首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Decoding retrons: Breakthroughs in RT-DNA production and genome editing 解码 RT:RT-DNA 生产和基因组编辑方面的突破
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-21 DOI: 10.1016/j.chembiol.2024.10.011
Wenqian Liu , Yingjia Pan , Yu Zhang , Chang Dong , Lei Huang , Jiazhang Lian
Retrons are notable for their anti-phage defense functions and genome engineering applications. However, only a few retrons have been well characterized. In the August issue of Nature Biotechnology, Khan et al.1 present hundreds of experimentally studied retrons, which are critical for bacterial immunity research and retron-based genome engineering technologies.
视网膜因其抗噬菌体防御功能和基因组工程应用而备受关注。然而,只有少数 retrons 得到了很好的表征。在 8 月份的《自然-生物技术》(Nature Biotechnology)杂志上,Khan 等人1 介绍了数百个经过实验研究的 retrons,这对细菌免疫研究和基于 retron 的基因组工程技术至关重要。
{"title":"Decoding retrons: Breakthroughs in RT-DNA production and genome editing","authors":"Wenqian Liu ,&nbsp;Yingjia Pan ,&nbsp;Yu Zhang ,&nbsp;Chang Dong ,&nbsp;Lei Huang ,&nbsp;Jiazhang Lian","doi":"10.1016/j.chembiol.2024.10.011","DOIUrl":"10.1016/j.chembiol.2024.10.011","url":null,"abstract":"<div><div>Retrons are notable for their anti-phage defense functions and genome engineering applications. However, only a few retrons have been well characterized. In the August issue of <em>Nature Biotechnology</em>, Khan et al.<span><span><sup>1</sup></span></span> present hundreds of experimentally studied retrons, which are critical for bacterial immunity research and retron-based genome engineering technologies.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 11","pages":"Pages 1869-1871"},"PeriodicalIF":6.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden 基于酵母的口服疗法可提供免疫检查点抑制剂,减轻肠道肿瘤负担
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1016/j.chembiol.2024.10.013
Olivia N. Rebeck, Miranda J. Wallace, Jerome Prusa, Jie Ning, Esse M. Evbuomwan, Sunaina Rengarajan, LeMoyne Habimana-Griffin, Suryang Kwak, David Zahrah, Jason Tung, James Liao, Bejan Mahmud, Skye R.S. Fishbein, Erick S. Ramirez Tovar, Rehan Mehta, Bin Wang, Mark G. Gorelik, Beth A. Helmink, Gautam Dantas
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete “miniature” antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
工程益生菌是向肠道原位递送治疗药物的新兴平台。在此,我们开发了一种基于酵母的口服给药治疗递送系统,可直接向胃肠道肿瘤递送下一代免疫检查点抑制剂(ICI)蛋白。布拉氏酵母(Sb)是一种具有高度遗传可操作性和先天抗癌活性的益生酵母,我们将其改造成能分泌靶向程序性死亡配体1(Sb_haPD-1)的 "微型 "抗体变体。在 ICI 难治性结直肠癌(CRC)小鼠模型中进行测试时,Sb_haPD-1 显著降低了肠道肿瘤负担,并使免疫细胞谱和微生物组组成发生了显著变化。这种口服治疗平台是模块化的,可高度定制,开辟了靶向给药的新途径,可用于治疗各种胃肠道恶性肿瘤。
{"title":"A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden","authors":"Olivia N. Rebeck, Miranda J. Wallace, Jerome Prusa, Jie Ning, Esse M. Evbuomwan, Sunaina Rengarajan, LeMoyne Habimana-Griffin, Suryang Kwak, David Zahrah, Jason Tung, James Liao, Bejan Mahmud, Skye R.S. Fishbein, Erick S. Ramirez Tovar, Rehan Mehta, Bin Wang, Mark G. Gorelik, Beth A. Helmink, Gautam Dantas","doi":"10.1016/j.chembiol.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.013","url":null,"abstract":"Engineered probiotics are an emerging platform for <em>in situ</em> delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered <em>Saccharomyces cerevisiae</em> var. <em>boulardii</em> (<em>Sb</em>), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete “miniature” antibody variants that target programmed death ligand 1 (<em>Sb</em>_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, <em>Sb</em>_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"99 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host specific sphingomyelin is critical for replication of diverse RNA viruses 宿主特异性鞘磷脂对多种 RNA 病毒的复制至关重要
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.chembiol.2024.10.009
Shuo Han, Xiaolei Ye, Jintong Yang, Xuefang Peng, Xiaming Jiang, Jin Li, Xiaojie Zheng, Xinchen Zhang, Yumin Zhang, Lingyu Zhang, Wei Wang, Jiaxin Li, Wenwen Xin, Xiaoai Zhang, Gengfu Xiao, Ke Peng, Leike Zhang, Xuguang Du, Lu Zhou, Wei Liu, Hao Li
Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in SGMS1-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.
脂质和脂质代谢在 RNA 病毒复制中发挥着重要作用,病毒复制通常是通过尚未完全确定的机制在细胞质中的宿主细胞内膜结构上进行的。我们进行了基因组规模的CRISPR筛选,发现鞘磷脂合成酶1(SMS1;由SGMS1编码)是感染严重发热伴血小板减少综合征病毒(SFTSV)的关键宿主因子。SGMS1 基因敲除会降低鞘磷脂(SM)(d18:1/16:1)的水平,从而抑制 SFTSV 的复制。SFTSV的RNA依赖性RNA聚合酶(RdRp)中的一个螺旋-转螺旋基团直接与高尔基体中的SM(d18:1/16:1)结合,在SARS-CoV-2和淋巴细胞性脉络膜炎病毒(LCMV)中也观察到了这种情况,这两种病毒在SGMS1-KO细胞中的复制都受到了抑制。SM代谢紊乱与病毒感染的疾病严重程度有关。我们设计了一种新型 SMS1 抑制剂,它能保护小鼠免受致命的 SFTSV 感染,并减少 SARS-CoV-2 的复制和致病机理。这些发现强调了 SMS1 和 SM(d18:1/16:1) 在 RNA 病毒复制中的关键作用,提出了一种广谱抗病毒策略。
{"title":"Host specific sphingomyelin is critical for replication of diverse RNA viruses","authors":"Shuo Han, Xiaolei Ye, Jintong Yang, Xuefang Peng, Xiaming Jiang, Jin Li, Xiaojie Zheng, Xinchen Zhang, Yumin Zhang, Lingyu Zhang, Wei Wang, Jiaxin Li, Wenwen Xin, Xiaoai Zhang, Gengfu Xiao, Ke Peng, Leike Zhang, Xuguang Du, Lu Zhou, Wei Liu, Hao Li","doi":"10.1016/j.chembiol.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.009","url":null,"abstract":"Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). <em>SGMS1</em> knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in <em>SGMS1</em>-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"25 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes 扩大可配体蛋白质组的化学工具:基于多样性合成的光活性立体配体
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-14 DOI: 10.1016/j.chembiol.2024.10.005
Daisuke Ogasawara, David B. Konrad, Zher Yin Tan, Kimberly L. Carey, Jessica Luo, Sang Joon Won, Haoxin Li, Trever R. Carter, Kristen E. DeMeester, Evert Njomen, Stuart L. Schreiber, Ramnik J. Xavier, Bruno Melillo, Benjamin F. Cravatt
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these “photo-stereoprobes” interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
化学蛋白质组学可对原生生物系统中的小分子-蛋白质相互作用进行全面分析,已成为发现配体的一种多功能方法。然而,化学蛋白质组学探索的小分子范围仍然有限。在这里,我们描述了一个受多样性导向合成(DOS)启发的立体化学定义化合物库,其中含有重氮和炔烃单元,分别用于紫外光诱导的共价修饰和相互作用蛋白质的点击化学富集。我们发现,这些 "光立体探针 "能以立体选择性的方式与人体细胞中不同结构和功能类别的数百种蛋白质相互作用,并证明这些相互作用能为高通量筛选兼容的 NanoBRET 检测奠定基础。综合表型筛选和化学蛋白质组学发现了光立体探针,它们能通过与线粒体丝氨酸蛋白酶 CLPP 结合来调节自噬。我们的研究结果表明,DOS启发的光立体探针可用于扩展可配体蛋白质组、提供目标参与测定以及促进表型筛选中生物活性化合物的发现和表征。
{"title":"Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes","authors":"Daisuke Ogasawara, David B. Konrad, Zher Yin Tan, Kimberly L. Carey, Jessica Luo, Sang Joon Won, Haoxin Li, Trever R. Carter, Kristen E. DeMeester, Evert Njomen, Stuart L. Schreiber, Ramnik J. Xavier, Bruno Melillo, Benjamin F. Cravatt","doi":"10.1016/j.chembiol.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.005","url":null,"abstract":"Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these “photo-stereoprobes” interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"62 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PROTAC degrader suppresses oncogenic functions of PTK6 inducing apoptosis of breast cancer cells 一种 PROTAC 降解剂可抑制 PTK6 的致癌功能,诱导乳腺癌细胞凋亡
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-13 DOI: 10.1016/j.chembiol.2024.10.008
Criseyda Martinez, Yan Xiong, Alison Bartkowski, Ibuki Harada, Xiaoxiao Ren, Jessica Byerly, Elisa Port, Jian Jin, Hanna Irie
Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6’s oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.
蛋白酪氨酸激酶 6(PTK6)是一种非受体酪氨酸激酶,是许多肿瘤类型的致癌驱动因子。然而,目前还缺乏针对 PTK6 的治疗药物。虽然已经开发出了几种 PTK6 激酶抑制剂,但没有一种得到临床应用,这可能是由于激酶的非依赖性功能影响了它们的疗效。PTK6激酶抑制剂治疗可表征PTK6下调的某些效应,但不是全部效应。PTK6下调可抑制乳腺癌细胞的生长,但使用PTK6激酶抑制剂治疗则不会。为了通过化学方法下调PTK6,我们设计了一种PROTAC--MS105,它能有效且特异地降解PTK6。用 MS105(而非 PTK6 激酶抑制剂)处理乳腺癌细胞可抑制其生长并诱导其凋亡,与 PTK6(短发夹 RNA)shRNA/CRISPR 的效果相同。相比之下,MS105和PTK6激酶抑制剂都能有效抑制乳腺癌细胞的迁移,支持了PTK6致癌功能的不同激酶依赖性。我们的研究支持将 PTK6 降解剂作为靶向 PTK6 的首选方法。
{"title":"A PROTAC degrader suppresses oncogenic functions of PTK6 inducing apoptosis of breast cancer cells","authors":"Criseyda Martinez, Yan Xiong, Alison Bartkowski, Ibuki Harada, Xiaoxiao Ren, Jessica Byerly, Elisa Port, Jian Jin, Hanna Irie","doi":"10.1016/j.chembiol.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.008","url":null,"abstract":"Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6’s oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"13 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradome analysis to identify direct protein substrates of small-molecule degraders 通过降解组分析确定小分子降解器的直接蛋白质底物
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.chembiol.2024.10.007
Marco Jochem, Anna Schrempf, Lina-Marie Wagner, Dmitri Segal, Jose Cisneros, Amanda Ng, Georg E. Winter, Jeroen Krijgsveld
Targeted protein degradation (TPD) has emerged as a powerful strategy to selectively eliminate cellular proteins using small-molecule degraders, offering therapeutic promise for targeting proteins that are otherwise undruggable. However, a remaining challenge is to unambiguously identify primary TPD targets that are distinct from secondary downstream effects in the proteome. Here we introduce an approach for selective analysis of protein degradation by mass spectrometry (DegMS) at proteomic scale, which derives its specificity from the exclusion of confounding effects of altered transcription and translation induced by target depletion. We show that the approach efficiently operates at the timescale of TPD (hours) and we demonstrate its utility by analyzing the cyclin K degraders dCeMM2 and dCeMM4, which induce widespread transcriptional downregulation, and the GSPT1 degrader CC-885, an inhibitor of protein translation. Additionally, we apply DegMS to characterize a previously uncharacterized degrader, and identify the zinc-finger protein FIZ1 as a degraded target.
靶向蛋白质降解(TPD)已成为一种利用小分子降解剂选择性消除细胞蛋白质的强大策略,为靶向那些无法治疗的蛋白质提供了治疗前景。然而,如何明确识别蛋白质组中有别于次级下游效应的主要 TPD 靶点仍是一个挑战。在这里,我们介绍了一种在蛋白质组范围内通过质谱(DegMS)对蛋白质降解进行选择性分析的方法,其特异性来自于排除了靶标耗竭引起的转录和翻译改变的干扰效应。我们通过分析诱导广泛转录下调的细胞周期蛋白 K 降解剂 dCeMM2 和 dCeMM4 以及蛋白翻译抑制剂 GSPT1 降解剂 CC-885 证明了这种方法的实用性。此外,我们还应用 DegMS 鉴定了一种以前未鉴定过的降解器,并将锌指蛋白 FIZ1 鉴定为降解靶标。
{"title":"Degradome analysis to identify direct protein substrates of small-molecule degraders","authors":"Marco Jochem, Anna Schrempf, Lina-Marie Wagner, Dmitri Segal, Jose Cisneros, Amanda Ng, Georg E. Winter, Jeroen Krijgsveld","doi":"10.1016/j.chembiol.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.007","url":null,"abstract":"Targeted protein degradation (TPD) has emerged as a powerful strategy to selectively eliminate cellular proteins using small-molecule degraders, offering therapeutic promise for targeting proteins that are otherwise undruggable. However, a remaining challenge is to unambiguously identify primary TPD targets that are distinct from secondary downstream effects in the proteome. Here we introduce an approach for selective analysis of protein degradation by mass spectrometry (DegMS) at proteomic scale, which derives its specificity from the exclusion of confounding effects of altered transcription and translation induced by target depletion. We show that the approach efficiently operates at the timescale of TPD (hours) and we demonstrate its utility by analyzing the cyclin K degraders dCeMM2 and dCeMM4, which induce widespread transcriptional downregulation, and the GSPT1 degrader CC-885, an inhibitor of protein translation. Additionally, we apply DegMS to characterize a previously uncharacterized degrader, and identify the zinc-finger protein FIZ1 as a degraded target.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"71 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next steps for targeted protein degradation 定向降解蛋白质的下一步行动
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1016/j.chembiol.2024.10.004
Mackenzie W. Krone, Craig M. Crews
Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.
作为一种治疗策略,靶向蛋白质降解(TPD)在过去二十年中取得了长足的进步,合理设计的蛋白质降解剂即将获得临床批准。与占位驱动的蛋白质抑制相比,调控生物分子邻近性的化学方法具有药理学优势,为解决以往无法药物治疗的疾病相关靶点提供了机会。尽管设计的降解剂在临床前取得了成功,而且临床疗法也偶然利用了 TPD,但仍有必要扩大 TPD 工具箱,以确定和描述下一代分子降解剂。在此,我们强调了该领域应优先持续发展的三个方面:以更高的时空精度扩展 TPD 平台、提高降解剂合成的通量以及优化化学诱导蛋白质复合物的合作性。TPD 在医学领域的前景一片光明,我们期待创新方法将增加近端诱导药理学的治疗应用。
{"title":"Next steps for targeted protein degradation","authors":"Mackenzie W. Krone, Craig M. Crews","doi":"10.1016/j.chembiol.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.004","url":null,"abstract":"Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"84 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis 鉴定两种以 GSDMD 寡聚界面 I 为靶点的再利用药物,以阻断焦细胞增多症
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.chembiol.2024.10.002
Yingchao Hu, Honghui Li, Xiangyu Zhang, Yuxian Song, Jun Liu, Jie Pu, Shuang Wen, Hongyang Xu, Hongliang Xin, Bingwei Wang, Shuo Yang
As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1>2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.
作为化脓过程的执行者,gasdermin D(GSDMD)在炎症性疾病和癌症中起着至关重要的作用。因此,GSDMD 目前正被作为药物靶点进行广泛研究。现有的以 GSDMD 为靶点的抑制剂,如新磺酰胺、二磺酰胺和富马酸盐,主要通过修饰 GSDMD N 端片段中的人/鼠 C191/C192 来阻止热蛋白沉积。然而,半胱氨酸修饰会妨碍重要蛋白质或酶的功能,从而导致不良反应。在此,我们选择了 GSDMD 激活的另一个关键干预位点,该位点位于其孔形成结构的寡聚界面 I。通过高通量虚拟和实验筛选,并结合药效和药理验证,我们发现了两种安全、特异的 "再利用药物",它们能有效抑制 GSDMD 介导的热蛋白沉积。此外,这些候选药物在小鼠败血症和肿瘤发生模型中表现出了 "1 + 1>2 "的协同治疗效果。这些最新发现的 GSDMD 抑制剂有望在抗炎和抗癌免疫疗法的开发中实现临床转化。
{"title":"Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis","authors":"Yingchao Hu, Honghui Li, Xiangyu Zhang, Yuxian Song, Jun Liu, Jie Pu, Shuang Wen, Hongyang Xu, Hongliang Xin, Bingwei Wang, Shuo Yang","doi":"10.1016/j.chembiol.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.002","url":null,"abstract":"As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1&gt;2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"108 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic sampling of a surveillance state enables DNA proofreading by Cas9 监控状态的动态取样使 Cas9 能够进行 DNA 校对
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.chembiol.2024.10.001
Viviane S. De Paula, Abhinav Dubey, Haribabu Arthanari, Nikolaos G. Sgourakis
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
CRISPR-Cas9 通过对需要高特异性的单导 RNA 进行编程,彻底改变了基因组工程应用。然而,相对于引导 RNA 模板而言,区分目标 DNA 序列的精确分子机制仍未确定。在这里,我们利用基于甲基的核磁共振技术研究了体外组装的多个全酶,阐明了一种离散的蛋白质构象状态,它能识别原间隔邻接基序(PAM)远端的 DNA 错配。我们的研究结果勾勒出了一条异构途径,它将 REC3 结构域的动态构象转换与 HNH 结构域的催化状态取样连接起来。我们的核磁共振数据显示,HiFi Cas9 (R691A)通过稳定这种针对不匹配底物的 "监视状态",使 Cas9 的构象平衡偏离活性状态,从而提高了 DNA 识别的保真度。这些结果建立了一种通过基于异构蛋白的开关来识别底物的范例,为研究支配 Cas9 选择性的分子机制提供了独特的见解。
{"title":"Dynamic sampling of a surveillance state enables DNA proofreading by Cas9","authors":"Viviane S. De Paula, Abhinav Dubey, Haribabu Arthanari, Nikolaos G. Sgourakis","doi":"10.1016/j.chembiol.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.001","url":null,"abstract":"CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled <em>in vitro</em>, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this \"surveillance state\" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"40 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA infrastructure profiling illuminates transcriptome structure in crowded spaces RNA 基础结构剖析揭示拥挤空间中的转录组结构
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-23 DOI: 10.1016/j.chembiol.2024.09.009
Lu Xiao, Linglan Fang, Wenrui Zhong, Eric T. Kool
RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m6A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.
RNA 在细胞中折叠成紧凑的结构,并与蛋白质发生相互作用。这些闭塞的环境会阻挡探测底层 RNA 的试剂。能在拥挤环境中分析结构的探针可以揭示 RNA 的生物学特性。在这里,我们采用的 2′-OH 反应探针足够小,可以进入细胞内分子接触紧密的底层折叠 RNA 结构,为细胞内 RNA 结构分析提供更广泛的覆盖范围。这些数据首先通过特性良好的人类核糖体 RNA 进行分析,然后应用于整个转录组的多聚腺苷酸转录本。最小的探针乙酰咪唑(AcIm)的结构覆盖率比较大的传统试剂 NAIN3 高出 80%,为数百个转录本提供了更多的结构信息。乙酰探针还能提供识别转录本中 m6A 修饰位点的卓越信号,尤其是在标准探针无法到达的位点。我们的策略能够剖析 RNA 基础结构,加强对转录本组结构、修饰和细胞内相互作用的分析,尤其是在空间拥挤的环境中。
{"title":"RNA infrastructure profiling illuminates transcriptome structure in crowded spaces","authors":"Lu Xiao, Linglan Fang, Wenrui Zhong, Eric T. Kool","doi":"10.1016/j.chembiol.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.009","url":null,"abstract":"RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m<sup>6</sup>A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"21 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1