Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease caused by the mutations in the NF1 gene, with an incidence of approximately 1/3 000. Affecting multiple organs and systems throughout the body, NF1 caused a wide variety of clinical symptoms. A comprehensive multidisciplinary diagnostic and treatment model is needed to meet the diverse needs of NF1 patients and improve their quality of life. In recent years, the emergence of targeted therapies has further benefited NF1 patients, and the number of clinical consultations has increased dramatically. However, due to the rarity of the disease itself and insufficient attention previously, the standardized, systematic, and precise diagnosis and treatment model of NF1 still needs to be further improved. In this paper, we reviewed the current status of comprehensive diagnosis and treatment of NF1 in China, combine with our long-term experiences in diagnosis and treatment of this disease. Meanwhile, we propose future directions and several suggestions for the comprehensive diagnosis and treatment model for Chinese NF1 patients.
Objective: To explore the role and clinical significance of cell-cycle dependent kinase 1 (CDK1) and its upstream and downstream molecules in the development of malignant peripheral nerve sheath tumor (MPNST) through the analysis of clinical tissue samples.
Methods: A total of 56 tumor samples from MPNST patients ("Tianjin" dataset) who underwent surgical resection, confirmed by histology and pathology between September 2011 and March 2020, along with 17 normal tissue samples, were selected as the research subjects. MPNST-related hub genes were identified through transcriptome sequencing, bioinformatics analysis, immunohistochemistry staining, and survival analysis, and their expression levels and prognostic associations were analyzed.
Results: Transcriptome sequencing and bioinformatics analysis revealed that upregulated genes in MPNST were predominantly enriched in cell cycle-related pathways, with CDK1 occupying a central position among all differentially expressed genes. Further differential analysis demonstrated that CDK1 mRNA expression in sarcoma tissues was significantly higher than in normal tissues [based on searching the cancer genome atlas (TCGA) dataset, P<0.05]. In MPNST tissues, CDK1 mRNA expression was not only significantly higher than in normal tissues (based on Tianjin, GSE141438 datasets, P<0.05), but also significantly higher than in neurofibromatosis (NF) and plexiform neurofibromas (PNF) (based on GSE66743 and GSE145064 datasets, P<0.05). Immunohistochemical staining results indicated that the expression rate of CDK1 protein in MPNST tissues was 40.31%. Survival analysis results demonstrated that CDK1 expression was associated with poor prognosis. The survival time of MPNST patients with high CDK1 mRNA expression was significantly lower than that of the low expression group ( P<0.05), and the overall survival trend of patients with positive CDK1 protein expression was worse than that of patients with negative CDK1 expression. Additionally, differential analysis of CDK family genes (CDK1-8) revealed that only CDK1 was significantly upregulated in MPNST, NF, and PNF.
Conclusion: Increased expression of CDK1 is associated with poor prognosis in MPNST patients. Compared to other CDK family members, CDK1 exhibits a unique expression pattern, suggesting its potential as a therapeutic target for MPNST.
Objective: To review the mechanism of cold atmospheric plasma (CAP) in the treatment of chronic skin ulcer, providing a new idea for ulcer therapy.
Methods: The literature about CAP in the treatment of chronic skin ulcers in recent years was extensively screened and reviewed. The treatment principle, active ingredients, and mechanism were summarized.
Results: CAP is partial ionized gas discharged by plasma generator in high frequency under high voltage. It contains electrons, positive and negative ions, reactive oxygen species, reactive nitrogen species, and ultraviolet rays. In vitro and animal experiments show that the active ingredients contained in CAP can inactive microorganisms, against biofilm, regulate immune-mediated inflammatory, promoting blood flow, stimulate tissue regeneration and epithelial formation in the course of wounds healing.
Conclusion: CAP play a role in different stages of chronic skin ulcer healing, with good effectiveness and safety, and broad clinical application prospects. But more studies are needed to explore the indications and dosages of CAP therapy.
Objective: To summarize application effect and clinical experience of multimodal intraoperative neurophysiological monitoring (IONM) technology in the surgery of neurofibromatosis type 1 (NF1) related peripheral nerve tumors.
Methods: A retrospective study was conducted on NF1 patients, who admitted between January 2019 and December 2023 and treated with peripheral nerve tumor resection surgery assisted by multimodal IONM technology. There were 49 males and 45 females. The age ranged from 5 to 78 years, with an average of 33.7 years. Tumor morphological classification included 71 cases of nodular type, 13 cases of diffuse type, and 10 cases of mixed type. Target tumors were distributed in craniofacial region (47 cases), neck (11 cases), trunk (12 cases), and limbs (24 cases). Preoperatively, 44 cases had no obvious neurological symptoms, while the remaining patients had neurological symptoms, including 15 cases of visual impairment, 5 cases of hearing impairment, 16 cases of somatic movement disorders, and 31 cases of somatic sensory disorders, of which 7 cases had more than one symptom. IONM plans were selected based on the relevant nerves and adjacent important structures of the target tumor, including visual evoked potential (17 cases), somatosensory evoked potential (44 cases), motor evoked potential (88 cases), and electromyogram (94 cases).
Results: All surgeries were successfully completed. Ninety-three patients underwent total/near total resection and 1 patient underwent palliative resection. Pathological examination showed 80 cases of neurofibroma and 14 cases of malignant peripheral nerve sheath tumors. Complications included 2 cases of hematoma and 3 cases of incision infection. All patients were followed up 3-61 months (median, 15 months). During follow-up, no significant changes in neurological symptoms or tumor recurrence were found. Among the patients with preoperative visual impairment, there were 14 cases with no improvement in symptoms and 1 with improvement after surgery. Among the patients with somatic movement disorders, there were 11 cases with no improvement in symptoms, 3 cases with improvement, 2 cases with aggravation, 4 newly onset cases, and 1 case with significant impact on daily life after surgery. Among the patients with somatic sensory disorders, there were 17 cases with no improvement in symptoms, 14 cases with improvement, and 13 newly onset cases. The patients with hearing impairment showed improvement after surgery.
Conclusion: The clinical manifestations of NF1 related peripheral nerve tumors are complex. Multimodal IONM technology can provide real-time detection of nerve provocation and damage. Surgical treatment with multimodal IONM technology is safe and can reduce complications.
Objective: To review the repair and reconstruction methods for large segmental femoral proximal bone defects caused by tumors, and to explore their clinical application effects, advantages, and disadvantages, and future research directions.
Methods: A comprehensive search of Chinese and foreign databases was conducted to select basic and clinical research literature related to the repair and reconstruction of femoral proximal bone defects caused by tumors. The studies were classified and analyzed based on two main strategies: hip-preserving reconstruction and non-hip-preserving reconstruction.
Results: In hip-preserving reconstruction, traditional methods such as allograft transplantation and vascularized autograft transplantation are common but have risks of poor bone integration and bone resorption. The clinical application of inactivated tumor segment reimplantation and distraction osteogenesis techniques is limited. In recent years, three-dimensional printing technology has become increasingly mature, with personalized prostheses and precise surgeries becoming development trends. Non-hip-preserving reconstruction primarily includes allograft prosthesis composite and total femoral replacement. The former focuses on improving the survival rate and bone integration efficiency of the allograft, while the latter requires the simultaneous reconstruction of hip and knee joint stability.
Conclusion: Significant progress has been made in repairing and reconstructing proximal femoral bone defects caused by tumors, but many challenges remain. The integration of three-dimensional printing technology and digital design offers potential for precise bone defect repair. Future efforts should focus on new concepts, technologies, and materials through multidisciplinary approaches to provide personalized and precise solutions, thereby improving patient quality of life.
Objective: To summarize the terms and definitions related to neurofibromatosis type 1 (NF1) with a view to standardizing and unifying the existing terminology system.
Methods: To review the research literature related to NF1 at home and abroad, and to summarize the expressions of the disease and related terms.
Results: There are still some limitations in the current knowledge of NF1, especially in the expression of the terminology, and there are discrepancies in the description and naming of NF1-related features in different medical literatures and clinical guides. There are differences in the description and naming of NF1-related features in different medical literature and clinical guidelines. Through a systematic review of the literature, this paper provides a detailed compendium and summary of the terms and definitions of NF1-related clinical manifestations, pathological features, and genetic types, and further standardizes and unifies existing diagnostic criteria and terminology systems.
Conclusion: The terms and definitions of NF1-related clinical manifestations are summarized to enhance the knowledge of clinicians and researchers related to NF1.
Objective: To develop a biodegradable implantable bone material with compatible mechanics with the bone tissue, providing a new biomaterial for clinical bone repair and regeneration.
Methods: Silk reinforced polycaprolactone composites (SPC) containing 20%, 40%, and 60% silk were prepared by layer-by-layer assembly and hot-pressing technology. Macroscopic morphology was observed and microstructure were observed by scanning electron microscopy, compressive mechanical properties were detected by compression test, surface wettability was detected by surface contact angle test, degradation of materials was observed after soaking in PBS for 180 days, and proliferation of MC3T3-E1 cells was detected by cell counting kit 8 assay. Six Sprague Dawley rats were subcutaneously implanted with polycaprolactone (PCL) and 20%-SPC, respectively. Masson staining was used to analyze the in vivo degradation behavior and vascularization effect within 180 days.
Results: The pore defects of the three SPC sections were relatively few. In the range of 20% to 60%, as the silk content increased and the PCL content decreased, the interlayer spacing of silk fabric decreased, and the fibers almost covered the entire cross-section. The compressive modulus and compressive strength of SPC showed an increasing trend, and the compressive modulus of 60%-SPC was slightly lower than that of 40%-SPC. There were significant differences in compressive modulus and compressive strength between the materials ( P<0.05). In vitro simulated fluid degradation experiments showed that the mass loss of the three types of SPC after 180 days of degradation was within 5%, with the highest mass loss observed in 60%-SPC. The differences in mass loss between the materials were significant ( P<0.05). As the silk content increased, the static water contact angle of each material gradually decreased, and all could promote the proliferation of MC3T3-E1 cells. The subcutaneous degradation experiment in rats showed that 20%-SPC began to degrade at 30 days after implantation, and material degradation and vascularization were significant at 180 days, which was in sharp contrast to PCL.
Conclusion: SPC has the mechanical and hydrophilic properties that are compatible with bone tissue. It maintains its mechanical strength for a long time in a simulated body fluid environment in vitro, and achieves dynamic synchronization of material degradation, tissue regeneration, and vascularization through the body's immune regulation mechanism in vivo. It is expected to provide a new type of implant material for clinical bone repair.