首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome 评论衍生色氨酸代谢物强化皮肤屏障:来自人类皮肤微生物组的50种非生物模型的见解
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.007
Aayushi Uberoi , Sofía M. Murga-Garrido , Preeti Bhanap , Amy E. Campbell , Simon A.B. Knight , Monica Wei , Anya Chan , Taylor Senay , Saba Tegegne , Ellen K. White , Carrie Hayes Sutter , Clementina Mesaros , Thomas R. Sutter , Elizabeth A. Grice
The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood. Tryptophan metabolites are AHR ligands that can be products of microbial metabolism. To identify microbially regulated tryptophan metabolites in vivo, we established a gnotobiotic model colonized with fifty human skin commensals and performed targeted mass spectrometry on murine skin. Indole-related metabolites were enriched in colonized skin compared to germ-free skin. In reconstructed human epidermis and in murine models of atopic-like barrier damage, these metabolites improved barrier repair and function individually and as a cocktail. These results provide a framework for the identification of microbial metabolites that mediate specific host functions, which can guide the development of microbe-based therapies for skin disorders.
表皮屏障保护人体免受脱水和有害物质的伤害。共生微生物群对表皮屏障的正常分化和修复至关重要,这种作用由芳基烃受体(AHR)介导。然而,人们对皮肤中激活 AHR 的微生物机制了解较少。色氨酸代谢物是 AHR 配体,可能是微生物代谢的产物。为了鉴定体内受微生物调控的色氨酸代谢物,我们建立了一个由 50 种人类皮肤共生菌定植的非生物模型,并对鼠皮肤进行了靶向质谱分析。与无菌皮肤相比,定植皮肤中富含吲哚相关代谢物。在重建的人类表皮和类似特应性屏障损伤的小鼠模型中,这些代谢物可单独或作为鸡尾酒改善屏障修复和功能。这些结果为鉴定介导特定宿主功能的微生物代谢物提供了一个框架,可为开发基于微生物的皮肤病疗法提供指导。
{"title":"Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome","authors":"Aayushi Uberoi ,&nbsp;Sofía M. Murga-Garrido ,&nbsp;Preeti Bhanap ,&nbsp;Amy E. Campbell ,&nbsp;Simon A.B. Knight ,&nbsp;Monica Wei ,&nbsp;Anya Chan ,&nbsp;Taylor Senay ,&nbsp;Saba Tegegne ,&nbsp;Ellen K. White ,&nbsp;Carrie Hayes Sutter ,&nbsp;Clementina Mesaros ,&nbsp;Thomas R. Sutter ,&nbsp;Elizabeth A. Grice","doi":"10.1016/j.chembiol.2024.12.007","DOIUrl":"10.1016/j.chembiol.2024.12.007","url":null,"abstract":"<div><div>The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood. Tryptophan metabolites are AHR ligands that can be products of microbial metabolism. To identify microbially regulated tryptophan metabolites <em>in vivo</em>, we established a gnotobiotic model colonized with fifty human skin commensals and performed targeted mass spectrometry on murine skin. Indole-related metabolites were enriched in colonized skin compared to germ-free skin. In reconstructed human epidermis and in murine models of atopic-like barrier damage, these metabolites improved barrier repair and function individually and as a cocktail. These results provide a framework for the identification of microbial metabolites that mediate specific host functions, which can guide the development of microbe-based therapies for skin disorders.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 111-125.e6"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast paves the way for cancer immunotherapy 酵母为癌症免疫治疗铺平了道路
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.011
Dingjiacheng Jia , Shujie Chen
In this issue of Cell Chemical Biology, Rebeck et al.1 construct a system that enables Saccharomyces cerevisiae var. boulardii (Sb) to secrete immune checkpoint inhibitors, reducing intestinal tumor load. This safe and effective delivery platform using engineered yeast demonstrates potential for enhancing the efficacy of biologics.
在这一期的Cell Chemical Biology上,Rebeck et al.1构建了一个系统,使酿酒酵母(Saccharomyces cerevisiae var. boulardii, Sb)分泌免疫检查点抑制剂,减少肠道肿瘤负荷。这种安全有效的工程酵母传递平台显示了增强生物制剂功效的潜力。
{"title":"Yeast paves the way for cancer immunotherapy","authors":"Dingjiacheng Jia ,&nbsp;Shujie Chen","doi":"10.1016/j.chembiol.2024.12.011","DOIUrl":"10.1016/j.chembiol.2024.12.011","url":null,"abstract":"<div><div>In this issue of <em>Cell Chemical Biology</em>, Rebeck et al.<span><span><sup>1</sup></span></span> construct a system that enables <em>Saccharomyces cerevisiae</em> var. <em>boulardii</em> (<em>Sb</em>) to secrete immune checkpoint inhibitors, reducing intestinal tumor load. This safe and effective delivery platform using engineered yeast demonstrates potential for enhancing the efficacy of biologics.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 9-11"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches 钙调磷酸酶:通过生物化学、生物化学和遗传方法揭示睡眠的重要调节因子
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.003
Jianjun Yu (余建军) , Huijie Liu (刘慧洁) , Rui Gao (高瑞) , Tao V. Wang (王涛) , Chenggang Li (李成钢) , Yuxiang Liu (刘玉祥) , Lu Yang (杨璐) , Ying Xu (徐颖) , Yunfeng Cui (崔云凤) , Chenxi Jia (贾辰熙) , Juan Huang (黄娟) , Peng R. Chen (陈鹏) , Yi Rao (饶毅)
Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both in vitro and in vivo, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.
对睡眠机制的研究传统上依赖于电生理学和遗传学。由于睡眠只能通过行为观察和物理手段对整个动物进行测量,因此没有通过生化和化学生物学方法开展睡眠研究。我们使用对睡眠重要的激酶磷酸化位点作为生化和化学生物学方法的靶点。在盐诱导激酶3 (SIK3)残基T469上携带苏氨酸到丙氨酸取代的小鼠睡眠增加。我们的生化纯化和光交联发现,SIK3在体外和体内的T469和S551位点都发生了钙调磷酸酶(calcalineurin, CaN)去磷酸化,但T221位点没有。敲除CaN调节亚基使每日睡眠减少5小时以上,超过所有已知的小鼠突变体。我们的工作揭示了CaN在睡眠中的关键生理作用,并开创了生化纯化和化学生物学作为研究睡眠的有效方法。
{"title":"Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches","authors":"Jianjun Yu (余建军) ,&nbsp;Huijie Liu (刘慧洁) ,&nbsp;Rui Gao (高瑞) ,&nbsp;Tao V. Wang (王涛) ,&nbsp;Chenggang Li (李成钢) ,&nbsp;Yuxiang Liu (刘玉祥) ,&nbsp;Lu Yang (杨璐) ,&nbsp;Ying Xu (徐颖) ,&nbsp;Yunfeng Cui (崔云凤) ,&nbsp;Chenxi Jia (贾辰熙) ,&nbsp;Juan Huang (黄娟) ,&nbsp;Peng R. Chen (陈鹏) ,&nbsp;Yi Rao (饶毅)","doi":"10.1016/j.chembiol.2024.12.003","DOIUrl":"10.1016/j.chembiol.2024.12.003","url":null,"abstract":"<div><div>Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both <em>in vitro</em> and <em>in vivo</em>, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 157-173.e7"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology 肠道微生物群与表观遗传学之间的化学相互作用:对昼夜节律生物学的影响
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.04.016
Samskrathi Aravinda Sharma , Sarah Olanrewaju Oladejo , Zheng Kuang
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
昼夜节律是使生物功能与昼夜周期同步的内在分子机制。哺乳动物肠道内有大量微生物,统称为肠道微生物群。微生物群通过代谢物和结构成分影响宿主的生理机能。其中一个关键机制是调节宿主的表观遗传途径,尤其是组蛋白修饰。越来越多的研究表明,微生物群在调节宿主昼夜节律方面发挥作用。然而,其中的机制在很大程度上仍不为人所知。在此,我们总结了有关微生物调控宿主昼夜节律和表观遗传途径的研究,重点介绍了有关微生物群如何利用宿主表观遗传机制调控昼夜节律的最新发现,并讨论了其对宿主生理,尤其是免疫和代谢功能的影响。我们进一步介绍了当前的挑战和资源,这些挑战和资源可促进微生物群-表观遗传-昼夜节律相互作用的研究,从而增进我们对昼夜节律紊乱的了解和可能的治疗途径。
{"title":"Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology","authors":"Samskrathi Aravinda Sharma ,&nbsp;Sarah Olanrewaju Oladejo ,&nbsp;Zheng Kuang","doi":"10.1016/j.chembiol.2024.04.016","DOIUrl":"10.1016/j.chembiol.2024.04.016","url":null,"abstract":"<div><div>Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 61-82"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the authors: Aayushi Uberoi and Elizabeth A. Grice 来认识一下这篇文章的作者:银井青史和伊丽莎白·a·格赖斯
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.010
Aayushi Uberoi, Elizabeth A. Grice
In an interview with Samantha Nelson, a scientific editor of Cell Chemical Biology, the authors of the research article entitled “Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome” share insights about their paper, field, and lives as scientists.
在与《细胞化学生物学》科学编辑萨曼莎-尼尔森(Samantha Nelson)的一次访谈中,题为《共生菌衍生的色氨酸代谢物可强化皮肤屏障》(Commensal-derived tryptophan metabolites fortify the skin barrier:从 50 种人类皮肤微生物组的非生物模型中获得的启示 "一文的作者分享了他们对论文、研究领域和科学家生活的见解。
{"title":"Meet the authors: Aayushi Uberoi and Elizabeth A. Grice","authors":"Aayushi Uberoi,&nbsp;Elizabeth A. Grice","doi":"10.1016/j.chembiol.2024.12.010","DOIUrl":"10.1016/j.chembiol.2024.12.010","url":null,"abstract":"<div><div>In an interview with Samantha Nelson, a scientific editor of <em>Cell Chemical Biology</em>, the authors of the research article entitled “Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome” share insights about their paper, field, and lives as scientists.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 1-2"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain β-羟基丁酸盐是老年人和阿尔茨海默病患者大脑中蛋白质平衡的代谢调节剂
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.11.001
Sidharth S. Madhavan , Stephanie Roa Diaz , Sawyer Peralta , Mitsunori Nomura , Christina D. King , Kaya E. Ceyhan , Anwen Lin , Dipa Bhaumik , Anna C. Foulger , Samah Shah , Thanh Blade , Wyatt Gray , Manish Chamoli , Brenda Eap , Oishika Panda , Diego Diaz , Thelma Y. Garcia , Brianna J. Stubbs , Scott M. Ulrich , Gordon J. Lithgow , John C. Newman
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
蛋白质平衡丧失是衰老和阿尔茨海默病(AD)的标志。我们发现β-羟基丁酸酯(βHB)是一种酮体,作为蛋白质…
{"title":"β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain","authors":"Sidharth S. Madhavan ,&nbsp;Stephanie Roa Diaz ,&nbsp;Sawyer Peralta ,&nbsp;Mitsunori Nomura ,&nbsp;Christina D. King ,&nbsp;Kaya E. Ceyhan ,&nbsp;Anwen Lin ,&nbsp;Dipa Bhaumik ,&nbsp;Anna C. Foulger ,&nbsp;Samah Shah ,&nbsp;Thanh Blade ,&nbsp;Wyatt Gray ,&nbsp;Manish Chamoli ,&nbsp;Brenda Eap ,&nbsp;Oishika Panda ,&nbsp;Diego Diaz ,&nbsp;Thelma Y. Garcia ,&nbsp;Brianna J. Stubbs ,&nbsp;Scott M. Ulrich ,&nbsp;Gordon J. Lithgow ,&nbsp;John C. Newman","doi":"10.1016/j.chembiol.2024.11.001","DOIUrl":"10.1016/j.chembiol.2024.11.001","url":null,"abstract":"<div><div>Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain <em>in vivo</em> after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 174-191.e8"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator fkbp12募集化学诱导邻近dna编码文库的建立及其在发现自噬增强剂中的应用
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-02 DOI: 10.1016/j.chembiol.2024.12.002
Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier
Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate ATG16L1 T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of ATG16L1 T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.
化学接近诱导剂(Chemical inductors of proximity, cip)是一种将一种蛋白质招募到另一种蛋白质并引入新功能来调节蛋白质状态和活性的分子。虽然cip介导的E3连接酶募集被广泛用于降解物的开发,但其他治疗方式仍未得到充分探索。我们描述了一个非降解的cip - dna编码文库(CIP-DEL),它使用非传统的无环结构招募FKBP12来靶向蛋白质,重点是引入立体化学多样性和刚性连接器来连接组合文库。我们采用这种策略来调节ATG16L1 T300A,它赋予克罗恩病(CD)的遗传易感性,并鉴定了一种化合物,该化合物以不依赖于fkbp12的方式稳定变异蛋白,防止Casp3切割。我们在细胞模型中证明,这种化合物增强了自噬,逆转了ATG16L1 T300A的异种吞噬缺陷以及增加的细胞因子分泌特征。这项研究为CIP设计提供了一个未经探索的化学空间,以开发由人类遗传学指导的治疗方式。
{"title":"Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator","authors":"Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier","doi":"10.1016/j.chembiol.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.002","url":null,"abstract":"Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate <em>ATG16L1</em> T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of <em>ATG16L1</em> T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages make “sense” of obesity-driven acidity in the TME 巨噬细胞“理解”肥胖导致的TME酸性
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.008
Spenser H. Stone , Jeffrey C. Rathmell , Jackie E. Bader
Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of Science Immunology, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.1
肥胖是许多癌症的主要风险因素和不良预后指标。在最近一期的《科学免疫学》(Science Immunology)杂志上,Bagchi 等人发现,与肿瘤相关的巨噬细胞会上调 GPR65,以应对肥胖导致的肿瘤内酸性,从而降低效应器功能,促进肿瘤生长。
{"title":"Macrophages make “sense” of obesity-driven acidity in the TME","authors":"Spenser H. Stone ,&nbsp;Jeffrey C. Rathmell ,&nbsp;Jackie E. Bader","doi":"10.1016/j.chembiol.2024.11.008","DOIUrl":"10.1016/j.chembiol.2024.11.008","url":null,"abstract":"<div><div>Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of <em>Science Immunology</em>, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2021-2023"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA infrastructure profiling illuminates transcriptome structure in crowded spaces RNA 基础结构剖析揭示拥挤空间中的转录组结构
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.09.009
Lu Xiao , Linglan Fang , Wenrui Zhong , Eric T. Kool
RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m6A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.
RNA 在细胞中折叠成紧凑的结构,并与蛋白质发生相互作用。这些闭塞的环境会阻挡探测底层 RNA 的试剂。能在拥挤环境中分析结构的探针可以揭示 RNA 的生物学特性。在这里,我们采用的 2′-OH 反应探针足够小,可以进入细胞内分子接触紧密的底层折叠 RNA 结构,为细胞内 RNA 结构分析提供更广泛的覆盖范围。这些数据首先通过特性良好的人类核糖体 RNA 进行分析,然后应用于整个转录组的多聚腺苷酸转录本。最小的探针乙酰咪唑(AcIm)的结构覆盖率比较大的传统试剂 NAIN3 高出 80%,为数百个转录本提供了更多的结构信息。乙酰探针还能提供识别转录本中 m6A 修饰位点的卓越信号,尤其是在标准探针无法到达的位点。我们的策略能够剖析 RNA 基础结构,加强对转录本组结构、修饰和细胞内相互作用的分析,尤其是在空间拥挤的环境中。
{"title":"RNA infrastructure profiling illuminates transcriptome structure in crowded spaces","authors":"Lu Xiao ,&nbsp;Linglan Fang ,&nbsp;Wenrui Zhong ,&nbsp;Eric T. Kool","doi":"10.1016/j.chembiol.2024.09.009","DOIUrl":"10.1016/j.chembiol.2024.09.009","url":null,"abstract":"<div><div>RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m<sup>6</sup>A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2156-2167.e5"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host specific sphingomyelin is critical for replication of diverse RNA viruses 宿主特异性鞘磷脂对多种 RNA 病毒的复制至关重要
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.10.009
Shuo Han , Xiaolei Ye , Jintong Yang , Xuefang Peng , Xiaming Jiang , Jin Li , Xiaojie Zheng , Xinchen Zhang , Yumin Zhang , Lingyu Zhang , Wei Wang , Jiaxin Li , Wenwen Xin , Xiaoai Zhang , Gengfu Xiao , Ke Peng , Leike Zhang , Xuguang Du , Lu Zhou , Wei Liu , Hao Li
Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in SGMS1-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.
脂质和脂质代谢在 RNA 病毒复制中发挥着重要作用,病毒复制通常是通过尚未完全确定的机制在细胞质中的宿主细胞内膜结构上进行的。我们进行了基因组规模的CRISPR筛选,发现鞘磷脂合成酶1(SMS1;由SGMS1编码)是感染严重发热伴血小板减少综合征病毒(SFTSV)的关键宿主因子。SGMS1 基因敲除会降低鞘磷脂(SM)(d18:1/16:1)的水平,从而抑制 SFTSV 的复制。SFTSV的RNA依赖性RNA聚合酶(RdRp)中的一个螺旋-转螺旋基团直接与高尔基体中的SM(d18:1/16:1)结合,在SARS-CoV-2和淋巴细胞性脉络膜炎病毒(LCMV)中也观察到了这种情况,这两种病毒在SGMS1-KO细胞中的复制都受到了抑制。SM代谢紊乱与病毒感染的疾病严重程度有关。我们设计了一种新型 SMS1 抑制剂,它能保护小鼠免受致命的 SFTSV 感染,并减少 SARS-CoV-2 的复制和致病机理。这些发现强调了 SMS1 和 SM(d18:1/16:1) 在 RNA 病毒复制中的关键作用,提出了一种广谱抗病毒策略。
{"title":"Host specific sphingomyelin is critical for replication of diverse RNA viruses","authors":"Shuo Han ,&nbsp;Xiaolei Ye ,&nbsp;Jintong Yang ,&nbsp;Xuefang Peng ,&nbsp;Xiaming Jiang ,&nbsp;Jin Li ,&nbsp;Xiaojie Zheng ,&nbsp;Xinchen Zhang ,&nbsp;Yumin Zhang ,&nbsp;Lingyu Zhang ,&nbsp;Wei Wang ,&nbsp;Jiaxin Li ,&nbsp;Wenwen Xin ,&nbsp;Xiaoai Zhang ,&nbsp;Gengfu Xiao ,&nbsp;Ke Peng ,&nbsp;Leike Zhang ,&nbsp;Xuguang Du ,&nbsp;Lu Zhou ,&nbsp;Wei Liu ,&nbsp;Hao Li","doi":"10.1016/j.chembiol.2024.10.009","DOIUrl":"10.1016/j.chembiol.2024.10.009","url":null,"abstract":"<div><div>Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). <em>SGMS1</em> knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in <em>SGMS1</em>-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2052-2068.e11"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1