首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer 一种广泛而古老的细菌机器组装细胞色素OmcS纳米线,对细胞外电子转移至关重要
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-15 DOI: 10.1016/j.chembiol.2024.12.013
Cong Shen, Aldo I. Salazar-Morales, Wonhyeuk Jung, Joey Erwin, Yangqi Gu, Anthony Coelho, Kallol Gupta, Sibel Ebru Yalcin, Fadel A. Samatey, Nikhil S. Malvankar
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed “nanowires” composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved omcS-companion (osc) cluster that drives the formation of cytochrome OmcS nanowires in Geobacter sulfurreducens. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of oscG accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; ΔoscD accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments
微生物胞外电子转移(EET)驱动着各种全球重要的环境现象,并具有生物技术应用。不同的原核生物已经被提出通过由多血红素细胞色素组成的表面显示的“纳米线”来执行EET。然而,使少数细胞色素聚合成纳米线的机制尚不清楚。在这里,我们确定了一个高度保守的OmcS -伴侣(osc)簇,该簇驱动硫还原地杆菌中细胞色素OmcS纳米线的形成。通过遗传学、生物化学和生物物理方法的结合,我们确定含有脯氨酰异构酶的伴侣蛋白OscH、通道状OscEFG和β-螺旋桨状OscD分别参与了OmcS纳米线的折叠、分泌和形态维持。OscH和OscG可以与omc交互。此外,oscG的过表达通过以atp依赖的方式过量产生纳米线来加速EET。血红素加载分裂OscD;ΔoscD加速细胞生长,将纳米线束成电缆。我们的研究结果建立了一种专门的、模块化的纳米线组装系统的机制和普遍性,这种系统可以跨越不同的物种和环境
{"title":"A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer","authors":"Cong Shen, Aldo I. Salazar-Morales, Wonhyeuk Jung, Joey Erwin, Yangqi Gu, Anthony Coelho, Kallol Gupta, Sibel Ebru Yalcin, Fadel A. Samatey, Nikhil S. Malvankar","doi":"10.1016/j.chembiol.2024.12.013","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.013","url":null,"abstract":"Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed “nanowires” composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved <em><u>o</u>mc<u>S</u></em>-<u>c</u>ompanion (<em>osc</em>) cluster that drives the formation of cytochrome OmcS nanowires in <em>Geobacter sulfurreducens</em>. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of <em>oscG</em> accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; Δ<em>oscD</em> accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"77 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation 靶向选择性PCK1和PGC-1α赖氨酸乙酰化的小分子通过增加乳酸氧化引起抗糖尿病作用
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-15 DOI: 10.1016/j.chembiol.2025.01.005
Beste Mutlu, Kfir Sharabi, Jee Hyung Sohn, Bo Yuan, Pedro Latorre-Muro, Xin Qin, Jin-Seon Yook, Hua Lin, Deyang Yu, João Paulo G. Camporez, Shingo Kajimura, Gerald I. Shulman, Sheng Hui, Theodore M. Kamenecka, Patrick R. Griffin, Pere Puigserver
No Abstract
没有抽象的
{"title":"Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation","authors":"Beste Mutlu, Kfir Sharabi, Jee Hyung Sohn, Bo Yuan, Pedro Latorre-Muro, Xin Qin, Jin-Seon Yook, Hua Lin, Deyang Yu, João Paulo G. Camporez, Shingo Kajimura, Gerald I. Shulman, Sheng Hui, Theodore M. Kamenecka, Patrick R. Griffin, Pere Puigserver","doi":"10.1016/j.chembiol.2025.01.005","DOIUrl":"https://doi.org/10.1016/j.chembiol.2025.01.005","url":null,"abstract":"No Abstract","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders 选择性极光激酶A降解物靶向神经母细胞瘤N-Myc
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-07 DOI: 10.1016/j.chembiol.2024.12.006
Jian Tang, Ramkumar Moorthy, Laura E. Hirsch, Özlem Demir, Zachary D. Baker, Jordan A. Naumann, Katherine F.M. Jones, Michael J. Grillo, Ella S. Haefner, Ke Shi, Michaella J. Levy, Harshita B. Gupta, Hideki Aihara, Reuben S. Harris, Rommie E. Amaro, Nicholas M. Levinson, Daniel A. Harki
The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels. A potent Aurora-A degrader, HLB-0532259 (compound 4), was developed from an Aurora-A-binding ligand that engages the Aurora-A/N-Myc complex. HLB-0532259 promotes the degradation of Aurora-A, which elicits concomitant N-Myc degradation, with nanomolar potency and excellent selectivity. HLB-0532259 surpasses the cellular efficacy of established allosteric Aurora-A inhibitors, exhibits favorable pharmacokinetic properties, and elicits tumor reduction in a murine xenograft NB model. This study broadly delineates a strategy for targeting “undruggable” proteins that are reliant on accessory proteins for cellular stabilization.
由MYCN编码的N-Myc转录因子是神经母细胞瘤(NB)治疗发展的一个机制验证但具有挑战性的靶点。在正常的神经元祖细胞中,N-Myc经历快速降解,而在mycn扩增的NB细胞中,极光激酶A (Aurora-A)结合并稳定N-Myc,导致蛋白水平升高。在这里,我们证明了Aurora-A的靶向蛋白降解降低了N-Myc水平。一种有效的Aurora-A降解剂HLB-0532259(化合物4)是由Aurora-A结合配体与Aurora-A/N-Myc复合物结合而成的。HLB-0532259促进极光a的降解,同时引起N-Myc的降解,具有纳米摩尔的效力和良好的选择性。HLB-0532259优于已建立的变构性Aurora-A抑制剂的细胞功效,表现出良好的药代动力学特性,并在小鼠异种移植物NB模型中诱导肿瘤减少。这项研究广泛地描述了一种靶向“不可药物”蛋白质的策略,这些蛋白质依赖于辅助蛋白质来实现细胞稳定。
{"title":"Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders","authors":"Jian Tang, Ramkumar Moorthy, Laura E. Hirsch, Özlem Demir, Zachary D. Baker, Jordan A. Naumann, Katherine F.M. Jones, Michael J. Grillo, Ella S. Haefner, Ke Shi, Michaella J. Levy, Harshita B. Gupta, Hideki Aihara, Reuben S. Harris, Rommie E. Amaro, Nicholas M. Levinson, Daniel A. Harki","doi":"10.1016/j.chembiol.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.006","url":null,"abstract":"The N-Myc transcription factor, encoded by <em>MYCN</em>, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in <em>MYCN</em>-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels. A potent Aurora-A degrader, HLB-0532259 (compound <strong>4</strong>), was developed from an Aurora-A-binding ligand that engages the Aurora-A/N-Myc complex. HLB-0532259 promotes the degradation of Aurora-A, which elicits concomitant N-Myc degradation, with nanomolar potency and excellent selectivity. HLB-0532259 surpasses the cellular efficacy of established allosteric Aurora-A inhibitors, exhibits favorable pharmacokinetic properties, and elicits tumor reduction in a murine xenograft NB model. This study broadly delineates a strategy for targeting “undruggable” proteins that are reliant on accessory proteins for cellular stabilization.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"118 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The right tool for the job: Chemical biology and microbiome science 这项工作的正确工具:化学生物学和微生物组科学
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1016/j.chembiol.2024.12.004
Christopher Whidbey
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
微生物群存在于生态位中,从海洋和土壤到植物和动物等大型生物的内部。在这些生态位中,微生物在影响更大现象的生化过程中发挥关键作用,如生物地球化学循环或健康。通过了解这些过程是如何在分子水平上发生的,有可能开发新的干预措施来解决全球问题。这些系统的复杂性对更传统的技术提出了挑战。化学生物学可以通过提供广泛适用的工具来帮助克服这些挑战,并且可以获得复杂系统的分子水平信息。本引物旨在作为化学生物学和微生物组科学的简要介绍,强调这两个学科相互补充的一些方式,并鼓励这些领域之间的对话和合作。
{"title":"The right tool for the job: Chemical biology and microbiome science","authors":"Christopher Whidbey","doi":"10.1016/j.chembiol.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.004","url":null,"abstract":"Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"38 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells 外排泵ABCC1/MRP1组成性地限制癌细胞中PROTAC的敏感性
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-03 DOI: 10.1016/j.chembiol.2024.11.009
Gernot Wolf, Conner Craigon, Shao Thing Teoh, Patrick Essletzbichler, Svenja Onstein, Diane Cassidy, Esther C.H. Uijttewaal, Vojtech Dvorak, Yuting Cao, Ariel Bensimon, Ulrich Elling, Alessio Ciulli, Giulio Superti-Furga
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting “undruggable” proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.
蛋白水解靶向嵌合体(Proteolysis targeting chimeras, PROTACs)是一种双功能分子,通过将E3泛素连接酶连接到靶蛋白上,诱导选择性蛋白质降解。这种方法允许靶向“不可药物”的蛋白质,并且一些PROTACs已经达到临床候选阶段。然而,细胞跨膜转运蛋白在PROTAC摄取和外排中的作用仍未得到充分研究。在这里,我们利用以转运蛋白为中心的遗传筛选来鉴定atp结合盒转运蛋白ABCC1/MRP1是一个关键的PROTAC抗性因子。与先前确定的可诱导PROTAC输出者ABCB1/MDR1不同,ABCC1在各种来源的癌症中高度表达,并构成限制PROTAC的生物利用度。此外,在全基因组的PROTAC耐药筛选中,我们发现了参与泛素化、mTOR信号传导和凋亡等过程的候选基因,这些基因都是PROTAC耐药的遗传因素。总之,我们的研究结果表明ABCC1是一个关键的组成型活性外排泵,限制了PROTAC在各种癌细胞中的疗效,为克服耐药提供了见解。
{"title":"The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells","authors":"Gernot Wolf, Conner Craigon, Shao Thing Teoh, Patrick Essletzbichler, Svenja Onstein, Diane Cassidy, Esther C.H. Uijttewaal, Vojtech Dvorak, Yuting Cao, Ariel Bensimon, Ulrich Elling, Alessio Ciulli, Giulio Superti-Furga","doi":"10.1016/j.chembiol.2024.11.009","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.11.009","url":null,"abstract":"Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting “undruggable” proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"82 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator fkbp12募集化学诱导邻近dna编码文库的建立及其在发现自噬增强剂中的应用
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-02 DOI: 10.1016/j.chembiol.2024.12.002
Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier
Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate ATG16L1 T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of ATG16L1 T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.
化学接近诱导剂(Chemical inductors of proximity, cip)是一种将一种蛋白质招募到另一种蛋白质并引入新功能来调节蛋白质状态和活性的分子。虽然cip介导的E3连接酶募集被广泛用于降解物的开发,但其他治疗方式仍未得到充分探索。我们描述了一个非降解的cip - dna编码文库(CIP-DEL),它使用非传统的无环结构招募FKBP12来靶向蛋白质,重点是引入立体化学多样性和刚性连接器来连接组合文库。我们采用这种策略来调节ATG16L1 T300A,它赋予克罗恩病(CD)的遗传易感性,并鉴定了一种化合物,该化合物以不依赖于fkbp12的方式稳定变异蛋白,防止Casp3切割。我们在细胞模型中证明,这种化合物增强了自噬,逆转了ATG16L1 T300A的异种吞噬缺陷以及增加的细胞因子分泌特征。这项研究为CIP设计提供了一个未经探索的化学空间,以开发由人类遗传学指导的治疗方式。
{"title":"Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator","authors":"Zher Yin Tan, Joel K.A. Adade, Xiebin Gu, Cody J.S. Hecht, Michael Salcius, Bingqi Tong, Shuang Liu, Seungmin Hwang, Frédéric J. Zécri, Daniel B. Graham, Stuart L. Schreiber, Ramnik J. Xavier","doi":"10.1016/j.chembiol.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.002","url":null,"abstract":"Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate <em>ATG16L1</em> T300A, which confers genetic susceptibility to Crohn’s disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of <em>ATG16L1</em> T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches 钙调磷酸酶:通过生物化学、生物化学和遗传方法揭示睡眠的重要调节因子
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-30 DOI: 10.1016/j.chembiol.2024.12.003
Jianjun Yu, Huijie Liu, Rui Gao, Tao V. Wang, Chenggang Li, Yuxiang Liu, Lu Yang, Ying Xu, Yunfeng Cui, Chenxi Jia, Juan Huang, Peng R. Chen, Yi Rao
Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both in vitro and in vivo, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.
对睡眠机制的研究传统上依赖于电生理学和遗传学。由于睡眠只能通过行为观察和物理手段对整个动物进行测量,因此没有通过生化和化学生物学方法开展睡眠研究。我们使用对睡眠重要的激酶磷酸化位点作为生化和化学生物学方法的靶点。在盐诱导激酶3 (SIK3)残基T469上携带苏氨酸到丙氨酸取代的小鼠睡眠增加。我们的生化纯化和光交联发现,SIK3在体外和体内的T469和S551位点都发生了钙调磷酸酶(calcalineurin, CaN)去磷酸化,但T221位点没有。敲除CaN调节亚基使每日睡眠减少5小时以上,超过所有已知的小鼠突变体。我们的工作揭示了CaN在睡眠中的关键生理作用,并开创了生化纯化和化学生物学作为研究睡眠的有效方法。
{"title":"Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches","authors":"Jianjun Yu, Huijie Liu, Rui Gao, Tao V. Wang, Chenggang Li, Yuxiang Liu, Lu Yang, Ying Xu, Yunfeng Cui, Chenxi Jia, Juan Huang, Peng R. Chen, Yi Rao","doi":"10.1016/j.chembiol.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.003","url":null,"abstract":"Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both <em>in vitro</em> and <em>in vivo</em>, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"7 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen 通过多路筛选发现铜绿假单胞菌外膜蛋白OprH-LPS相互作用的特异性小分子
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-27 DOI: 10.1016/j.chembiol.2024.12.001
Bradley E. Poulsen, Thulasi Warrier, Sulyman Barkho, Josephine Bagnall, Keith P. Romano, Tiantian White, Xiao Yu, Tomohiko Kawate, Phuong H. Nguyen, Kyra Raines, Kristina Ferrara, A. Lorelei Golas, Michael FitzGerald, Andras Boeszoermenyi, Virendar Kaushik, Michael Serrano-Wu, Noam Shoresh, Deborah T. Hung
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.
抗菌素耐药性的激增威胁到目前抗生素的有效性,特别是对铜绿假单胞菌(一种高度耐药的革兰氏阴性病原体)的有效性。铜绿假单胞菌(P. aeruginosa)的非对称外膜(OM)及其外排泵阵列为外生菌的积累提供了屏障,从而使抗生素的发现具有挑战性。我们采用了PROSPECT,一种基于靶标的全细胞筛选策略,来发现小分子探针,这些探针可以杀死在OM中缺乏必需蛋白质的铜绿假单胞菌突变体。我们鉴定出BRD1401,这是一种小分子,对缺乏必需脂蛋白OprL的铜绿假单胞菌突变体具有特异性活性。遗传和化学生物学研究发现,BRD1401通过靶向OM β-桶状蛋白OprH,破坏其与LPS的相互作用,增加膜流动性。对BRD1401的研究也揭示了OprL和OprH之间的相互作用,直接将OM与肽聚糖连接起来。因此,一个全细胞,多路筛选可以识别物种特异性的化学探针来揭示病原体生物学。
{"title":"Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen","authors":"Bradley E. Poulsen, Thulasi Warrier, Sulyman Barkho, Josephine Bagnall, Keith P. Romano, Tiantian White, Xiao Yu, Tomohiko Kawate, Phuong H. Nguyen, Kyra Raines, Kristina Ferrara, A. Lorelei Golas, Michael FitzGerald, Andras Boeszoermenyi, Virendar Kaushik, Michael Serrano-Wu, Noam Shoresh, Deborah T. Hung","doi":"10.1016/j.chembiol.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.001","url":null,"abstract":"The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against <em>Pseudomonas aeruginosa</em>, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of <em>P. aeruginosa</em> combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill <em>P. aeruginosa</em> mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a <em>P. aeruginosa</em> mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"56 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor 利用工程细菌外膜囊泡与转铁蛋白受体介导的溶酶体靶向嵌合体融合抗肿瘤免疫治疗
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-24 DOI: 10.1016/j.chembiol.2024.12.008
Ling-Yan Su, Yang Tian, Qiang Zheng, Yu Cao, Mengyu Yao, Shuangping Wang, Wen Xu, Chuyu Xi, Andrea Clocchiatti, Guangjun Nie, Hejiang Zhou
(Cell Chemical Biology 31, 1219–1230.e1–e5; June 20, 2024)
(细胞化学生物学31,1219-1230.e1-e5;2024年6月20日)
{"title":"Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor","authors":"Ling-Yan Su, Yang Tian, Qiang Zheng, Yu Cao, Mengyu Yao, Shuangping Wang, Wen Xu, Chuyu Xi, Andrea Clocchiatti, Guangjun Nie, Hejiang Zhou","doi":"10.1016/j.chembiol.2024.12.008","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.12.008","url":null,"abstract":"(Cell Chemical Biology <em>31</em>, 1219–1230.e1–e5; June 20, 2024)","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"25 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages make “sense” of obesity-driven acidity in the TME 巨噬细胞“理解”肥胖导致的TME酸性
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.008
Spenser H. Stone, Jeffrey C. Rathmell, Jackie E. Bader
Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of Science Immunology, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.1
肥胖是许多癌症的主要风险因素和不良预后指标。在最近一期的《科学免疫学》(Science Immunology)杂志上,Bagchi 等人发现,与肿瘤相关的巨噬细胞会上调 GPR65,以应对肥胖导致的肿瘤内酸性,从而降低效应器功能,促进肿瘤生长。
{"title":"Macrophages make “sense” of obesity-driven acidity in the TME","authors":"Spenser H. Stone, Jeffrey C. Rathmell, Jackie E. Bader","doi":"10.1016/j.chembiol.2024.11.008","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.11.008","url":null,"abstract":"Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of <em>Science Immunology</em>, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.<span><span><sup>1</sup></span></span>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"87 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1