首页 > 最新文献

Wiley Interdisciplinary Reviews: Computational Molecular Science最新文献

英文 中文
Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods 使用现代机器学习方法进行虚拟筛选和分子设计的药物样化学空间的高效和增强采样
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-09-16 DOI: 10.1002/wcms.1637
Manan Goel, Rishal Aggarwal, Bhuvanesh Sridharan, Pradeep Kumar Pal, U. Deva Priyakumar

Drug design involves the process of identifying and designing novel molecules that have desirable properties and bind well to a given target receptor. Typically, such molecules are identified by screening large chemical libraries for desirable physicochemical properties and binding strength with the target protein. This traditional approach, however, has severe limitations as exhaustively screening every molecule in known chemical libraries is computationally infeasible. Furthermore, currently available molecular libraries are only a minuscule part of the entire set of possible drug-like molecular structures (drug-like chemical space). In this review, we discuss how the former limitation is addressed by modeling virtual screening as a search space problem and how these endeavors utilize machine learning to reduce the number of required computational experiments to identify top candidates. We follow that up by discussing generative methods that attempt to approximate the entire drug-like chemical space providing us a path to explore beyond the known drug-like chemical space. We place special emphasis on generative models that learn the marginal distributions conditioned on specific properties or receptor structures for efficient sampling of molecules. Through this review, we aim to highlight modern machine learning based methods that try to efficiently enhance our sampling capability beyond conventional screening methods which, in turn, would benefit drug design significantly. Therefore, we also encourage further methods of development that work on such important aspects of drug design.

This article is categorized under:

药物设计涉及识别和设计具有理想特性并与给定目标受体良好结合的新分子的过程。通常,这些分子是通过筛选大型化学文库来识别所需的物理化学性质和与目标蛋白的结合强度。然而,这种传统的方法有严重的局限性,因为详尽地筛选已知化学文库中的每个分子在计算上是不可行的。此外,目前可用的分子文库只是整个可能的类药物分子结构(类药物化学空间)的极小部分。在这篇综述中,我们讨论了如何通过将虚拟筛选建模为搜索空间问题来解决前者的限制,以及这些努力如何利用机器学习来减少所需的计算实验数量以识别最佳候选者。我们随后讨论了试图近似整个类药物化学空间的生成方法,为我们提供了探索已知类药物化学空间之外的路径。我们特别强调生成模型,该模型学习基于特定性质或受体结构的边际分布,以进行有效的分子采样。通过这篇综述,我们的目标是强调基于现代机器学习的方法,这些方法试图有效地提高我们的抽样能力,而不是传统的筛选方法,这反过来又将大大有利于药物设计。因此,我们也鼓励在药物设计的这些重要方面发挥作用的进一步开发方法。本文分类如下:
{"title":"Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods","authors":"Manan Goel,&nbsp;Rishal Aggarwal,&nbsp;Bhuvanesh Sridharan,&nbsp;Pradeep Kumar Pal,&nbsp;U. Deva Priyakumar","doi":"10.1002/wcms.1637","DOIUrl":"https://doi.org/10.1002/wcms.1637","url":null,"abstract":"<p>Drug design involves the process of identifying and designing novel molecules that have desirable properties and bind well to a given target receptor. Typically, such molecules are identified by screening large chemical libraries for desirable physicochemical properties and binding strength with the target protein. This traditional approach, however, has severe limitations as exhaustively screening every molecule in known chemical libraries is computationally infeasible. Furthermore, currently available molecular libraries are only a minuscule part of the entire set of possible drug-like molecular structures (drug-like chemical space). In this review, we discuss how the former limitation is addressed by modeling virtual screening as a search space problem and how these endeavors utilize machine learning to reduce the number of required computational experiments to identify top candidates. We follow that up by discussing generative methods that attempt to approximate the entire drug-like chemical space providing us a path to explore beyond the known drug-like chemical space. We place special emphasis on generative models that learn the marginal distributions conditioned on specific properties or receptor structures for efficient sampling of molecules. Through this review, we aim to highlight modern machine learning based methods that try to efficiently enhance our sampling capability beyond conventional screening methods which, in turn, would benefit drug design significantly. Therefore, we also encourage further methods of development that work on such important aspects of drug design.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5894133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Synthesis of two-dimensional materials: How computational studies can help? 二维材料的合成:计算研究如何提供帮助?
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-09-08 DOI: 10.1002/wcms.1635
Yanqing Guo, Yishan Hu, Qinghong Yuan

The scalable preparation of high-quality and low-cost two-dimensional (2D) materials is critical to achieving their potential applications in various fields. Chemical vapor deposition (CVD) method is considered the most promising method for producing ultrathin 2D materials and has continued to develop in recent years. First-principles calculations have provided important theoretical guidance for the CVD synthesis of 2D materials, and have played an increasingly important role in the field of material synthesis in recent years. In this review, we present recent advances in the growth mechanism of 2D materials, focusing on the theoretical research progress of four typical 2D materials: graphene, hexagonal boron nitride (hBN), transition metal dichalcogenide (TMDC), and phosphorene. Several aspects of the growth process are discussed in detail, including the decomposition of precursors, nucleation, growth kinetics, domain shape, and epitaxial and alignment of 2D crystals. Based on the understanding of these atomic-scale growth processes, strategies toward the wafer-scale growth of continuous and homogeneous 2D thin films are proposed and confirmed by experiments. In the final section, we summarize future challenges and opportunities in the computational studies of the growth mechanism of 2D materials.

This article is categorized under:

高质量和低成本二维材料的可扩展制备对于实现其在各个领域的潜在应用至关重要。化学气相沉积(CVD)方法被认为是制备超薄二维材料最有前途的方法,近年来得到了不断的发展。第一性原理计算为二维材料的CVD合成提供了重要的理论指导,近年来在材料合成领域发挥着越来越重要的作用。本文综述了二维材料生长机理的最新进展,重点介绍了石墨烯、六方氮化硼(hBN)、过渡金属二硫化物(TMDC)和磷烯四种典型二维材料的理论研究进展。详细讨论了生长过程的几个方面,包括前驱体的分解、成核、生长动力学、畴形状、二维晶体的外延和排列。在了解这些原子尺度生长过程的基础上,提出了晶圆尺度连续均匀二维薄膜生长的策略,并通过实验进行了验证。在最后一节中,我们总结了二维材料生长机制计算研究中未来的挑战和机遇。本文分类如下:
{"title":"Synthesis of two-dimensional materials: How computational studies can help?","authors":"Yanqing Guo,&nbsp;Yishan Hu,&nbsp;Qinghong Yuan","doi":"10.1002/wcms.1635","DOIUrl":"https://doi.org/10.1002/wcms.1635","url":null,"abstract":"<p>The scalable preparation of high-quality and low-cost two-dimensional (2D) materials is critical to achieving their potential applications in various fields. Chemical vapor deposition (CVD) method is considered the most promising method for producing ultrathin 2D materials and has continued to develop in recent years. First-principles calculations have provided important theoretical guidance for the CVD synthesis of 2D materials, and have played an increasingly important role in the field of material synthesis in recent years. In this review, we present recent advances in the growth mechanism of 2D materials, focusing on the theoretical research progress of four typical 2D materials: graphene, hexagonal boron nitride (hBN), transition metal dichalcogenide (TMDC), and phosphorene. Several aspects of the growth process are discussed in detail, including the decomposition of precursors, nucleation, growth kinetics, domain shape, and epitaxial and alignment of 2D crystals. Based on the understanding of these atomic-scale growth processes, strategies toward the wafer-scale growth of continuous and homogeneous 2D thin films are proposed and confirmed by experiments. In the final section, we summarize future challenges and opportunities in the computational studies of the growth mechanism of 2D materials.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6139654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cover Image, Volume 12, Issue 5 封面图片,第12卷,第5期
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-09-08 DOI: 10.1002/wcms.1638
Philippe Schwaller, Alain C. Vaucher, Ruben Laplaza, Charlotte Bunne, Andreas Krause, Clemence Corminboeuf, Teodoro Laino

The cover image is based on the Advanced Review Machine intelligence for chemical reaction space by Philippe Schwaller et al., https://doi.org/10.1002/wcms.1604.

封面图像基于Philippe Schwaller等人的化学反应空间高级评论机器智能,https://doi.org/10.1002/wcms.1604。
{"title":"Cover Image, Volume 12, Issue 5","authors":"Philippe Schwaller,&nbsp;Alain C. Vaucher,&nbsp;Ruben Laplaza,&nbsp;Charlotte Bunne,&nbsp;Andreas Krause,&nbsp;Clemence Corminboeuf,&nbsp;Teodoro Laino","doi":"10.1002/wcms.1638","DOIUrl":"https://doi.org/10.1002/wcms.1638","url":null,"abstract":"<p>The cover image is based on the Advanced Review <i>Machine intelligence for chemical reaction space</i> by Philippe Schwaller et al., https://doi.org/10.1002/wcms.1604.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1638","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6147580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density functionals based on the mathematical structure of the strong-interaction limit of DFT 基于DFT强相互作用极限数学结构的密度泛函
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-08-29 DOI: 10.1002/wcms.1634
Stefan Vuckovic, Augusto Gerolin, Timothy J. Daas, Hilke Bahmann, Gero Friesecke, Paola Gori-Giorgi

While in principle exact, Kohn–Sham density functional theory—the workhorse of computational chemistry—must rely on approximations for the exchange–correlation functional. Despite staggering successes, present-day approximations still struggle when the effects of electron–electron correlation play a prominent role. The limit in which the electronic Coulomb repulsion completely dominates the exchange–correlation functional offers a well-defined mathematical framework that provides insight for new approximations able to deal with strong correlation. In particular, the mathematical structure of this limit, which is now well-established thanks to its reformulation as an optimal transport problem, points to the use of very different ingredients (or features) with respect to the traditional ones used in present approximations. We focus on strategies to use these new ingredients to build approximations for computational chemistry and highlight future promising directions.

This article is categorized under:

虽然在原理上是精确的,但Kohn-Sham密度泛函理论——计算化学的主力——必须依赖于交换相关泛函的近似。尽管取得了惊人的成功,但当电子-电子相关的影响发挥突出作用时,目前的近似仍然很困难。电子库仑斥力完全支配交换相关函数的极限提供了一个定义良好的数学框架,为能够处理强相关性的新近似提供了见解。特别是,这个极限的数学结构,由于其作为最优运输问题的重新表述,现在已经得到了完善,它指出了与目前近似中使用的传统成分(或特征)截然不同的成分(或特征)的使用。我们专注于使用这些新成分来构建计算化学近似的策略,并强调未来有希望的方向。本文分类如下:
{"title":"Density functionals based on the mathematical structure of the strong-interaction limit of DFT","authors":"Stefan Vuckovic,&nbsp;Augusto Gerolin,&nbsp;Timothy J. Daas,&nbsp;Hilke Bahmann,&nbsp;Gero Friesecke,&nbsp;Paola Gori-Giorgi","doi":"10.1002/wcms.1634","DOIUrl":"https://doi.org/10.1002/wcms.1634","url":null,"abstract":"<p>While in principle exact, Kohn–Sham density functional theory—the workhorse of computational chemistry—must rely on approximations for the exchange–correlation functional. Despite staggering successes, present-day approximations still struggle when the effects of electron–electron correlation play a prominent role. The limit in which the electronic Coulomb repulsion completely dominates the exchange–correlation functional offers a well-defined mathematical framework that provides insight for new approximations able to deal with strong correlation. In particular, the mathematical structure of this limit, which is now well-established thanks to its reformulation as an optimal transport problem, points to the use of very different ingredients (or features) with respect to the traditional ones used in present approximations. We focus on strategies to use these new ingredients to build approximations for computational chemistry and highlight future promising directions.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1634","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5859825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Cover Image, Volume 12, Issue 4 封面图片,第12卷,第4期
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-07-07 DOI: 10.1002/wcms.1632
Yang Zhao, Kewei Sun, Lipeng Chen, Maxim Gelin

The cover image is based on the Advanced Review The hierarchy of Davydov's Ansätze and its applications by Yang Zhao et al., https://doi.org/10.1002/wcms.1589.

封面图片是基于杨钊等人的先进的Review The hierarchy of Davydov’s Ansätze及其应用,https://doi.org/10.1002/wcms.1589。
{"title":"Cover Image, Volume 12, Issue 4","authors":"Yang Zhao,&nbsp;Kewei Sun,&nbsp;Lipeng Chen,&nbsp;Maxim Gelin","doi":"10.1002/wcms.1632","DOIUrl":"https://doi.org/10.1002/wcms.1632","url":null,"abstract":"<p>The cover image is based on the Advanced Review <i>The hierarchy of Davydov's Ansätze and its applications</i> by Yang Zhao et al., https://doi.org/10.1002/wcms.1589.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6171536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 12, Issue 4 封面图片,第12卷,第4期
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-07-07 DOI: 10.1002/wcms.1633
Duan Ni, Zongtao Chai, Ying Wang, Mingyu Li, Zhengtian Yu, Yaqin Liu, Shaoyong Lu, Jian Zhang

The cover image is based on the Advanced Review Along the allostery stream: Recent advances in computational methods for allosteric drug discovery by Duan Ni et al., https://doi.org/10.1002/wcms.1585.

封面图片来自Duan Ni等人的《Advanced Review Along The allostery stream: computational methods for allosteric drug discovery》,https://doi.org/10.1002/wcms.1585。
{"title":"Cover Image, Volume 12, Issue 4","authors":"Duan Ni,&nbsp;Zongtao Chai,&nbsp;Ying Wang,&nbsp;Mingyu Li,&nbsp;Zhengtian Yu,&nbsp;Yaqin Liu,&nbsp;Shaoyong Lu,&nbsp;Jian Zhang","doi":"10.1002/wcms.1633","DOIUrl":"https://doi.org/10.1002/wcms.1633","url":null,"abstract":"<p>The cover image is based on the Advanced Review <i>Along the allostery stream: Recent advances in computational methods for allosteric drug discovery</i> by Duan Ni et al., https://doi.org/10.1002/wcms.1585.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6137043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delocalization error: The greatest outstanding challenge in density-functional theory 离域误差:密度泛函理论中最大的突出挑战
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-07-01 DOI: 10.1002/wcms.1631
Kyle R. Bryenton, Adebayo A. Adeleke, Stephen G. Dale, Erin R. Johnson

Every day, density-functional theory (DFT) is routinely applied to computational modeling of molecules and materials with the expectation of high accuracy. However, in certain situations, popular density-functional approximations (DFAs) have the potential to give substantial quantitative, and even qualitative, errors. The most common class of error is delocalization error, which is an overarching term that also encompasses the one-electron self-interaction error. In our opinion, its resolution remains the greatest outstanding challenge in DFT development. In this paper, we review the history of delocalization error and provide several complimentary conceptual pictures for its interpretation, along with illustrative examples of its various manifestations. Approaches to reduce delocalization error are discussed, as is its interplay with other shortcomings of popular DFAs, including treatment of non-bonded repulsion and neglect of London dispersion.

This article is categorized under:

每天,密度泛函理论(DFT)被常规地应用于分子和材料的计算建模,并期望具有高精度。然而,在某些情况下,流行的密度泛函近似(dfa)有可能产生大量的定量甚至定性错误。最常见的一类误差是离域误差,这是一个包罗万象的术语,也包括单电子自相互作用误差。在我们看来,它的解决仍然是DFT发展中最大的突出挑战。在本文中,我们回顾了离域错误的历史,并提供了一些补充的概念图,以解释它,以及它的各种表现形式的说明性例子。讨论了减少离域误差的方法,以及它与流行的dfa的其他缺点的相互作用,包括处理非键排斥和忽略伦敦色散。本文分类如下:
{"title":"Delocalization error: The greatest outstanding challenge in density-functional theory","authors":"Kyle R. Bryenton,&nbsp;Adebayo A. Adeleke,&nbsp;Stephen G. Dale,&nbsp;Erin R. Johnson","doi":"10.1002/wcms.1631","DOIUrl":"https://doi.org/10.1002/wcms.1631","url":null,"abstract":"<p>Every day, density-functional theory (DFT) is routinely applied to computational modeling of molecules and materials with the expectation of high accuracy. However, in certain situations, popular density-functional approximations (DFAs) have the potential to give substantial quantitative, and even qualitative, errors. The most common class of error is delocalization error, which is an overarching term that also encompasses the one-electron self-interaction error. In our opinion, its resolution remains the greatest outstanding challenge in DFT development. In this paper, we review the history of delocalization error and provide several complimentary conceptual pictures for its interpretation, along with illustrative examples of its various manifestations. Approaches to reduce delocalization error are discussed, as is its interplay with other shortcomings of popular DFAs, including treatment of non-bonded repulsion and neglect of London dispersion.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6040180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
Two decades of Martini: Better beads, broader scope 二十年的马提尼:更好的珠子,更广阔的范围
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-06-24 DOI: 10.1002/wcms.1620
Siewert J. Marrink, Luca Monticelli, Manuel N. Melo, Riccardo Alessandri, D. Peter Tieleman, Paulo C. T. Souza

The Martini model, a coarse-grained force field for molecular dynamics simulations, has been around for nearly two decades. Originally developed for lipid-based systems by the groups of Marrink and Tieleman, the Martini model has over the years been extended as a community effort to the current level of a general-purpose force field. Apart from the obvious benefit of a reduction in computational cost, the popularity of the model is largely due to the systematic yet intuitive building-block approach that underlies the model, as well as the open nature of the development and its continuous validation. The easy implementation in the widely used Gromacs software suite has also been instrumental. Since its conception in 2002, the Martini model underwent a gradual refinement of the bead interactions and a widening scope of applications. In this review, we look back at this development, culminating with the release of the Martini 3 version in 2021. The power of the model is illustrated with key examples of recent important findings in biological and material sciences enabled with Martini, as well as examples from areas where coarse-grained resolution is essential, namely high-throughput applications, systems with large complexity, and simulations approaching the scale of whole cells.

This article is categorized under:

马提尼模型是一种用于分子动力学模拟的粗粒度力场,已经存在了近20年。Martini模型最初是由Marrink和Tieleman团队为基于脂类的系统开发的,多年来作为一个社区的努力,Martini模型已经扩展到当前通用力场的水平。除了减少计算成本的明显好处之外,该模型的流行很大程度上是由于作为模型基础的系统而直观的构建块方法,以及开发的开放性及其持续验证。在广泛使用的Gromacs软件套件中轻松实现也很有帮助。自2002年提出以来,马提尼模型经历了头部相互作用的逐步完善和应用范围的扩大。在这篇回顾中,我们回顾了这一发展,最终在2021年发布了马提尼3版本。该模型的强大功能通过Martini在生物和材料科学中最近的重要发现的关键例子来说明,以及来自粗粒度分辨率至关重要的领域的例子,即高通量应用,具有大复杂性的系统,以及接近整个细胞规模的模拟。本文分类如下:
{"title":"Two decades of Martini: Better beads, broader scope","authors":"Siewert J. Marrink,&nbsp;Luca Monticelli,&nbsp;Manuel N. Melo,&nbsp;Riccardo Alessandri,&nbsp;D. Peter Tieleman,&nbsp;Paulo C. T. Souza","doi":"10.1002/wcms.1620","DOIUrl":"https://doi.org/10.1002/wcms.1620","url":null,"abstract":"<p>The Martini model, a coarse-grained force field for molecular dynamics simulations, has been around for nearly two decades. Originally developed for lipid-based systems by the groups of Marrink and Tieleman, the Martini model has over the years been extended as a community effort to the current level of a general-purpose force field. Apart from the obvious benefit of a reduction in computational cost, the popularity of the model is largely due to the systematic yet intuitive building-block approach that underlies the model, as well as the open nature of the development and its continuous validation. The easy implementation in the widely used Gromacs software suite has also been instrumental. Since its conception in 2002, the Martini model underwent a gradual refinement of the bead interactions and a widening scope of applications. In this review, we look back at this development, culminating with the release of the Martini 3 version in 2021. The power of the model is illustrated with key examples of recent important findings in biological and material sciences enabled with Martini, as well as examples from areas where coarse-grained resolution is essential, namely high-throughput applications, systems with large complexity, and simulations approaching the scale of whole cells.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5804521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
Network search algorithms and scoring functions for advanced-level computerized synthesis planning 高级计算机综合规划的网络搜索算法和评分功能
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-06-16 DOI: 10.1002/wcms.1630
Bartosz A. Grzybowski, Tomasz Badowski, Karol Molga, Sara Szymku?

In 2020, a “hybrid” expert-AI computer program called Chematica (a.k.a. Synthia) was shown to autonomously plan multistep syntheses of complex natural products, which remain outside the reach of purely data-driven AI programs. The ability to plan at this level of chemical sophistication has been attributed mainly to the superior quality of Chematica's reactions rules. However, rules alone are not sufficient for advanced synthetic planning which also requires appropriately crafted algorithms with which to intelligently navigate the enormous networks of synthetic possibilities, score the synthetic positions encountered, and rank the pathways identified. Chematica's algorithms are distinct from prêt-à-porter algorithmic solutions and are product of multiple rounds of improvements, against target structures of increasing complexity. Since descriptions of these improvements have been scattered among several of our prior publications, the aim of the current Review is to narrate the development process in a more comprehensive manner.

This article is categorized under:

2020年,一个名为Chematica(又名Synthia)的“混合”专家-人工智能计算机程序被证明可以自主规划复杂天然产物的多步合成,这仍然超出了纯数据驱动的人工智能程序的范围。在这种化学复杂程度上进行计划的能力主要归功于Chematica的反应规则的卓越品质。然而,仅靠规则是不足以实现高级综合规划的,它还需要适当的算法来智能地导航庞大的综合可能性网络,对遇到的综合位置进行评分,并对已识别的路径进行排序。Chematica的算法不同于prêt-à-porter算法解决方案,是针对日益复杂的目标结构进行多轮改进的产物。由于对这些改进的描述已经分散在我们之前的几份出版物中,因此本综述的目的是以更全面的方式叙述开发过程。本文分类如下:
{"title":"Network search algorithms and scoring functions for advanced-level computerized synthesis planning","authors":"Bartosz A. Grzybowski,&nbsp;Tomasz Badowski,&nbsp;Karol Molga,&nbsp;Sara Szymku?","doi":"10.1002/wcms.1630","DOIUrl":"https://doi.org/10.1002/wcms.1630","url":null,"abstract":"<p>In 2020, a “hybrid” expert-AI computer program called Chematica (a.k.a. Synthia) was shown to autonomously plan multistep syntheses of complex natural products, which remain outside the reach of purely data-driven AI programs. The ability to plan at this level of chemical sophistication has been attributed mainly to the superior quality of Chematica's reactions rules. However, rules alone are not sufficient for advanced synthetic planning which also requires appropriately crafted algorithms with which to intelligently navigate the enormous networks of synthetic possibilities, score the synthetic positions encountered, and rank the pathways identified. Chematica's algorithms are distinct from <i>prêt-à-porter</i> algorithmic solutions and are product of multiple rounds of improvements, against target structures of increasing complexity. Since descriptions of these improvements have been scattered among several of our prior publications, the aim of the current Review is to narrate the development process in a more comprehensive manner.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6167308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Multiscale molecular simulations to investigate adenylyl cyclase-based signaling in the brain 多尺度分子模拟研究脑内腺苷基环化酶信号
IF 11.4 2区 化学 Q1 Mathematics Pub Date : 2022-06-14 DOI: 10.1002/wcms.1623
Siri C. van Keulen, Juliette Martin, Francesco Colizzi, Elisa Frezza, Daniel Trpevski, Nuria Cirauqui Diaz, Pietro Vidossich, Ursula Rothlisberger, Jeanette Hellgren Kotaleski, Rebecca C. Wade, Paolo Carloni

Adenylyl cyclases (ACs) play a key role in many signaling cascades. ACs catalyze the production of cyclic AMP from ATP and this function is stimulated or inhibited by the binding of their cognate stimulatory or inhibitory Gα subunits, respectively. Here we used simulation tools to uncover the molecular and subcellular mechanisms of AC function, with a focus on the AC5 isoform, extensively studied experimentally. First, quantum mechanical/molecular mechanical free energy simulations were used to investigate the enzymatic reaction and its changes upon point mutations. Next, molecular dynamics simulations were employed to assess the catalytic state in the presence or absence of Gα subunits. This led to the identification of an inactive state of the enzyme that is present whenever an inhibitory Gα is associated, independent of the presence of a stimulatory Gα. In addition, the use of coevolution-guided multiscale simulations revealed that the binding of Gα subunits reshapes the free-energy landscape of the AC5 enzyme by following the classical population-shift paradigm. Finally, Brownian dynamics simulations provided forward rate constants for the binding of Gα subunits to AC5, consistent with the ability of the protein to perform coincidence detection effectively. Our calculations also pointed to strong similarities between AC5 and other AC isoforms, including AC1 and AC6. Findings from the molecular simulations were used along with experimental data as constraints for systems biology modeling of a specific AC5-triggered neuronal cascade to investigate how the dynamics of downstream signaling depend on initial receptor activation.

This article is categorized under:

腺苷酸环化酶(ACs)在许多信号级联反应中起关键作用。ac催化ATP生成环状AMP,其功能分别受其同源刺激或抑制Gα亚基的刺激或抑制。在这里,我们使用模拟工具揭示了AC功能的分子和亚细胞机制,重点是AC5异构体,广泛的实验研究。首先,利用量子力学/分子力学自由能模拟研究酶促反应及其在点突变时的变化。接下来,采用分子动力学模拟来评估Gα亚基存在或不存在时的催化状态。这导致了酶的失活状态的鉴定,无论何时抑制Gα相关,独立于刺激Gα的存在。此外,利用协同进化引导的多尺度模拟显示,Gα亚基的结合遵循经典的种群转移范式,重塑了AC5酶的自由能格局。最后,布朗动力学模拟提供了Gα亚基与AC5结合的正向速率常数,这与该蛋白有效进行重合检测的能力相一致。我们的计算还指出AC5和其他AC异构体(包括AC1和AC6)之间有很强的相似性。分子模拟的结果与实验数据一起被用作特定ac5触发的神经元级联的系统生物学建模的约束,以研究下游信号传导的动力学如何依赖于初始受体激活。本文分类如下:
{"title":"Multiscale molecular simulations to investigate adenylyl cyclase-based signaling in the brain","authors":"Siri C. van Keulen,&nbsp;Juliette Martin,&nbsp;Francesco Colizzi,&nbsp;Elisa Frezza,&nbsp;Daniel Trpevski,&nbsp;Nuria Cirauqui Diaz,&nbsp;Pietro Vidossich,&nbsp;Ursula Rothlisberger,&nbsp;Jeanette Hellgren Kotaleski,&nbsp;Rebecca C. Wade,&nbsp;Paolo Carloni","doi":"10.1002/wcms.1623","DOIUrl":"https://doi.org/10.1002/wcms.1623","url":null,"abstract":"<p>Adenylyl cyclases (ACs) play a key role in many signaling cascades. ACs catalyze the production of cyclic AMP from ATP and this function is stimulated or inhibited by the binding of their cognate stimulatory or inhibitory Gα subunits, respectively. Here we used simulation tools to uncover the molecular and subcellular mechanisms of AC function, with a focus on the AC5 isoform, extensively studied experimentally. First, quantum mechanical/molecular mechanical free energy simulations were used to investigate the enzymatic reaction and its changes upon point mutations. Next, molecular dynamics simulations were employed to assess the catalytic state in the presence or absence of Gα subunits. This led to the identification of an inactive state of the enzyme that is present whenever an inhibitory Gα is associated, independent of the presence of a stimulatory Gα. In addition, the use of coevolution-guided multiscale simulations revealed that the binding of Gα subunits reshapes the free-energy landscape of the AC5 enzyme by following the classical population-shift paradigm. Finally, Brownian dynamics simulations provided forward rate constants for the binding of Gα subunits to AC5, consistent with the ability of the protein to perform coincidence detection effectively. Our calculations also pointed to strong similarities between AC5 and other AC isoforms, including AC1 and AC6. Findings from the molecular simulations were used along with experimental data as constraints for systems biology modeling of a specific AC5-triggered neuronal cascade to investigate how the dynamics of downstream signaling depend on initial receptor activation.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5688020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1