan Mempertimbangkan Kriteria Penentuan Lokasi Pembangunan Stasiun Hujan","authors":"Reza Renaldhy, I. W. Yasa, Ery Setiawan","doi":"10.21776/ub.pengairan.2021.012.01.05","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.05","url":null,"abstract":"This study aims to evaluate the rain station rationalization method using Kagan. In its application, the Kagan method can give results in the form of the number of stations and the location of the placement of the rain station network in an area. However, in its application in the field, the recommendation in the form of placement points does not meet the location criteria for the construction of a rain station. The results of the evaluation carried out at WS Sumbawa show that there are 116 rain stations that need to be added, but after being evaluated using Google Earth to see the suitability of the location against the criteria for the location of the rain station construction, only 36 points meet the criteria. To optimize this method, the recommendation points that do not meet the requirements are moved to the nearest water structure location such as a dam, embung or weir, so that 19 points are moved to the nearest water structure and 61 points are not recommended for the construction of a rain station. These results prove that the recommended number and placement points from the rationalization analysis of the Kagan method cannot be directly applied in the field, the recommendations given must be re-evaluated by taking into account the principles in determining the location of rain post construction.","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122828250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DAS Kamoning sering mengalami banjir yang terjadi hampir tiap tahun, permasalahan ini karena tata guna lahan DAS didominasi oleh area tegalan seluas 55,48% yang menjadi area limpasan, jika ditambahi dengan luas permukiman 15,59% yang belum dibangun sistem ecodrains maka luas area limpasan air hujan yg menjadi penyebab banjir menjadi 71 % dari luas DAS. Kondisi ini semakin tidak proporsinal ketika jenis tanah di DAS Kamoning 72 % juga didominasi tanah kategori D (laju infiltrasi sangat lambat). Melalui model desa spons berbasis ecodrains dilakukan perubahan pola ruang desa yang secara otomatis merubah pola ruang di DAS. Dengan pengaturan 40% luas vegetasi di setiap desa dengan mngurangi area tegalan, penambahan sumur resapan disetiap rumah/bangunan beratap dan pembangunan sumur injeksi di lahan pertanian tiap 0,16 ha. Hasil analisanya dibuktikan debit limpasan banjir dapat direduksi hingga 78,14% dan berada dibawah kapasitas Sungai Kota Sampan
{"title":"Pengendalian Banjir dengan Konsep Model Desa Spons Berbasis Ecodrains (studi kasus: DAS Kamoning Kabupaten Sampang, Madura)","authors":"Zaiful Muqaddas, Zaenal Kusuma, Runi Asmaranto, Bagyo Yanuwiadi","doi":"10.21776/ub.pengairan.2021.012.01.04","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.04","url":null,"abstract":"DAS Kamoning sering mengalami banjir yang terjadi hampir tiap tahun, permasalahan ini karena tata guna lahan DAS didominasi oleh area tegalan seluas 55,48% yang menjadi area limpasan, jika ditambahi dengan luas permukiman 15,59% yang belum dibangun sistem ecodrains maka luas area limpasan air hujan yg menjadi penyebab banjir menjadi 71 % dari luas DAS. Kondisi ini semakin tidak proporsinal ketika jenis tanah di DAS Kamoning 72 % juga didominasi tanah kategori D (laju infiltrasi sangat lambat). Melalui model desa spons berbasis ecodrains dilakukan perubahan pola ruang desa yang secara otomatis merubah pola ruang di DAS. Dengan pengaturan 40% luas vegetasi di setiap desa dengan mngurangi area tegalan, penambahan sumur resapan disetiap rumah/bangunan beratap dan pembangunan sumur injeksi di lahan pertanian tiap 0,16 ha. Hasil analisanya dibuktikan debit limpasan banjir dapat direduksi hingga 78,14% dan berada dibawah kapasitas Sungai Kota Sampan","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124893782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.21776/ub.pengairan.2021.012.01.01
Ekhsan Zainuri, Heri Suprijanto, Dian Sisinggih
Permasalahan yang sering ditimbulkan oleh banjir adalah karena adanya daya rusak air. Bangunan dinding penahan menjadi salah satu upaya dalam pengendalian banjir. Dalam merencanakan bangunan dinding penahan diperlukan beberapa analisis baik hidrologi, hidrolika, maupun keamanan struktur bangunan dengan memperhatikan aspek ekonomis. Pada studi ini, perhitungan debit banjir rancangan digunakan Hidrograf Satuan Sintetik Nakayasu dengan debit kala ulang Q25 th sebesar 258,807 m 3 /dt pada sungai Meduri dan sebesar 201,544 m 3 /dt pada sungai Bremi. Penentuan tinggi tanggul didapatkan dari analisis tinggi muka air banjir dengan bantuan aplikasi HEC-RAS pada kondisi eksisting dengan debit kala ulang Q25 th, didapatkan tinggi muka air banjir 2,22 m dan direncanakan tinggi tanggul 7,5 m dari dasar sungai. Analisis terhadap keamanan struktur bangunan dinding penahan yang diperhitungkan pada stabilitas bangunan baik keadaan normal maupun gempa, daya dukung tanah, penulangan, maupun reaksi pondasi didapatkan desain telah memenuhi persyaratan. Didapatkan Rencana Anggaran Biaya (RAB) dalam merencanakan dinding penahan sepanjang 6,78 km sebesar Rp 156.882.300.000 (Seratus Lima Puluh Enam Milyar Delapan Ratus Delapan Puluh Dua Juta Tiga Ratus Ribu Rupiah). Flooding is often causing a problem because of its destructive power. Retaining wall structure is one among the efforts to control the floods. This study aims to determine the problem of flooding that occurs in the Meduri river in Pekalongan regency so that an appropriate treatment can be planned, for example a retaining wall. Several analysis are required in order to plan retaining wall structure, such as hydrology, hydraulics, and safety factor of its structure regarding to economic aspect. This study is using a Nakayasu Synthetic Unit Hydrograph for its design flood discharge with Q25 return flowrate at 258.807 m3/s in Meduri River and 201.544 m3/s in Bremi River. The height of the embankment is obtained from analysis of flood water level using HEC-RAS with this following existing conditions: Q25 return flowrate, flood water level at 2.22 m, and height of dyke is planned at 7.5 from riverbed. The safety analysis of this retaining wall is calculated by stability normal, earthquake, soil bearing capacity, reinforcement, and also foundation reaction are already meet the criteria standard. The budget plan at this planning of 6.78 km retaining wall is IDR 156,882,300,000
{"title":"Studi Perencanaan Dinding Penahan Sebagai Upaya Pengendalian Banjir Sungai Meduri Kabupaten Pekalongan Jawa Tengah","authors":"Ekhsan Zainuri, Heri Suprijanto, Dian Sisinggih","doi":"10.21776/ub.pengairan.2021.012.01.01","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.01","url":null,"abstract":"Permasalahan yang sering ditimbulkan oleh banjir adalah karena adanya daya rusak air. Bangunan dinding penahan menjadi salah satu upaya dalam pengendalian banjir. Dalam merencanakan bangunan dinding penahan diperlukan beberapa analisis baik hidrologi, hidrolika, maupun keamanan struktur bangunan dengan memperhatikan aspek ekonomis. Pada studi ini, perhitungan debit banjir rancangan digunakan Hidrograf Satuan Sintetik Nakayasu dengan debit kala ulang Q25 th sebesar 258,807 m 3 /dt pada sungai Meduri dan sebesar 201,544 m 3 /dt pada sungai Bremi. Penentuan tinggi tanggul didapatkan dari analisis tinggi muka air banjir dengan bantuan aplikasi HEC-RAS pada kondisi eksisting dengan debit kala ulang Q25 th, didapatkan tinggi muka air banjir 2,22 m dan direncanakan tinggi tanggul 7,5 m dari dasar sungai. Analisis terhadap keamanan struktur bangunan dinding penahan yang diperhitungkan pada stabilitas bangunan baik keadaan normal maupun gempa, daya dukung tanah, penulangan, maupun reaksi pondasi didapatkan desain telah memenuhi persyaratan. Didapatkan Rencana Anggaran Biaya (RAB) dalam merencanakan dinding penahan sepanjang 6,78 km sebesar Rp 156.882.300.000 (Seratus Lima Puluh Enam Milyar Delapan Ratus Delapan Puluh Dua Juta Tiga Ratus Ribu Rupiah). Flooding is often causing a problem because of its destructive power. Retaining wall structure is one among the efforts to control the floods. This study aims to determine the problem of flooding that occurs in the Meduri river in Pekalongan regency so that an appropriate treatment can be planned, for example a retaining wall. Several analysis are required in order to plan retaining wall structure, such as hydrology, hydraulics, and safety factor of its structure regarding to economic aspect. This study is using a Nakayasu Synthetic Unit Hydrograph for its design flood discharge with Q25 return flowrate at 258.807 m3/s in Meduri River and 201.544 m3/s in Bremi River. The height of the embankment is obtained from analysis of flood water level using HEC-RAS with this following existing conditions: Q25 return flowrate, flood water level at 2.22 m, and height of dyke is planned at 7.5 from riverbed. The safety analysis of this retaining wall is calculated by stability normal, earthquake, soil bearing capacity, reinforcement, and also foundation reaction are already meet the criteria standard. The budget plan at this planning of 6.78 km retaining wall is IDR 156,882,300,000","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115038677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.21776/ub.pengairan.2021.012.01.02
Ika Purnamasari, T. Saputra, Suci Ristiyana
The hydrometeorological problem in the form of drought is a challenge facing Indonesia, especially West Java. The occurrence of drought in West Java, which has a monsoon climate, is closely related to the El Nino South Oscillation (ENSO) phenomenon. One method for quantifying the level of drought is the Palmer method or better known as the Palmer Drought Severity Index (PDSI). Rainfall data from the Climate Research Unit (CRU) 2000-2012 was used in this study. PDSI calculations differ in normal conditions and El Nino conditions. The spatial pattern of PDSI calculations is then mapped based on seasonality. The spatial drought model based on the Palmer index shows that the peak of drought occurs in June -Juli- August (JJA) and September - October - November (SON) . The drought is evenly distributed throughout West Java in the July to August period that centered in northern West Java from September to November. In the January to March period, the drought only concentrated in a small part of the western and southern parts of West Java. El Nino events during the dry season (June-November) increase the severity of drought in West Java. Permasalahan hidrometeorologi berupa kekeringan menjadi tantangan yang dihadapi Indonesia, khususnya Jawa Barat. Terjadinya kekeringan di Jawa Barat yang beriklim muson erat kaitannya dengan fenomena El Nino South Oscillation (ENSO). Salah satu metode untuk mengukur tingkat kekeringan adalah dengan metode Palmer atau yang lebih dikenal dengan Palmer Drought Severity Index (PDSI). Data curah hujan dari Climate Research Unit (CRU) 2000-2012 digunakan dalam studi ini. Perhitungan PDSI berbeda pada kondisi normal dan kondisi El Nino. Pola spasial penghitungan PDSI kemudian dipetakan berdasarkan musim. Model spasial kekeringan berdasarkan indeks Palmer menunjukkan bahwa puncak kekeringan terjadi pada bulan Juni-Juli-Agustus (JJA) dan September-Oktober-November (SON). Kekeringan merata di seluruh Jawa Barat pada periode Juli hingga Agustus yang berpusat di Jawa Barat bagian utara dari September hingga November. Pada periode Januari hingga Maret, kekeringan hanya terkonsentrasi di sebagian kecil wilayah Jawa Barat bagian barat dan selatan. Peristiwa El Nino pada musim kemarau (Juni-November) meningkatkan parahnya kekeringan di Jawa Barat.
干旱形式的水文气象问题是印度尼西亚面临的挑战,特别是西爪哇。西爪哇属季风气候,其干旱的发生与厄尔尼诺-南方涛动(ENSO)现象密切相关。量化干旱程度的一种方法是帕尔默法,或者更广为人知的是帕尔默干旱严重指数(PDSI)。本研究使用了2000-2012年气候研究单位(CRU)的降雨数据。PDSI的计算在正常条件和厄尔尼诺条件下有所不同。PDSI计算的空间格局然后根据季节性绘制。基于Palmer指数的空间干旱模型表明,干旱高峰出现在6 - 7 - 8月(JJA)和9 - 10 - 11月(SON)。7月至8月期间,西爪哇的干旱分布均匀,9月至11月以西爪哇北部为中心。在1月至3月期间,干旱只集中在西爪哇西部和南部的一小部分地区。干旱季节(6月至11月)的厄尔尼诺现象增加了西爪哇干旱的严重程度。Permasalahan水文气象berupa kekeringan menjadi tantangan yang dihadapi Indonesia, khususnya Jawa Barat。厄尔尼诺-南方涛动(ENSO)现象。帕尔默干旱严重指数(PDSI)。2000-2012年气候研究中心(CRU)数据库。Perhitungan PDSI berbeda pada kondisi normal dan kondisi El Nino。Pola special penghitungan PDSI kemudian dipetakan berdasarkan muslim。模型特殊kekeringan berdasarkan indeks Palmer menunjukkan bahwa punak kekeringan terjadi padadbulan JJA (JJA) 9月- 10月- 11月(SON)。Kekeringan merata di seluruh爪哇巴拉特帕达时期juuli hinga Agustus yang berpusat di爪哇巴拉特bagian utara dari September hinga November。帕达时期1月,兴加市场,kekeringan hanya terkonsentrasi di sebagian kecil wilayah Jawa Barat bagian Barat dan selatan。厄尔尼诺现象(6 - 11月)在爪哇发生。
{"title":"Pola Spasial Kekeringan di Jawa Barat Pada Kondisi El Nino Berbasis Metode Palmer Drought Severity Index (PDSI)","authors":"Ika Purnamasari, T. Saputra, Suci Ristiyana","doi":"10.21776/ub.pengairan.2021.012.01.02","DOIUrl":"https://doi.org/10.21776/ub.pengairan.2021.012.01.02","url":null,"abstract":"The hydrometeorological problem in the form of drought is a challenge facing Indonesia, especially West Java. The occurrence of drought in West Java, which has a monsoon climate, is closely related to the El Nino South Oscillation (ENSO) phenomenon. One method for quantifying the level of drought is the Palmer method or better known as the Palmer Drought Severity Index (PDSI). Rainfall data from the Climate Research Unit (CRU) 2000-2012 was used in this study. PDSI calculations differ in normal conditions and El Nino conditions. The spatial pattern of PDSI calculations is then mapped based on seasonality. The spatial drought model based on the Palmer index shows that the peak of drought occurs in June -Juli- August (JJA) and September - October - November (SON) . The drought is evenly distributed throughout West Java in the July to August period that centered in northern West Java from September to November. In the January to March period, the drought only concentrated in a small part of the western and southern parts of West Java. El Nino events during the dry season (June-November) increase the severity of drought in West Java. Permasalahan hidrometeorologi berupa kekeringan menjadi tantangan yang dihadapi Indonesia, khususnya Jawa Barat. Terjadinya kekeringan di Jawa Barat yang beriklim muson erat kaitannya dengan fenomena El Nino South Oscillation (ENSO). Salah satu metode untuk mengukur tingkat kekeringan adalah dengan metode Palmer atau yang lebih dikenal dengan Palmer Drought Severity Index (PDSI). Data curah hujan dari Climate Research Unit (CRU) 2000-2012 digunakan dalam studi ini. Perhitungan PDSI berbeda pada kondisi normal dan kondisi El Nino. Pola spasial penghitungan PDSI kemudian dipetakan berdasarkan musim. Model spasial kekeringan berdasarkan indeks Palmer menunjukkan bahwa puncak kekeringan terjadi pada bulan Juni-Juli-Agustus (JJA) dan September-Oktober-November (SON). Kekeringan merata di seluruh Jawa Barat pada periode Juli hingga Agustus yang berpusat di Jawa Barat bagian utara dari September hingga November. Pada periode Januari hingga Maret, kekeringan hanya terkonsentrasi di sebagian kecil wilayah Jawa Barat bagian barat dan selatan. Peristiwa El Nino pada musim kemarau (Juni-November) meningkatkan parahnya kekeringan di Jawa Barat.","PeriodicalId":236511,"journal":{"name":"Jurnal Teknik Pengairan","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133220172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}