首页 > 最新文献

Wind Energy最新文献

英文 中文
A passively self‐adjusting floating wind farm layout to increase the annual energy production 一种被动自调节浮动风电场布局,以增加年能源产量
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-07 DOI: 10.1002/we.2797
M. Mahfouz, P. Cheng
{"title":"A passively self‐adjusting floating wind farm layout to increase the annual energy production","authors":"M. Mahfouz, P. Cheng","doi":"10.1002/we.2797","DOIUrl":"https://doi.org/10.1002/we.2797","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48479898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantification of wind turbine energy loss due to leading‐edge erosion through infrared‐camera imaging, numerical simulations, and assessment against SCADA and meteorological data 通过红外相机成像、数值模拟和基于SCADA和气象数据的评估,量化由于前缘侵蚀导致的风力涡轮机能量损失
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-12-07 DOI: 10.1002/we.2798
Keshav Panthi, G. Iungo
{"title":"Quantification of wind turbine energy loss due to leading‐edge erosion through infrared‐camera imaging, numerical simulations, and assessment against SCADA and meteorological data","authors":"Keshav Panthi, G. Iungo","doi":"10.1002/we.2798","DOIUrl":"https://doi.org/10.1002/we.2798","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48163599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Parked aeroelastic field rotor response for a 20% scaled demonstrator of a 13‐MW downwind turbine 13 - MW下风涡轮机20%比例演示机的停放气动弹性场转子响应
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-11-29 DOI: 10.1002/we.2794
Meghan Kaminski, E. Loth, L. Fingersh, A. Scholbrock, M. Selig
{"title":"Parked aeroelastic field rotor response for a 20% scaled demonstrator of a 13‐MW downwind turbine","authors":"Meghan Kaminski, E. Loth, L. Fingersh, A. Scholbrock, M. Selig","doi":"10.1002/we.2794","DOIUrl":"https://doi.org/10.1002/we.2794","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46177932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interaction between heterogeneous thermal stratification and wakes of wind turbine arrays 风力机阵列非均匀热分层与尾迹的相互作用
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-11-28 DOI: 10.1002/we.2792
Keisuke Nakao, Y. Hattori
{"title":"Interaction between heterogeneous thermal stratification and wakes of wind turbine arrays","authors":"Keisuke Nakao, Y. Hattori","doi":"10.1002/we.2792","DOIUrl":"https://doi.org/10.1002/we.2792","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42237527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large eddy simulations of a utility‐scale horizontal axis wind turbine including unsteady aerodynamics and fluid‐structure interaction modelling 公用事业规模水平轴风力涡轮机的大涡模拟,包括非定常空气动力学和流体-结构相互作用建模
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-11-11 DOI: 10.1002/we.2789
Giacomo Della Posta, S. Leonardi, M. Bernardini
{"title":"Large eddy simulations of a utility‐scale horizontal axis wind turbine including unsteady aerodynamics and fluid‐structure interaction modelling","authors":"Giacomo Della Posta, S. Leonardi, M. Bernardini","doi":"10.1002/we.2789","DOIUrl":"https://doi.org/10.1002/we.2789","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42850879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lightning attachment characteristic of wind turbine generator: Experimental investigation and prediction method based on simulations 风力发电机组雷电附着特性:实验研究与仿真预测方法
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-11-06 DOI: 10.1002/we.2790
Mi Zhou, Jingkang Huang, Jiaer Chen, Weihan Zhao, Chang He, L. Cai, Jianguo Wang
{"title":"Lightning attachment characteristic of wind turbine generator: Experimental investigation and prediction method based on simulations","authors":"Mi Zhou, Jingkang Huang, Jiaer Chen, Weihan Zhao, Chang He, L. Cai, Jianguo Wang","doi":"10.1002/we.2790","DOIUrl":"https://doi.org/10.1002/we.2790","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42315109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of aerodynamic models for horizontal axis wind turbine blades accounting for curved tip shapes 考虑弯曲叶尖形状的水平轴风力涡轮机叶片空气动力学模型的比较
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-10-25 DOI: 10.1002/we.2780
S. G. Horcas, N. Ramos‐García, A. Li, G. Pirrung, T. Barlas
Curved tip extensions are among the rotor innovation concepts that can contribute to the higher performance and lower cost of horizontal axis wind turbines. One of the key drivers to exploit their advantages is the use of accurate and efficient computational aerodynamic models during the design stage. The present work gives an overview of the performance of different state-of-the-art models. The following tools were employed, in descending order of complexity: (i) a blade-resolved Navier Stokes solver, (ii) a lifting line model, (iii) a vortex-based method coupling a near-wake model with a far-wake model, and (iv) two implementations of the widely used blade element momentum method (BEM), with and without radial induction. The predictions of the codes were compared when simulating the baseline geometry of a reference wind turbine and different tip extension designs with relatively large sweep angle and/or dihedral angle. Four load cases were selected for this comparison, to cover several aspects of the aerodynamic modeling: steady power curve, pitch step, extreme operating gust impact, and standstill in deep stall. The present study highlighted the limitations of the BEM-based formulations to capture the trends attributed to the introduction of curvature at the tip. This was true even when using the radial induction submodel. The rest of the computational methods showed relatively good agreement in most of the studied load cases. An exception to this was the standstill configuration, as the blade-resolved Navier-Stokes solver was the only code able to capture the highly unsteady effects of deep stall.
弯曲叶尖延伸是转子创新概念之一,有助于提高水平轴风力涡轮机的性能和降低成本。利用其优势的关键驱动因素之一是在设计阶段使用准确高效的计算空气动力学模型。本工作概述了不同最先进模型的性能。采用了以下工具,按复杂性降序排列:(i)叶片解析的Navier-Stokes求解器,(ii)升力线模型,(iii)基于涡流的近尾流模型与远尾流模型耦合方法,以及(iv)广泛使用的叶片单元动量法(BEM)的两种实现方式,有径向感应和无径向感应。当模拟参考风力涡轮机的基线几何形状和具有相对较大的后掠角和/或二面角的不同叶尖延伸设计时,对代码的预测进行了比较。选择了四种载荷情况进行比较,以涵盖空气动力学建模的几个方面:稳定功率曲线、俯仰阶跃、极端运行阵风冲击和深失速静止。本研究强调了基于边界元法的公式在捕捉尖端曲率引入带来的趋势方面的局限性。即使在使用径向感应子模型时也是如此。其余的计算方法在大多数研究的载荷情况下显示出相对良好的一致性。静止配置是一个例外,因为叶片解析的Navier-Stokes解算器是唯一能够捕捉深度失速的高度不稳定影响的代码。
{"title":"Comparison of aerodynamic models for horizontal axis wind turbine blades accounting for curved tip shapes","authors":"S. G. Horcas, N. Ramos‐García, A. Li, G. Pirrung, T. Barlas","doi":"10.1002/we.2780","DOIUrl":"https://doi.org/10.1002/we.2780","url":null,"abstract":"Curved tip extensions are among the rotor innovation concepts that can contribute to the higher performance and lower cost of horizontal axis wind turbines. One of the key drivers to exploit their advantages is the use of accurate and efficient computational aerodynamic models during the design stage. The present work gives an overview of the performance of different state-of-the-art models. The following tools were employed, in descending order of complexity: (i) a blade-resolved Navier Stokes solver, (ii) a lifting line model, (iii) a vortex-based method coupling a near-wake model with a far-wake model, and (iv) two implementations of the widely used blade element momentum method (BEM), with and without radial induction. The predictions of the codes were compared when simulating the baseline geometry of a reference wind turbine and different tip extension designs with relatively large sweep angle and/or dihedral angle. Four load cases were selected for this comparison, to cover several aspects of the aerodynamic modeling: steady power curve, pitch step, extreme operating gust impact, and standstill in deep stall. The present study highlighted the limitations of the BEM-based formulations to capture the trends attributed to the introduction of curvature at the tip. This was true even when using the radial induction submodel. The rest of the computational methods showed relatively good agreement in most of the studied load cases. An exception to this was the standstill configuration, as the blade-resolved Navier-Stokes solver was the only code able to capture the highly unsteady effects of deep stall.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43341529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation of power performances and flow characteristics for a Savonius rotor by vortex particle method 涡粒法估计萨沃纽斯转子的动力性能和流动特性
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-10-21 DOI: 10.1002/we.2788
Jingna Pan, C. Ferreira, A. V. van Zuijlen
{"title":"Estimation of power performances and flow characteristics for a Savonius rotor by vortex particle method","authors":"Jingna Pan, C. Ferreira, A. V. van Zuijlen","doi":"10.1002/we.2788","DOIUrl":"https://doi.org/10.1002/we.2788","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47077492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identifying the flap side‐edge noise contribution of a wind turbine blade section with an adaptive trailing edge 识别具有自适应后缘的风力涡轮机叶片截面的襟翼侧边噪声贡献
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-10-18 DOI: 10.1002/we.2786
A. Suryadi, C. Jätz, J. Seume, M. Herr
Summary Active trailing-edge technology is a promising application for localized load alleviation of large-diameter wind turbine rotors, accomplished using one or more control surfaces in the rotor blade’s outer region. This work focuses on identifying noise contributions from the flap side-edge and the trailing edge in a laboratory condition. Measurements were conducted in the Acoustic Wind tunnel Braunschweig (AWB) at the German Aerospace Center’s (DLR) Braunschweig site. The small-scale model has a span of 1200 mm and a chord of 300 mm. The control surface, a plain flap, has a span of 400 mm and a chord length of 90 mm. Far-field noise was measured using a phased-microphone array for various flow speeds, angles of attack and flap deflection angles. For sound source identification, two noise reduction addons were installed interchangeably: trailing-edge brush and flap side-edge porous foam. Analysis of the far-field noise reveals that, while changes to the flap deflection angle alter the far-field noise spectra, the trailing-edge noise remains the predominant noise source at deflection angles − 5 ◦ and 5 ◦ . No additional noise level was observed from the flap side-edge within the measurable frequency range at these angles. The flap side-edge noise has an increased role for frequency larger than 2 kHz for the larger flap deflection angles of − 10 ◦ and 10 ◦ . Furthermore, numerical reproduction of the results will also be presented using the FMCAS (Fast Multipole Code for Acoustic Shielding) toolchain developed at DLR.
主动后缘技术是大直径风力涡轮机转子局部减载的一种很有前途的应用,它使用转子叶片外部区域的一个或多个控制表面来实现。这项工作的重点是在实验室条件下识别来自飞边和后缘的噪声贡献。测量是在德国航空航天中心(DLR)布伦瑞克基地的声学风洞(AWB)中进行的。小型模型的跨度为1200 mm,弦长为300 mm。控制面为平面,跨度为400 mm,弦长为90 mm。使用相位麦克风阵列测量不同流速、迎角和迎角的远场噪声。为了识别声源,两个降噪附件可互换安装:后缘刷和侧缘多孔泡沫。对远场噪声的分析表明,虽然折射角的变化会改变远场噪声频谱,但后缘噪声仍然是折射角-5时的主要噪声源◦ 和5◦ . 在这些角度下,在可测量的频率范围内,从侧面边缘没有观察到额外的噪声水平。当频率大于2 kHz时,当折射角为−10时,折射侧边缘噪声的作用会增加◦ 和10◦ . 此外,还将使用德国航空航天中心开发的FMCAS(声屏蔽快速多极码)工具链对结果进行数值再现。
{"title":"Identifying the flap side‐edge noise contribution of a wind turbine blade section with an adaptive trailing edge","authors":"A. Suryadi, C. Jätz, J. Seume, M. Herr","doi":"10.1002/we.2786","DOIUrl":"https://doi.org/10.1002/we.2786","url":null,"abstract":"Summary Active trailing-edge technology is a promising application for localized load alleviation of large-diameter wind turbine rotors, accomplished using one or more control surfaces in the rotor blade’s outer region. This work focuses on identifying noise contributions from the flap side-edge and the trailing edge in a laboratory condition. Measurements were conducted in the Acoustic Wind tunnel Braunschweig (AWB) at the German Aerospace Center’s (DLR) Braunschweig site. The small-scale model has a span of 1200 mm and a chord of 300 mm. The control surface, a plain flap, has a span of 400 mm and a chord length of 90 mm. Far-field noise was measured using a phased-microphone array for various flow speeds, angles of attack and flap deflection angles. For sound source identification, two noise reduction addons were installed interchangeably: trailing-edge brush and flap side-edge porous foam. Analysis of the far-field noise reveals that, while changes to the flap deflection angle alter the far-field noise spectra, the trailing-edge noise remains the predominant noise source at deflection angles − 5 ◦ and 5 ◦ . No additional noise level was observed from the flap side-edge within the measurable frequency range at these angles. The flap side-edge noise has an increased role for frequency larger than 2 kHz for the larger flap deflection angles of − 10 ◦ and 10 ◦ . Furthermore, numerical reproduction of the results will also be presented using the FMCAS (Fast Multipole Code for Acoustic Shielding) toolchain developed at DLR.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47047586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Design space exploration and decision‐making for a segmented ultralight morphing 50‐MW wind turbine 50 - MW分段超轻变形风力涡轮机的设计空间探索与决策
IF 4.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2022-09-27 DOI: 10.1002/we.2781
Sepideh Kianbakht, Dana P. Martin, K. Johnson, D. Zalkind, Lucy Pao, E. Loth, Juliet G. Simpson, Shulong Yao, M. Chetan, D. Griffith
{"title":"Design space exploration and decision‐making for a segmented ultralight morphing 50‐MW wind turbine","authors":"Sepideh Kianbakht, Dana P. Martin, K. Johnson, D. Zalkind, Lucy Pao, E. Loth, Juliet G. Simpson, Shulong Yao, M. Chetan, D. Griffith","doi":"10.1002/we.2781","DOIUrl":"https://doi.org/10.1002/we.2781","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46449597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Wind Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1