首页 > 最新文献

Wind Energy最新文献

英文 中文
Automatic testbed with a visual motion tracking system for airborne wind energy applications 带有视觉运动跟踪系统的自动测试平台,用于机载风能应用
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2023-02-13 DOI: 10.1002/we.2805
I. Castro-Fernández, F. DeLosRíos‐Navarrete, R. Borobia-Moreno, M. Fernández-Jiménez, H. García‐Cousillas, M. Zas‐Bustingorri, A. T. Ghobaissi, F. López‐Vega, K. Best, R. Cavallaro, G. Sanchez-Arriaga
{"title":"Automatic testbed with a visual motion tracking system for airborne wind energy applications","authors":"I. Castro-Fernández, F. DeLosRíos‐Navarrete, R. Borobia-Moreno, M. Fernández-Jiménez, H. García‐Cousillas, M. Zas‐Bustingorri, A. T. Ghobaissi, F. López‐Vega, K. Best, R. Cavallaro, G. Sanchez-Arriaga","doi":"10.1002/we.2805","DOIUrl":"https://doi.org/10.1002/we.2805","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46142772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Markus Gross' obituary 马库斯·格罗斯的讣告
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2023-02-07 DOI: 10.1002/we.2808
V. Magar
{"title":"Markus Gross' obituary","authors":"V. Magar","doi":"10.1002/we.2808","DOIUrl":"https://doi.org/10.1002/we.2808","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44359921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can synoptic drivers explain rotor‐area wind conditions and predict energy output? 天气驱动因素能否解释转子区域的风况并预测能量输出?
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2023-02-03 DOI: 10.1002/we.2807
J. Coburn, K. Klink
{"title":"Can synoptic drivers explain rotor‐area wind conditions and predict energy output?","authors":"J. Coburn, K. Klink","doi":"10.1002/we.2807","DOIUrl":"https://doi.org/10.1002/we.2807","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43116028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reliability of onshore wind turbines based on linking power curves to failure and maintenance records: A case study in central Spain 基于连接功率曲线与故障和维护记录的陆上风力涡轮机可靠性:西班牙中部的一个案例研究
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2023-01-26 DOI: 10.1002/we.2793
Andres J. Sanchez-Fernandez, J. Gónzalez-Sánchez, Íñigo Luna Rodríguez, Félix R. Rodríguez, Javier Sanchez‐Rivero
{"title":"Reliability of onshore wind turbines based on linking power curves to failure and maintenance records: A case study in central Spain","authors":"Andres J. Sanchez-Fernandez, J. Gónzalez-Sánchez, Íñigo Luna Rodríguez, Félix R. Rodríguez, Javier Sanchez‐Rivero","doi":"10.1002/we.2793","DOIUrl":"https://doi.org/10.1002/we.2793","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43455679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Data‐driven modelling of turbine wake interactions and flow resistance in large wind farms 大型风电场中涡轮尾流相互作用和流动阻力的数据驱动建模
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2023-01-04 DOI: 10.1002/we.2851
Andrew C. Kirby, François‐Xavier Briol, T. Dunstan, T. Nishino
Turbine wake and local blockage effects are known to alter wind farm power production in two different ways: (1) by changing the wind speed locally in front of each turbine; and (2) by changing the overall flow resistance in the farm and thus the so-called farm blockage effect. To better predict these effects with low computational costs, we develop data-driven emulators of the `local' or `internal' turbine thrust coefficient $C_T^*$ as a function of turbine layout. We train the model using a multi-fidelity Gaussian Process (GP) regression with a combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations) simulations of farms with different layouts and wind directions. A large set of low-fidelity data speeds up the learning process and the high-fidelity data ensures a high accuracy. The trained multi-fidelity GP model is shown to give more accurate predictions of $C_T^*$ compared to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity data. We also use the multi-fidelity GP model of $C_T^*$ with the two-scale momentum theory (Nishino &Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be used to give fast and accurate predictions of large wind farm performance under various mesoscale atmospheric conditions. This new approach could be beneficial for improving annual energy production (AEP) calculations and farm optimisation in the future.
涡轮机尾流和局部阻塞效应以两种不同的方式改变风力发电场的发电量:(1)通过改变每个涡轮机前部的局部风速;(2)通过改变农场的整体流动阻力,从而产生所谓的农场阻塞效应。为了以较低的计算成本更好地预测这些影响,我们开发了数据驱动的模拟器,将“局部”或“内部”涡轮推力系数C_T^*$作为涡轮布局的函数。我们使用多保真高斯过程(GP)回归,结合低(工程尾流模型)和高保真(大涡模拟)模拟不同布局和风向的农场来训练模型。大量的低保真度数据加快了学习过程,高保真度数据保证了学习的准确性。与仅应用于有限的高保真数据集的标准(单保真)GP回归相比,经过训练的多保真GP模型显示出更准确的$C_T^*$预测。我们还使用了具有双尺度动量理论的多保真度GP模型(Nishino &Dunstan 2020, J. Fluid Mech. 894, A2)来证明该模型可以用于快速准确地预测各种中尺度大气条件下的大型风电场性能。这种新方法可能有助于改善未来的年能源产量(AEP)计算和农场优化。
{"title":"Data‐driven modelling of turbine wake interactions and flow resistance in large wind farms","authors":"Andrew C. Kirby, François‐Xavier Briol, T. Dunstan, T. Nishino","doi":"10.1002/we.2851","DOIUrl":"https://doi.org/10.1002/we.2851","url":null,"abstract":"Turbine wake and local blockage effects are known to alter wind farm power production in two different ways: (1) by changing the wind speed locally in front of each turbine; and (2) by changing the overall flow resistance in the farm and thus the so-called farm blockage effect. To better predict these effects with low computational costs, we develop data-driven emulators of the `local' or `internal' turbine thrust coefficient $C_T^*$ as a function of turbine layout. We train the model using a multi-fidelity Gaussian Process (GP) regression with a combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations) simulations of farms with different layouts and wind directions. A large set of low-fidelity data speeds up the learning process and the high-fidelity data ensures a high accuracy. The trained multi-fidelity GP model is shown to give more accurate predictions of $C_T^*$ compared to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity data. We also use the multi-fidelity GP model of $C_T^*$ with the two-scale momentum theory (Nishino &Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be used to give fast and accurate predictions of large wind farm performance under various mesoscale atmospheric conditions. This new approach could be beneficial for improving annual energy production (AEP) calculations and farm optimisation in the future.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":"1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41491244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A CFD‐based analysis of dynamic induction techniques for wind farm control applications 基于CFD的风电场控制动态感应技术分析
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-19 DOI: 10.1002/we.2801
A. Croce, S. Cacciola, Mariana Montero Montenegro, Sebastiano Stipa, Roberto Praticó
{"title":"A CFD‐based analysis of dynamic induction techniques for wind farm control applications","authors":"A. Croce, S. Cacciola, Mariana Montero Montenegro, Sebastiano Stipa, Roberto Praticó","doi":"10.1002/we.2801","DOIUrl":"https://doi.org/10.1002/we.2801","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44014999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Field‐data‐based reliability analysis of power converters in wind turbines: Assessing the effect of explanatory variables 基于现场数据的风力涡轮机电源变流器可靠性分析:评估解释变量的影响
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-17 DOI: 10.1002/we.2800
Karoline Pelka, K. Fischer
{"title":"Field‐data‐based reliability analysis of power converters in wind turbines: Assessing the effect of explanatory variables","authors":"Karoline Pelka, K. Fischer","doi":"10.1002/we.2800","DOIUrl":"https://doi.org/10.1002/we.2800","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45990303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Featured Cover 特色介绍
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-15 DOI: 10.1002/we.2804
A. Suryadi, C. Jätz, J. R. Seume, M. Herr
{"title":"Featured Cover","authors":"A. Suryadi, C. Jätz, J. R. Seume, M. Herr","doi":"10.1002/we.2804","DOIUrl":"https://doi.org/10.1002/we.2804","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48990554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental assessment of a blended fatigue‐extreme controller employing trailing edge flaps 采用后缘襟翼的混合疲劳极限控制器的实验评估
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-15 DOI: 10.1002/we.2795
S. Bartholomay, Sascha Krumbein, Sebastian Pérez-Becker, R. Soto‐Valle, C. Nayeri, C. O. Paschereit, K. Oberleithner
{"title":"Experimental assessment of a blended fatigue‐extreme controller employing trailing edge flaps","authors":"S. Bartholomay, Sascha Krumbein, Sebastian Pérez-Becker, R. Soto‐Valle, C. Nayeri, C. O. Paschereit, K. Oberleithner","doi":"10.1002/we.2795","DOIUrl":"https://doi.org/10.1002/we.2795","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43226307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Wind plant power maximization via extremum seeking yaw control: A wind tunnel experiment 通过极值寻求偏航控制实现风电场功率最大化:风洞实验
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-12 DOI: 10.1002/we.2799
Devesh Kumar, M. Rotea, E. J. Aju, Yaqing Jin
{"title":"Wind plant power maximization via extremum seeking yaw control: A wind tunnel experiment","authors":"Devesh Kumar, M. Rotea, E. J. Aju, Yaqing Jin","doi":"10.1002/we.2799","DOIUrl":"https://doi.org/10.1002/we.2799","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49059893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Wind Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1