Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909033
Rachana B, S. J, Usha Rani V, D. Raveendhra
High reactive power burden, load unbalances, and current harmonics in a distribution line result from the widespread usage of non-linear nature of power electronic components. FACTS devices are introduced to maintain a sinusoidal supply to the end customers; among them, all Shunt active power filter (SAPF) can dynamically adjust current-based power quality concerns by providing harmonic components of load currents in shunt mode at point of common coupling (PCC). This paper explores the SAPF performance for a three-phase system using instantaneous active and reactive power theory (IRPT or p-q theory), synchronous reference frame theory (SRF or d-q theory) for correction of reactive power, Harmonic removal using direct current control method. To further enhance its performance in terms of dc link capacitor profile over robust Sliding Mode Control, a new controller named synergetic controller is proposed for this SAPF. For the validation purpose, simulation results have been captured on the MATLAB Simulink environment using Simpower system toolbox. The results proven that the SAPF with synergetic controller able to reduced current ripples on dc link capacitor and also improves the dynamic response of voltage by offering better THD.
{"title":"Performance and analysis of three phase SAPF under different control algorithms for power quality problems","authors":"Rachana B, S. J, Usha Rani V, D. Raveendhra","doi":"10.1109/SeFeT55524.2022.9909033","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909033","url":null,"abstract":"High reactive power burden, load unbalances, and current harmonics in a distribution line result from the widespread usage of non-linear nature of power electronic components. FACTS devices are introduced to maintain a sinusoidal supply to the end customers; among them, all Shunt active power filter (SAPF) can dynamically adjust current-based power quality concerns by providing harmonic components of load currents in shunt mode at point of common coupling (PCC). This paper explores the SAPF performance for a three-phase system using instantaneous active and reactive power theory (IRPT or p-q theory), synchronous reference frame theory (SRF or d-q theory) for correction of reactive power, Harmonic removal using direct current control method. To further enhance its performance in terms of dc link capacitor profile over robust Sliding Mode Control, a new controller named synergetic controller is proposed for this SAPF. For the validation purpose, simulation results have been captured on the MATLAB Simulink environment using Simpower system toolbox. The results proven that the SAPF with synergetic controller able to reduced current ripples on dc link capacitor and also improves the dynamic response of voltage by offering better THD.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114581045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9908684
B. Sharmila, Y. Dharshan, D. Devasena, S. Kaushik, K. Srinivasan
India is a country that consists of most process industries, where most of the end products are related to water or other liquid state materials. In recent days pharmaceutical industries have grown on a larger scale due to the COVID’19 situation. One of the major processes is to maintain the level of the liquid for having a continuous process. In this proposed process, Proportional Integral (PI), Internal Model Controller (IMC) based PI is implemented on a three-tank integrating system with two input and two output (TITO). IMC-PI gain values are acquired and decoupled using the decoupler matrix by determining RHP poles and zeros for the TITO system. Since two input tanks are involved, therefore two different gain values are calculated keep the liquid at the given level. The proposed system has given has resulted with 180 seconds and 190 seconds for Settling time and 5% and 0% of Overshoot for two tanks.
{"title":"Design of IMC Based PI Controllers for Three Tank Interacting Level Control Process","authors":"B. Sharmila, Y. Dharshan, D. Devasena, S. Kaushik, K. Srinivasan","doi":"10.1109/SeFeT55524.2022.9908684","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9908684","url":null,"abstract":"India is a country that consists of most process industries, where most of the end products are related to water or other liquid state materials. In recent days pharmaceutical industries have grown on a larger scale due to the COVID’19 situation. One of the major processes is to maintain the level of the liquid for having a continuous process. In this proposed process, Proportional Integral (PI), Internal Model Controller (IMC) based PI is implemented on a three-tank integrating system with two input and two output (TITO). IMC-PI gain values are acquired and decoupled using the decoupler matrix by determining RHP poles and zeros for the TITO system. Since two input tanks are involved, therefore two different gain values are calculated keep the liquid at the given level. The proposed system has given has resulted with 180 seconds and 190 seconds for Settling time and 5% and 0% of Overshoot for two tanks.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128454613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909216
Gurunandh V. Swaminathan, S. Periasamy, S. Padmanaban
With DC microgrids (DC MG) gaining attention, virtual inertia (VI) schemes for stabilizing the system voltage become increasingly important. With decreased inherent energy storage, conventional droop control causes severe fluctuations in the DC bus voltage. Hence, this paper proposes a VI scheme that emulates inertia by attenuating and low-pass filtering the converter’s capacitor current. Since the capacitor’s current is directly proportional to its rate of change of voltage, attenuating the capacitor current restricts its voltage change which would otherwise occur with higher capacitance. Thus attenuating the capacitor current virtually increases the system capacitance. However, since practical capacitors have some parasitic equivalent series resistance (ESR), attenuation of capacitor current cannot guarantee a distortion-less inertial response when ESR is high. It was found that cascading a low pass filter of time constant governed by the capacitance and ESR can compensate for its impact. Time-domain simulations performed in MATLAB/Simulink and experiments carried out in laboratory-scale setup validate the effectiveness of the proposed VI scheme.
{"title":"Inertia Emulation in Autonomous DC Microgrids by Attenuation and Low Pass Filtering of Capacitor Current","authors":"Gurunandh V. Swaminathan, S. Periasamy, S. Padmanaban","doi":"10.1109/SeFeT55524.2022.9909216","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909216","url":null,"abstract":"With DC microgrids (DC MG) gaining attention, virtual inertia (VI) schemes for stabilizing the system voltage become increasingly important. With decreased inherent energy storage, conventional droop control causes severe fluctuations in the DC bus voltage. Hence, this paper proposes a VI scheme that emulates inertia by attenuating and low-pass filtering the converter’s capacitor current. Since the capacitor’s current is directly proportional to its rate of change of voltage, attenuating the capacitor current restricts its voltage change which would otherwise occur with higher capacitance. Thus attenuating the capacitor current virtually increases the system capacitance. However, since practical capacitors have some parasitic equivalent series resistance (ESR), attenuation of capacitor current cannot guarantee a distortion-less inertial response when ESR is high. It was found that cascading a low pass filter of time constant governed by the capacitance and ESR can compensate for its impact. Time-domain simulations performed in MATLAB/Simulink and experiments carried out in laboratory-scale setup validate the effectiveness of the proposed VI scheme.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128522838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909383
Srinivas Punna, Sujatha Banka, Kavya Swamy, K. Keerthi Krishna, P. Sreeja Sree, D. Tharuni
In systems like electric/hybrid vehicles and islanded DC microgrids, hybrid energy storage system (HESS) technologies are employed to augment the batteries. In case of a DC microgrid, the flow of energy between the source and the load must be balanced so as to take care of a relentless DC grid voltage. Energy storage is utilized to balance out any imbalances between the source and the load. To control the imbalance power, supercapacitor and battery-based combination storage is the best solution among all hybrid energy storage systems. This paper presents the HESS modelling, design of bidirectional converter, controller design, stability analysis and simulation as well as experimental findings for a step change in PV generation and load demand are presented. The outcomes of the study of the conventional control scheme along with the proposed control scheme were included.
{"title":"HESS-Based Bi-Directional DC-DC Converter with Adaptive Control Strategy","authors":"Srinivas Punna, Sujatha Banka, Kavya Swamy, K. Keerthi Krishna, P. Sreeja Sree, D. Tharuni","doi":"10.1109/SeFeT55524.2022.9909383","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909383","url":null,"abstract":"In systems like electric/hybrid vehicles and islanded DC microgrids, hybrid energy storage system (HESS) technologies are employed to augment the batteries. In case of a DC microgrid, the flow of energy between the source and the load must be balanced so as to take care of a relentless DC grid voltage. Energy storage is utilized to balance out any imbalances between the source and the load. To control the imbalance power, supercapacitor and battery-based combination storage is the best solution among all hybrid energy storage systems. This paper presents the HESS modelling, design of bidirectional converter, controller design, stability analysis and simulation as well as experimental findings for a step change in PV generation and load demand are presented. The outcomes of the study of the conventional control scheme along with the proposed control scheme were included.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130568477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909503
Karan Mathur, F. Kucuk
Controlling the effect of slip-slide by adjusting the motor torque in both powering and braking modes respectively is critical for improving the performance and stability of rail propulsion systems on low friction surfaces. An adaptive wheel slip-slide detection and correction system has been designedfor a railway electric vehicle. The system controller demonstrates a simple design with a single parameter detection scheme with anti-jerk control and operates on the fundamentals of adhesion characteristics. The proposed control system has been employed and tested in a MATLAB-SIMULINK environment on a vehicle body driven by an asynchronous induction motor. The controller effectively reduces the applied reference torque to the motor control for auto correction following the detection of slipslide. The provided analysis results show that the sliplslide controller can give better performance and increased efficiency.
{"title":"An adaptive wheel slip-slide diagnostic system for rolling stock electric vehicles","authors":"Karan Mathur, F. Kucuk","doi":"10.1109/SeFeT55524.2022.9909503","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909503","url":null,"abstract":"Controlling the effect of slip-slide by adjusting the motor torque in both powering and braking modes respectively is critical for improving the performance and stability of rail propulsion systems on low friction surfaces. An adaptive wheel slip-slide detection and correction system has been designedfor a railway electric vehicle. The system controller demonstrates a simple design with a single parameter detection scheme with anti-jerk control and operates on the fundamentals of adhesion characteristics. The proposed control system has been employed and tested in a MATLAB-SIMULINK environment on a vehicle body driven by an asynchronous induction motor. The controller effectively reduces the applied reference torque to the motor control for auto correction following the detection of slipslide. The provided analysis results show that the sliplslide controller can give better performance and increased efficiency.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129758586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9908721
Lavanya Sanagari, Rajendran Arunmozhi
The consumption of energy in the universe was utterly raising persistently. So, due to this utter raise in the demand, we prefer to fossil fuels like coal, oil & natural gas to support the raise in demand, but these reserves may quickly drain in the future to change the world as green environment. So, supply and demand leads to disequilibrium case to beat the energy demand. For this we have to look on for alternative energy sources which comes under RE. The Solar, Wind, Hydro and some other existing sources are available copiously at hand to recoup for enlargement/growth of further increase in energy demands. The renewable energy sources which we are using individually may leads to pitfall in overall performance. To reduce in this pitfall issues the well-organized way is that to collaborating the individual renewable energy resources to attain better performance to overcome from few drawbacks. This tracing tactic can be convenient for both renewable sources like solar as well as wind for generation of power and rising their equivalent ability. By using MPPT controllers in supporting to WECS the maximum power can be traced. Compatibility of multi controllers such as FLC/SMC, FLC/MPC, SMC/PID, SMC/MPC makes the system performance will along with a two set of multi converter combination such as cuk-sepic, zeta-sepic, z-source can make assure that supports the hybrid pv-wind system to carry out well in crucial situations mentioned as less DC voltage flickering, overcome issues raised due to ripple current, control harmonics, improve Power Factor of AC lines, continuous input current, switching stress can be lowered, power efficiency can be improved. Converters accompanying with controllers play a significant role in Maximum Power Point Tracking to boost the overall performance of the wind and solar kind of hybrid systems which can be useful for exertion to microgrid
{"title":"Compatibility of Multi-Converters & Multi-Controllers for enhancement of hybrid systems for RE","authors":"Lavanya Sanagari, Rajendran Arunmozhi","doi":"10.1109/SeFeT55524.2022.9908721","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9908721","url":null,"abstract":"The consumption of energy in the universe was utterly raising persistently. So, due to this utter raise in the demand, we prefer to fossil fuels like coal, oil & natural gas to support the raise in demand, but these reserves may quickly drain in the future to change the world as green environment. So, supply and demand leads to disequilibrium case to beat the energy demand. For this we have to look on for alternative energy sources which comes under RE. The Solar, Wind, Hydro and some other existing sources are available copiously at hand to recoup for enlargement/growth of further increase in energy demands. The renewable energy sources which we are using individually may leads to pitfall in overall performance. To reduce in this pitfall issues the well-organized way is that to collaborating the individual renewable energy resources to attain better performance to overcome from few drawbacks. This tracing tactic can be convenient for both renewable sources like solar as well as wind for generation of power and rising their equivalent ability. By using MPPT controllers in supporting to WECS the maximum power can be traced. Compatibility of multi controllers such as FLC/SMC, FLC/MPC, SMC/PID, SMC/MPC makes the system performance will along with a two set of multi converter combination such as cuk-sepic, zeta-sepic, z-source can make assure that supports the hybrid pv-wind system to carry out well in crucial situations mentioned as less DC voltage flickering, overcome issues raised due to ripple current, control harmonics, improve Power Factor of AC lines, continuous input current, switching stress can be lowered, power efficiency can be improved. Converters accompanying with controllers play a significant role in Maximum Power Point Tracking to boost the overall performance of the wind and solar kind of hybrid systems which can be useful for exertion to microgrid","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129857205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909066
M. M. Rao, D. S. M. Rao, C. Reddy
Microgrid protection is one of the challenging tasks, now a day microgrids placed an important role. In general, some conventional protective devices (Circuit breaker and relays, etc.) are there for the protection of microgrids. These conventional protective devices having some drawbacks, they are during abnormal conditions continuity of supply is not possible and it permits up to three cycles of error currents into the network. To overcome that disadvantages Superconducting Fault Current Limiter (Resistive type) is used. Under standard conditions R-SFCL offers small resistance then it acted as a superconductor, under fault circumstances it offers more resistance then error currents are minimized. It allows only one cycle of fault current into the system and continuity of supply is possible.
{"title":"Protection of microgrids using Resistive Type Superconducting Fault Current limiter(RSFCL)","authors":"M. M. Rao, D. S. M. Rao, C. Reddy","doi":"10.1109/SeFeT55524.2022.9909066","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909066","url":null,"abstract":"Microgrid protection is one of the challenging tasks, now a day microgrids placed an important role. In general, some conventional protective devices (Circuit breaker and relays, etc.) are there for the protection of microgrids. These conventional protective devices having some drawbacks, they are during abnormal conditions continuity of supply is not possible and it permits up to three cycles of error currents into the network. To overcome that disadvantages Superconducting Fault Current Limiter (Resistive type) is used. Under standard conditions R-SFCL offers small resistance then it acted as a superconductor, under fault circumstances it offers more resistance then error currents are minimized. It allows only one cycle of fault current into the system and continuity of supply is possible.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126812816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9908967
S. V. S. Phani Kumar Ch, V. Sonti, Sachin Jain
The paper gives an new inverter topology to improve the performance of pole-phase modulated induction motor drive (PPM-IMD) by minimizing circulating/common mode currents. The pole phase modulation technique usually gives wide speed-torque ranges and operation to IMD. Specifically, the PPM technique operates the IMD in wide pole ranges i.e., from high-pole to low-pole mode. However, especially in high-pole operation there exists high torque ripples. The torque ripples are due to by reason high-space harmonics in stator winding. The harmonics are attributable to the circulating currents/common mode currents (CMC). The CMC are resultant of inverter common mode voltage (CMV). The proposed inverter topology minimizes the CMV by decoupling the DC bus and load during active high states of the switches. The paper mainly concentrates on the 3-phase mode CMV minimization. The proposed inverter topology minimizes the transition that comes due to switch junction capacitance effect. The minimization in CMV improves the drive performance by minimizing the torque ripple in high-pole mode. In addition, the proposed topology minimizes the switch losses as all switches in the inverter are turned ‘on’ during DC-decoupling/freewheeling period. The ANSYS designed 3HP, 415V, 12-pole IMD is exported to Ansys Twin-Builder environment and results are presented for proposed inverter topology. The simulation results validate the minimization of CMV and improvement in the drive performance by the proposed new inverter topology.
{"title":"A New Inverter Topology to Improve the Performance of Pole-phase Modulated Induction Motor Drive by Minimizing Circulating/Common Mode Currents","authors":"S. V. S. Phani Kumar Ch, V. Sonti, Sachin Jain","doi":"10.1109/SeFeT55524.2022.9908967","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9908967","url":null,"abstract":"The paper gives an new inverter topology to improve the performance of pole-phase modulated induction motor drive (PPM-IMD) by minimizing circulating/common mode currents. The pole phase modulation technique usually gives wide speed-torque ranges and operation to IMD. Specifically, the PPM technique operates the IMD in wide pole ranges i.e., from high-pole to low-pole mode. However, especially in high-pole operation there exists high torque ripples. The torque ripples are due to by reason high-space harmonics in stator winding. The harmonics are attributable to the circulating currents/common mode currents (CMC). The CMC are resultant of inverter common mode voltage (CMV). The proposed inverter topology minimizes the CMV by decoupling the DC bus and load during active high states of the switches. The paper mainly concentrates on the 3-phase mode CMV minimization. The proposed inverter topology minimizes the transition that comes due to switch junction capacitance effect. The minimization in CMV improves the drive performance by minimizing the torque ripple in high-pole mode. In addition, the proposed topology minimizes the switch losses as all switches in the inverter are turned ‘on’ during DC-decoupling/freewheeling period. The ANSYS designed 3HP, 415V, 12-pole IMD is exported to Ansys Twin-Builder environment and results are presented for proposed inverter topology. The simulation results validate the minimization of CMV and improvement in the drive performance by the proposed new inverter topology.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122250719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9909000
Sudha Kalathi, D. Raveendhra, Narasimha Raju Bl
Because of their great efficiency, inexpensive, and compact size, and transformer-less photovoltaic (PV) inverters are becoming increasingly popular. Active power injection with no leakage current is now possible because to new layouts and modulating approaches. Reactive power injection by PV inverters into the utility grid is now required under some new grid standards. To gauge the degree of difficulty, a new hybrid modulation approach is devised and tested on a non-isolated H6 topology. With relatively slight alterations to variable reactive power generation with minimum crossing distortions can be achieved using switching patterns and a phase shift in the reference current and avoid common mode voltage. In-depth explanations of the various modes of operation and design considerations for the new hybrid modulation approach are provided. A 4kVA prototype and the SMPLIS simulation provide ample evidence to back up the proposed hybrid modulation strategy.
{"title":"Single-Phase H6 Inverter with Hybrid Modulation Scheme for Solar PV application","authors":"Sudha Kalathi, D. Raveendhra, Narasimha Raju Bl","doi":"10.1109/SeFeT55524.2022.9909000","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9909000","url":null,"abstract":"Because of their great efficiency, inexpensive, and compact size, and transformer-less photovoltaic (PV) inverters are becoming increasingly popular. Active power injection with no leakage current is now possible because to new layouts and modulating approaches. Reactive power injection by PV inverters into the utility grid is now required under some new grid standards. To gauge the degree of difficulty, a new hybrid modulation approach is devised and tested on a non-isolated H6 topology. With relatively slight alterations to variable reactive power generation with minimum crossing distortions can be achieved using switching patterns and a phase shift in the reference current and avoid common mode voltage. In-depth explanations of the various modes of operation and design considerations for the new hybrid modulation approach are provided. A 4kVA prototype and the SMPLIS simulation provide ample evidence to back up the proposed hybrid modulation strategy.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122808274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.1109/SeFeT55524.2022.9908880
S. Roy, Farheen Chishti, Bhim Singh, B. K. Panigrahi
This paper deals with the control and synchronization of double-stage solar photovoltaic (2SPV)-battery energy storage (BES) based three phase microgrid. The modified damped second order generalized integrator (MDSOGI) current control algorithm is used to feed power to the grid and at the same time it is used to provide phase angle and frequency estimation for the purpose of synchronization. MDSOGI is a modified version of the damped-SOGI structure, where frequency is estimated by integrating a frequency locked-loop (FLL) algorithm that utilizes the quadrature shifted components of the DSOGI structure. It has better power quality (PQ) performance, enhanced load balancing ability, effective harmonic mitigation property due to the band-pass-filter type phase response of the SOGI structure and is robust during frequency deviations. MDSOGI is used to extract the active and reactive fundamental weight components for generation of reference grid currents. Thus, the current control also meets the reactive power demand at common coupling point (CCP). In islanded mode of operation, voltage control mode is utilized and the MDSOGIFLL with the help of phase angle regulator is used to generate local frequency. This system is simulated in SIMULINK/Matlab R2020b and is subjected to various dynamic conditions for validating the satisfactory performance. Total harmonic distortion (THD) is found well within the IEEE-519 standard.
{"title":"Synchronization and Power Quality Improvement of 2SPV-BES Based Microgrid","authors":"S. Roy, Farheen Chishti, Bhim Singh, B. K. Panigrahi","doi":"10.1109/SeFeT55524.2022.9908880","DOIUrl":"https://doi.org/10.1109/SeFeT55524.2022.9908880","url":null,"abstract":"This paper deals with the control and synchronization of double-stage solar photovoltaic (2SPV)-battery energy storage (BES) based three phase microgrid. The modified damped second order generalized integrator (MDSOGI) current control algorithm is used to feed power to the grid and at the same time it is used to provide phase angle and frequency estimation for the purpose of synchronization. MDSOGI is a modified version of the damped-SOGI structure, where frequency is estimated by integrating a frequency locked-loop (FLL) algorithm that utilizes the quadrature shifted components of the DSOGI structure. It has better power quality (PQ) performance, enhanced load balancing ability, effective harmonic mitigation property due to the band-pass-filter type phase response of the SOGI structure and is robust during frequency deviations. MDSOGI is used to extract the active and reactive fundamental weight components for generation of reference grid currents. Thus, the current control also meets the reactive power demand at common coupling point (CCP). In islanded mode of operation, voltage control mode is utilized and the MDSOGIFLL with the help of phase angle regulator is used to generate local frequency. This system is simulated in SIMULINK/Matlab R2020b and is subjected to various dynamic conditions for validating the satisfactory performance. Total harmonic distortion (THD) is found well within the IEEE-519 standard.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"os-28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127865594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}