首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Reflections from advisory board members and associate editors 顾问委员会成员和副主编的思考
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.015

For the celebration of the 30th anniversary of Cell Chemical Biology, in the September special issue, we asked former and current advisory board members and former editors to reflect on the advancements in chemical biology, changes in the field, and their insights into Cell Chemical Biology (originally Chemistry & Biology).

为庆祝《细胞化学生物学》创刊 30 周年,我们在 9 月特刊中请前任和现任顾问委员会成员以及前任编辑回顾了化学生物学的进步、该领域的变化以及他们对《细胞化学生物学》(原名《化学与生物学》)的见解。
{"title":"Reflections from advisory board members and associate editors","authors":"","doi":"10.1016/j.chembiol.2024.08.015","DOIUrl":"10.1016/j.chembiol.2024.08.015","url":null,"abstract":"<div><p>For the celebration of the 30<sup>th</sup> anniversary of <em>Cell Chemical Biology</em>, in the September special issue, we asked former and current advisory board members and former editors to reflect on the advancements in chemical biology, changes in the field, and their insights into <em>Cell Chemical Biology</em> (originally <em>Chemistry &amp; Biology</em>).</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003647/pdfft?md5=2f38124a3b76bef314cf59b1accd156a&pid=1-s2.0-S2451945624003647-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations 空间蛋白质组学的进展:绘制从蛋白质复合物到亚细胞定位的蛋白质组结构图
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.008

Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.

蛋白质负责细胞内的大部分功能,它们作为高阶分子复合物的一部分,位于确定的亚细胞龛位中。定位既是动态的,又有特定的环境,定位错误是多种疾病的根源。因此,能够动态测量高阶蛋白质复合物的组分及其亚细胞位置对于全面了解细胞生物学过程至关重要。在此,我们回顾了目前确定蛋白质组亚细胞组织的一系列高度互补的方法。我们讨论了这些方法的最佳应用规模和分辨率,以及应用这些方法时应考虑的注意事项。我们还展望了未来和新兴技术,这些技术正在为更全面地了解蛋白质同工酶的功能作用铺平道路,这对于揭示细胞生物学的复杂性和开发疾病治疗方法至关重要。
{"title":"Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations","authors":"","doi":"10.1016/j.chembiol.2024.08.008","DOIUrl":"10.1016/j.chembiol.2024.08.008","url":null,"abstract":"<div><p>Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400357X/pdfft?md5=d7d9545c4fe5c1529fc55f268dc36ff3&pid=1-s2.0-S245194562400357X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New therapies on the horizon: Targeted protein degradation in neuroscience 地平线上的新疗法神经科学中的靶向蛋白质降解
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.010

This minireview explores the burgeoning field of targeted protein degradation (TPD) and its promising applications in neuroscience and clinical development. TPD offers innovative strategies for modulating protein levels, presenting a paradigm shift in small-molecule drug discovery and therapeutic interventions. Importantly, small-molecule protein degraders specifically target and remove pathogenic proteins from central nervous system cells without the drug delivery challenges of genomic and antibody-based modalities. Here, we review recent advancements in TPD technologies, highlight proteolysis targeting chimera (PROTAC) protein degrader molecules with proximity-induced degradation event-driven and iterative pharmacology, provide applications in neuroscience research, and discuss the high potential for translation of TPD into clinical settings.

这篇微型综述探讨了蓬勃发展的靶向蛋白质降解(TPD)领域及其在神经科学和临床开发中的应用前景。靶向蛋白质降解提供了调节蛋白质水平的创新策略,是小分子药物发现和治疗干预的范式转变。重要的是,小分子蛋白质降解剂能特异性地靶向并清除中枢神经系统细胞中的致病蛋白质,而不像基因组和抗体疗法那样面临给药难题。在此,我们将回顾 TPD 技术的最新进展,重点介绍具有近端诱导降解事件驱动和迭代药理学的蛋白水解靶向嵌合体(PROTAC)蛋白降解剂分子,介绍其在神经科学研究中的应用,并讨论 TPD 转化为临床应用的巨大潜力。
{"title":"New therapies on the horizon: Targeted protein degradation in neuroscience","authors":"","doi":"10.1016/j.chembiol.2024.08.010","DOIUrl":"10.1016/j.chembiol.2024.08.010","url":null,"abstract":"<div><p>This minireview explores the burgeoning field of targeted protein degradation (TPD) and its promising applications in neuroscience and clinical development. TPD offers innovative strategies for modulating protein levels, presenting a paradigm shift in small-molecule drug discovery and therapeutic interventions. Importantly, small-molecule protein degraders specifically target and remove pathogenic proteins from central nervous system cells without the drug delivery challenges of genomic and antibody-based modalities. Here, we review recent advancements in TPD technologies, highlight proteolysis targeting chimera (PROTAC) protein degrader molecules with proximity-induced degradation event-driven and iterative pharmacology, provide applications in neuroscience research, and discuss the high potential for translation of TPD into clinical settings.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003593/pdfft?md5=1f027e9528aca8082bec51fd76809e7f&pid=1-s2.0-S2451945624003593-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Celebrating 30 years of chemical biology: A toast to multidisciplinarity 庆祝化学生物学 30 周年:为多学科性干杯
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.016
{"title":"Celebrating 30 years of chemical biology: A toast to multidisciplinarity","authors":"","doi":"10.1016/j.chembiol.2024.08.016","DOIUrl":"10.1016/j.chembiol.2024.08.016","url":null,"abstract":"","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into bacterial metabolism from small RNAs 从小规模 RNA 了解细菌的新陈代谢
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.07.002

The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.

通过与细菌中的目标 RNA 进行碱基配对而发挥作用的小型调控 RNA(sRNA)的研究一直在稳步发展,特别是随着越来越多的转录组和 RNA-RNA 交互组数据集的出现。多种 sRNAs 的特征描述有助于阐明它们的作用机制,同时这些研究也为蛋白质功能、代谢通量控制以及代谢途径之间的联系提供了见解,我们将在这里讨论这些见解。在描述所获得的代谢洞察力的几个例子时,我们将总结不同类型的碱基配对 sRNA,包括 mRNA 衍生的 sRNA、海绵 RNA、RNA 模拟物和双重功能 RNA,并就未来如何利用 sRNA 信息提出建议。
{"title":"Insights into bacterial metabolism from small RNAs","authors":"","doi":"10.1016/j.chembiol.2024.07.002","DOIUrl":"10.1016/j.chembiol.2024.07.002","url":null,"abstract":"<div><p>The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation CARD8 N 端疏水性可调节炎症小体的激活
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.06.004

Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic electrophiles as well as genetic mutation of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.

越来越多的证据表明,蛋白毒性应激是 CARD8 炎症小体的主要激活剂,但控制 CARD8 炎症小体的信号阵列却很完整。
{"title":"The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation","authors":"","doi":"10.1016/j.chembiol.2024.06.004","DOIUrl":"10.1016/j.chembiol.2024.06.004","url":null,"abstract":"<div><p><span>Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome<span>, but the complete array of signals that control this inflammasome<span> have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome<span> activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic </span></span></span></span>electrophiles<span><span> as well as genetic mutation<span> of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that </span></span>protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.</span></p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the authors: Lydia P. Tsamouri and Daniel A. Bachovchin 与作者见面:莉迪亚-P-查穆里和丹尼尔-A-巴乔夫钦
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.012

In an interview with Dr. Mishtu Dey, editor-in-chief of Cell Chemical Biology, the authors of the article entitled “The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation” share their perspectives on the ways chemical biology enriches immunology research, the challenges and opportunities in the field, and their scientific career paths.

在与《细胞化学生物学》主编 Mishtu Dey 博士的访谈中,题为《CARD8 N-terminus 的疏水性调节炎症小体的激活》一文的作者分享了他们对化学生物学如何丰富免疫学研究、该领域的挑战和机遇以及他们的科研道路的看法。
{"title":"Meet the authors: Lydia P. Tsamouri and Daniel A. Bachovchin","authors":"","doi":"10.1016/j.chembiol.2024.08.012","DOIUrl":"10.1016/j.chembiol.2024.08.012","url":null,"abstract":"<div><p>In an interview with Dr. Mishtu Dey, editor-in-chief of <em>Cell Chemical Biology</em>, the authors of the article entitled “The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation” share their perspectives on the ways chemical biology enriches immunology research, the challenges and opportunities in the field, and their scientific career paths.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003611/pdfft?md5=399618023e792f8827f726e2f978ec23&pid=1-s2.0-S2451945624003611-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane remodeling via ubiquitin-mediated pathways 通过泛素介导的途径重塑细胞膜
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.08.007

The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination—a posttranslational modification—was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.

膜塑形和重塑的动态过程在细胞功能中起着至关重要的作用,蛋白质和细胞膜错综复杂地相互作用,以适应各种细胞需求和环境线索。研究表明,泛素化--一种翻译后修饰--对调节膜结构和形状至关重要。它通过引导蛋白质降解、分类和寡聚化,影响着几乎所有依赖细胞膜的途径,如内吞和自噬。众所周知,泛素主要是一种蛋白质修饰剂;但有报道称,泛素和泛素样蛋白可直接与脂质结合,影响膜的曲率和动态。在这篇综述中,我们总结了目前关于泛素介导的膜重塑在内吞、自噬和ER-吞噬方面的一些知识。
{"title":"Membrane remodeling via ubiquitin-mediated pathways","authors":"","doi":"10.1016/j.chembiol.2024.08.007","DOIUrl":"10.1016/j.chembiol.2024.08.007","url":null,"abstract":"<div><p>The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination—a posttranslational modification—was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003568/pdfft?md5=ece0af39be652dce7a41d4b687f8ec63&pid=1-s2.0-S2451945624003568-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets 混合烷基/芳基膦酸盐将代谢丝氨酸水解酶确定为抗疟靶标
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.07.006

Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.

由恶性疟原虫引起的疟疾仍然是严重的健康负担。开发抗疟药物的一个主要障碍是寄生虫能够迅速产生抗药性。我们以前曾证明,天然产物柳氮磺吡啶 A(SalA)通过抑制多种脂质代谢丝氨酸水解酶有效杀死寄生虫,这种机制导致了较低的抗药性倾向。鉴于将天然产物用作治疗剂的难度,我们合成了一个小型的脂质混合烷基/芳基膦酸盐库,作为 SalA 的生物异构体。两种构型异构体表现出不同的抗寄生虫效力,从而确定了治疗相关靶点。活性化合物杀死寄生虫的机制不同于 SalA 和泛脂肪酶抑制剂奥利司他,而且与奥利司他具有协同杀虫作用。我们的化合物只能诱导微弱的抗药性,这归因于参与多药耐药性的单个蛋白质发生了突变。这些数据表明,混合烷基/芳基膦酸盐是一种前景广阔、可合成的抗疟药物。
{"title":"Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets","authors":"","doi":"10.1016/j.chembiol.2024.07.006","DOIUrl":"10.1016/j.chembiol.2024.07.006","url":null,"abstract":"<div><p>Malaria, caused by <em>Plasmodium falciparum,</em> remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemoproteomics reveals immunogenic and tumor-associated cell surface substrates of ectokinase CK2α 化学蛋白质组学揭示了外激酶 CK2α 的免疫原性和肿瘤相关细胞表面底物
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1016/j.chembiol.2024.07.018

Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4+ T cell responses in response to these antigens but failed to develop a CD8+ T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.

免疫识别的外来表位是抗癌免疫的基础。由于肿瘤微环境中存在高浓度的细胞外三磷酸腺苷,我们假设细胞外激酶(ectokinases)可能会出现活性失调,并在细胞表面蛋白上引入异常磷酸化位点。我们设计了细胞外激酶 CK2α 的细胞系留版本,证明它在肿瘤相关条件下对细胞具有活性,并利用化学蛋白组学工作流程分析了它的底物范围。我们随后证明,小鼠对表面被 CK2α 过度磷酸化的合成肿瘤细胞产生了多反应抗血清。有趣的是,这些小鼠对这些抗原产生了 B 细胞和 CD4+ T 细胞反应,但未能产生 CD8+ T 细胞反应。这项研究提供了一种探测细胞外磷酸化蛋白质组的工作流程,并证明细胞外磷酸化蛋白质即使在共生系统中也具有免疫原性。
{"title":"Chemoproteomics reveals immunogenic and tumor-associated cell surface substrates of ectokinase CK2α","authors":"","doi":"10.1016/j.chembiol.2024.07.018","DOIUrl":"10.1016/j.chembiol.2024.07.018","url":null,"abstract":"<div><p>Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4<sup>+</sup> T cell responses in response to these antigens but failed to develop a CD8<sup>+</sup> T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1