Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.015
For the celebration of the 30th anniversary of Cell Chemical Biology, in the September special issue, we asked former and current advisory board members and former editors to reflect on the advancements in chemical biology, changes in the field, and their insights into Cell Chemical Biology (originally Chemistry & Biology).
{"title":"Reflections from advisory board members and associate editors","authors":"","doi":"10.1016/j.chembiol.2024.08.015","DOIUrl":"10.1016/j.chembiol.2024.08.015","url":null,"abstract":"<div><p>For the celebration of the 30<sup>th</sup> anniversary of <em>Cell Chemical Biology</em>, in the September special issue, we asked former and current advisory board members and former editors to reflect on the advancements in chemical biology, changes in the field, and their insights into <em>Cell Chemical Biology</em> (originally <em>Chemistry & Biology</em>).</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003647/pdfft?md5=2f38124a3b76bef314cf59b1accd156a&pid=1-s2.0-S2451945624003647-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.008
Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.
{"title":"Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations","authors":"","doi":"10.1016/j.chembiol.2024.08.008","DOIUrl":"10.1016/j.chembiol.2024.08.008","url":null,"abstract":"<div><p>Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400357X/pdfft?md5=d7d9545c4fe5c1529fc55f268dc36ff3&pid=1-s2.0-S245194562400357X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.010
This minireview explores the burgeoning field of targeted protein degradation (TPD) and its promising applications in neuroscience and clinical development. TPD offers innovative strategies for modulating protein levels, presenting a paradigm shift in small-molecule drug discovery and therapeutic interventions. Importantly, small-molecule protein degraders specifically target and remove pathogenic proteins from central nervous system cells without the drug delivery challenges of genomic and antibody-based modalities. Here, we review recent advancements in TPD technologies, highlight proteolysis targeting chimera (PROTAC) protein degrader molecules with proximity-induced degradation event-driven and iterative pharmacology, provide applications in neuroscience research, and discuss the high potential for translation of TPD into clinical settings.
{"title":"New therapies on the horizon: Targeted protein degradation in neuroscience","authors":"","doi":"10.1016/j.chembiol.2024.08.010","DOIUrl":"10.1016/j.chembiol.2024.08.010","url":null,"abstract":"<div><p>This minireview explores the burgeoning field of targeted protein degradation (TPD) and its promising applications in neuroscience and clinical development. TPD offers innovative strategies for modulating protein levels, presenting a paradigm shift in small-molecule drug discovery and therapeutic interventions. Importantly, small-molecule protein degraders specifically target and remove pathogenic proteins from central nervous system cells without the drug delivery challenges of genomic and antibody-based modalities. Here, we review recent advancements in TPD technologies, highlight proteolysis targeting chimera (PROTAC) protein degrader molecules with proximity-induced degradation event-driven and iterative pharmacology, provide applications in neuroscience research, and discuss the high potential for translation of TPD into clinical settings.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003593/pdfft?md5=1f027e9528aca8082bec51fd76809e7f&pid=1-s2.0-S2451945624003593-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.016
{"title":"Celebrating 30 years of chemical biology: A toast to multidisciplinarity","authors":"","doi":"10.1016/j.chembiol.2024.08.016","DOIUrl":"10.1016/j.chembiol.2024.08.016","url":null,"abstract":"","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.07.002
The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.
{"title":"Insights into bacterial metabolism from small RNAs","authors":"","doi":"10.1016/j.chembiol.2024.07.002","DOIUrl":"10.1016/j.chembiol.2024.07.002","url":null,"abstract":"<div><p>The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.06.004
Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic electrophiles as well as genetic mutation of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.
{"title":"The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation","authors":"","doi":"10.1016/j.chembiol.2024.06.004","DOIUrl":"10.1016/j.chembiol.2024.06.004","url":null,"abstract":"<div><p><span>Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome<span>, but the complete array of signals that control this inflammasome<span> have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome<span> activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic </span></span></span></span>electrophiles<span><span> as well as genetic mutation<span> of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that </span></span>protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.</span></p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.012
In an interview with Dr. Mishtu Dey, editor-in-chief of Cell Chemical Biology, the authors of the article entitled “The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation” share their perspectives on the ways chemical biology enriches immunology research, the challenges and opportunities in the field, and their scientific career paths.
{"title":"Meet the authors: Lydia P. Tsamouri and Daniel A. Bachovchin","authors":"","doi":"10.1016/j.chembiol.2024.08.012","DOIUrl":"10.1016/j.chembiol.2024.08.012","url":null,"abstract":"<div><p>In an interview with Dr. Mishtu Dey, editor-in-chief of <em>Cell Chemical Biology</em>, the authors of the article entitled “The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation” share their perspectives on the ways chemical biology enriches immunology research, the challenges and opportunities in the field, and their scientific career paths.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003611/pdfft?md5=399618023e792f8827f726e2f978ec23&pid=1-s2.0-S2451945624003611-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.08.007
The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination—a posttranslational modification—was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.
{"title":"Membrane remodeling via ubiquitin-mediated pathways","authors":"","doi":"10.1016/j.chembiol.2024.08.007","DOIUrl":"10.1016/j.chembiol.2024.08.007","url":null,"abstract":"<div><p>The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination—a posttranslational modification—was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451945624003568/pdfft?md5=ece0af39be652dce7a41d4b687f8ec63&pid=1-s2.0-S2451945624003568-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.07.006
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
由恶性疟原虫引起的疟疾仍然是严重的健康负担。开发抗疟药物的一个主要障碍是寄生虫能够迅速产生抗药性。我们以前曾证明,天然产物柳氮磺吡啶 A(SalA)通过抑制多种脂质代谢丝氨酸水解酶有效杀死寄生虫,这种机制导致了较低的抗药性倾向。鉴于将天然产物用作治疗剂的难度,我们合成了一个小型的脂质混合烷基/芳基膦酸盐库,作为 SalA 的生物异构体。两种构型异构体表现出不同的抗寄生虫效力,从而确定了治疗相关靶点。活性化合物杀死寄生虫的机制不同于 SalA 和泛脂肪酶抑制剂奥利司他,而且与奥利司他具有协同杀虫作用。我们的化合物只能诱导微弱的抗药性,这归因于参与多药耐药性的单个蛋白质发生了突变。这些数据表明,混合烷基/芳基膦酸盐是一种前景广阔、可合成的抗疟药物。
{"title":"Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets","authors":"","doi":"10.1016/j.chembiol.2024.07.006","DOIUrl":"10.1016/j.chembiol.2024.07.006","url":null,"abstract":"<div><p>Malaria, caused by <em>Plasmodium falciparum,</em> remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.chembiol.2024.07.018
Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4+ T cell responses in response to these antigens but failed to develop a CD8+ T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.
免疫识别的外来表位是抗癌免疫的基础。由于肿瘤微环境中存在高浓度的细胞外三磷酸腺苷,我们假设细胞外激酶(ectokinases)可能会出现活性失调,并在细胞表面蛋白上引入异常磷酸化位点。我们设计了细胞外激酶 CK2α 的细胞系留版本,证明它在肿瘤相关条件下对细胞具有活性,并利用化学蛋白组学工作流程分析了它的底物范围。我们随后证明,小鼠对表面被 CK2α 过度磷酸化的合成肿瘤细胞产生了多反应抗血清。有趣的是,这些小鼠对这些抗原产生了 B 细胞和 CD4+ T 细胞反应,但未能产生 CD8+ T 细胞反应。这项研究提供了一种探测细胞外磷酸化蛋白质组的工作流程,并证明细胞外磷酸化蛋白质即使在共生系统中也具有免疫原性。
{"title":"Chemoproteomics reveals immunogenic and tumor-associated cell surface substrates of ectokinase CK2α","authors":"","doi":"10.1016/j.chembiol.2024.07.018","DOIUrl":"10.1016/j.chembiol.2024.07.018","url":null,"abstract":"<div><p>Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4<sup>+</sup> T cell responses in response to these antigens but failed to develop a CD8<sup>+</sup> T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}