首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
New opportunities in mechanistic and functional microbiome studies 机制和功能微生物组研究的新机遇
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.012
Judith Behnsen, Kerwyn Casey Huang, Matthew T. Sorbara, Meng C. Wang, Jun Yu, Melody Y. Zeng
The field of microbiome research has experienced remarkable growth, leading to unprecedented discoveries of the molecular mechanisms that dictate host-microbiota interactions and their crucial roles in human health. In this “chemical biology of the microbiome” focus issue from Cell Chemical Biology, this Voices piece asks researchers from a range of backgrounds to share their insights on the most exciting recent developments in the microbiome field.
微生物组研究领域取得了令人瞩目的发展,人们前所未有地发现了决定宿主与微生物组相互作用的分子机制及其在人类健康中的关键作用。在《细胞化学生物学》的这期 "微生物组的化学生物学 "特刊中,本期《声音》杂志邀请不同背景的研究人员分享他们对微生物组领域最令人兴奋的最新进展的见解。
{"title":"New opportunities in mechanistic and functional microbiome studies","authors":"Judith Behnsen,&nbsp;Kerwyn Casey Huang,&nbsp;Matthew T. Sorbara,&nbsp;Meng C. Wang,&nbsp;Jun Yu,&nbsp;Melody Y. Zeng","doi":"10.1016/j.chembiol.2024.12.012","DOIUrl":"10.1016/j.chembiol.2024.12.012","url":null,"abstract":"<div><div>The field of microbiome research has experienced remarkable growth, leading to unprecedented discoveries of the molecular mechanisms that dictate host-microbiota interactions and their crucial roles in human health. In this “chemical biology of the microbiome” focus issue from <em>Cell Chemical Biology</em>, this Voices piece asks researchers from a range of backgrounds to share their insights on the most exciting recent developments in the microbiome field.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 5-8"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the authors: Katerina Jones, Camila Bernardo de Brito, and Mariana Xavier Byndloss 认识一下作者:卡特琳娜·琼斯、卡米拉·贝尔纳多·德·布里托和玛丽安娜·泽维尔·拜德罗斯
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.009
Katerina Jones, Camila Bernardo de Brito, Mariana Xavier Byndloss
In an interview with Samantha Nelson, a scientific editor of Cell Chemical Biology, the authors of the review entitled “Metabolic tug-o-war: Microbial metabolism shapes colonization resistance against enteric pathogens” share their perspectives on the field and their lives as scientists.
在接受《细胞化学生物学》(Cell Chemical Biology)科学编辑萨曼莎-尼尔森(Samantha Nelson)的采访时,题为《新陈代谢拉锯战:微生物新陈代谢塑造了对肠道病原体的定植抗性》的综述作者分享了他们对这一领域的看法以及作为科学家的生活:微生物新陈代谢决定了对肠道病原体的定植抵抗力 "的评论文章的作者分享了他们对这一领域的看法以及他们作为科学家的生活。
{"title":"Meet the authors: Katerina Jones, Camila Bernardo de Brito, and Mariana Xavier Byndloss","authors":"Katerina Jones,&nbsp;Camila Bernardo de Brito,&nbsp;Mariana Xavier Byndloss","doi":"10.1016/j.chembiol.2024.12.009","DOIUrl":"10.1016/j.chembiol.2024.12.009","url":null,"abstract":"<div><div>In an interview with Samantha Nelson, a scientific editor of <em>Cell Chemical Biology</em>, the authors of the review entitled “<span><span>Metabolic tug-o-war: Microbial metabolism shapes colonization resistance against enteric pathogens</span><svg><path></path></svg></span>” share their perspectives on the field and their lives as scientists.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 3-4"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The right tool for the job: Chemical biology and microbiome science 这项工作的正确工具:化学生物学和微生物组科学
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.004
Christopher Whidbey
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
微生物群存在于生态位中,从海洋和土壤到植物和动物等大型生物的内部。在这些生态位中,微生物在影响更大现象的生化过程中发挥关键作用,如生物地球化学循环或健康。通过了解这些过程是如何在分子水平上发生的,有可能开发新的干预措施来解决全球问题。这些系统的复杂性对更传统的技术提出了挑战。化学生物学可以通过提供广泛适用的工具来帮助克服这些挑战,并且可以获得复杂系统的分子水平信息。本引物旨在作为化学生物学和微生物组科学的简要介绍,强调这两个学科相互补充的一些方式,并鼓励这些领域之间的对话和合作。
{"title":"The right tool for the job: Chemical biology and microbiome science","authors":"Christopher Whidbey","doi":"10.1016/j.chembiol.2024.12.004","DOIUrl":"10.1016/j.chembiol.2024.12.004","url":null,"abstract":"<div><div>Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 83-97"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway 人类 AKR1C3 与 GPR84 的激动剂结合,并参与扩展的多胺途径。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.07.011
Natavan Dudkina , Hyun Bong Park , Deguang Song , Abhishek Jain , Sajid A. Khan , Richard A. Flavell , Caroline H. Johnson , Noah W. Palm , Jason M. Crawford
Altered human aldo-keto reductase family 1 member C3 (AKR1C3) expression has been associated with poor prognosis in diverse cancers, ferroptosis resistance, and metabolic diseases. Despite its clinical significance, the endogenous biochemical roles of AKR1C3 remain incompletely defined. Using untargeted metabolomics, we identified a major transformation mediated by AKR1C3, in which a spermine oxidation product “sperminal” is reduced to “sperminol.” Sperminal causes DNA damage and activates the DNA double-strand break response, whereas sperminol induces autophagy in vitro. AKR1C3 also pulls down acyl-pyrones and pyrone-211 inhibits AKR1C3 activity. Through G protein-coupled receptor ligand screening, we determined that pyrone-211 is also a potent agonist of the semi-orphan receptor GPR84. Strikingly, mammalian fatty acid synthase produces acyl-pyrones in vitro, and this production is modulated by NADPH. Taken together, our studies support a regulatory role of AKR1C3 in an expanded polyamine pathway and a model linking fatty acid synthesis and NADPH levels to GPR84 signaling.
人类醛酮还原酶家族 1 成员 C3(AKR1C3)表达的改变与多种癌症的不良预后、铁中毒抵抗和代谢性疾病有关。尽管AKR1C3具有重要的临床意义,但其内源生化作用仍未完全明确。利用非靶向代谢组学,我们发现了 AKR1C3 介导的一种主要转化,其中精胺氧化产物 "精胺 "被还原为 "精胺醇"。精胺会导致DNA损伤并激活DNA双链断裂反应,而精胺醇则会在体外诱导自噬。AKR1C3 还能拉低酰基吡喃酮,而吡喃酮-211 能抑制 AKR1C3 的活性。通过 G 蛋白偶联受体配体筛选,我们确定 pyrone-211 也是半orphan 受体 GPR84 的强效激动剂。令人吃惊的是,哺乳动物脂肪酸合成酶在体外产生酰基吡咯酮,而这种产生受 NADPH 的调节。综上所述,我们的研究支持 AKR1C3 在扩展的多胺通路中的调控作用,以及将脂肪酸合成和 NADPH 水平与 GPR84 信号联系起来的模型。
{"title":"Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway","authors":"Natavan Dudkina ,&nbsp;Hyun Bong Park ,&nbsp;Deguang Song ,&nbsp;Abhishek Jain ,&nbsp;Sajid A. Khan ,&nbsp;Richard A. Flavell ,&nbsp;Caroline H. Johnson ,&nbsp;Noah W. Palm ,&nbsp;Jason M. Crawford","doi":"10.1016/j.chembiol.2024.07.011","DOIUrl":"10.1016/j.chembiol.2024.07.011","url":null,"abstract":"<div><div>Altered human aldo-keto reductase family 1 member C3 (AKR1C3) expression has been associated with poor prognosis in diverse cancers, ferroptosis resistance, and metabolic diseases. Despite its clinical significance, the endogenous biochemical roles of AKR1C3 remain incompletely defined. Using untargeted metabolomics, we identified a major transformation mediated by AKR1C3, in which a spermine oxidation product “sperminal” is reduced to “sperminol.” Sperminal causes DNA damage and activates the DNA double-strand break response, whereas sperminol induces autophagy <em>in vitro</em>. AKR1C3 also pulls down acyl-pyrones and pyrone-211 inhibits AKR1C3 activity. Through G protein-coupled receptor ligand screening, we determined that pyrone-211 is also a potent agonist of the semi-orphan receptor GPR84. Strikingly, mammalian fatty acid synthase produces acyl-pyrones <em>in vitro</em>, and this production is modulated by NADPH. Taken together, our studies support a regulatory role of AKR1C3 in an expanded polyamine pathway and a model linking fatty acid synthesis and NADPH levels to GPR84 signaling.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 126-144.e18"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging biochemical, microbial and immunological evidence in the search for why HLA-B∗27 confers risk for spondyloarthritis 寻找 HLA-B∗27 为何会导致脊柱关节炎风险的生化、微生物和免疫学证据。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.07.012
Eric M. Brown , Phuong N.U. Nguyen , Ramnik J. Xavier
The strong association of the human leukocyte antigen B27 alleles (HLA-B27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B27 could trigger spondyloarthritis, with a focus on whether HLA-B27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
人类白细胞抗原B∗27等位基因(HLA-B∗27)与脊柱关节炎及相关风湿病的密切关系一直令研究人员着迷,但其致病的确切机制却仍然难以捉摸。在这里,我们回顾了微生物组、免疫系统和神秘的 HLA-B∗27 之间的相互作用是如何诱发脊柱关节炎的,重点是 HLA-B∗27 是否会产生致关节炎肽。我们提出了 HLA-B∗27 蛋白结构的独特生化特性(尤其是其肽结合槽)可能决定其诱导病理 T 细胞反应倾向的机制。我们进一步提供了关于 TRBV9+ CD8+ T 细胞如何参与疾病过程以及 T 细胞的免疫代谢如何调节脊柱关节炎组织特异性炎症反应的新见解。最后,鉴于计算生物学、化学生物学、结构生物学和小分子疗法的最新进展,我们提出了可检验的模型,并建议在未来研究中解决这一问题的方法。
{"title":"Emerging biochemical, microbial and immunological evidence in the search for why HLA-B∗27 confers risk for spondyloarthritis","authors":"Eric M. Brown ,&nbsp;Phuong N.U. Nguyen ,&nbsp;Ramnik J. Xavier","doi":"10.1016/j.chembiol.2024.07.012","DOIUrl":"10.1016/j.chembiol.2024.07.012","url":null,"abstract":"<div><div>The strong association of the human leukocyte antigen B<sup>∗</sup>27 alleles (<em>HLA-B<sup>∗</sup>27</em>) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B<sup>∗</sup>27 could trigger spondyloarthritis, with a focus on whether HLA-B<sup>∗</sup>27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B<sup>∗</sup>27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9<sup>+</sup> CD8<sup>+</sup> T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 12-24"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradome analysis to identify direct protein substrates of small-molecule degraders 通过降解组分析确定小分子降解器的直接蛋白质底物
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.10.007
Marco Jochem , Anna Schrempf , Lina-Marie Wagner , Dmitri Segal , Jose Cisneros , Amanda Ng , Georg E. Winter , Jeroen Krijgsveld
Targeted protein degradation (TPD) has emerged as a powerful strategy to selectively eliminate cellular proteins using small-molecule degraders, offering therapeutic promise for targeting proteins that are otherwise undruggable. However, a remaining challenge is to unambiguously identify primary TPD targets that are distinct from secondary downstream effects in the proteome. Here we introduce an approach for selective analysis of protein degradation by mass spectrometry (DegMS) at proteomic scale, which derives its specificity from the exclusion of confounding effects of altered transcription and translation induced by target depletion. We show that the approach efficiently operates at the timescale of TPD (hours) and we demonstrate its utility by analyzing the cyclin K degraders dCeMM2 and dCeMM4, which induce widespread transcriptional downregulation, and the GSPT1 degrader CC-885, an inhibitor of protein translation. Additionally, we apply DegMS to characterize a previously uncharacterized degrader, and identify the zinc-finger protein FIZ1 as a degraded target.
靶向蛋白质降解(TPD)已成为一种利用小分子降解剂选择性消除细胞蛋白质的强大策略,为靶向那些无法治疗的蛋白质提供了治疗前景。然而,如何明确识别蛋白质组中有别于次级下游效应的主要 TPD 靶点仍是一个挑战。在这里,我们介绍了一种在蛋白质组范围内通过质谱(DegMS)对蛋白质降解进行选择性分析的方法,其特异性来自于排除了靶标耗竭引起的转录和翻译改变的干扰效应。我们通过分析诱导广泛转录下调的细胞周期蛋白 K 降解剂 dCeMM2 和 dCeMM4 以及蛋白翻译抑制剂 GSPT1 降解剂 CC-885 证明了这种方法的实用性。此外,我们还应用 DegMS 鉴定了一种以前未鉴定过的降解器,并将锌指蛋白 FIZ1 鉴定为降解靶标。
{"title":"Degradome analysis to identify direct protein substrates of small-molecule degraders","authors":"Marco Jochem ,&nbsp;Anna Schrempf ,&nbsp;Lina-Marie Wagner ,&nbsp;Dmitri Segal ,&nbsp;Jose Cisneros ,&nbsp;Amanda Ng ,&nbsp;Georg E. Winter ,&nbsp;Jeroen Krijgsveld","doi":"10.1016/j.chembiol.2024.10.007","DOIUrl":"10.1016/j.chembiol.2024.10.007","url":null,"abstract":"<div><div>Targeted protein degradation (TPD) has emerged as a powerful strategy to selectively eliminate cellular proteins using small-molecule degraders, offering therapeutic promise for targeting proteins that are otherwise undruggable. However, a remaining challenge is to unambiguously identify primary TPD targets that are distinct from secondary downstream effects in the proteome. Here we introduce an approach for selective analysis of protein degradation by mass spectrometry (DegMS) at proteomic scale, which derives its specificity from the exclusion of confounding effects of altered transcription and translation induced by target depletion. We show that the approach efficiently operates at the timescale of TPD (hours) and we demonstrate its utility by analyzing the cyclin K degraders dCeMM2 and dCeMM4, which induce widespread transcriptional downregulation, and the GSPT1 degrader CC-885, an inhibitor of protein translation. Additionally, we apply DegMS to characterize a previously uncharacterized degrader, and identify the zinc-finger protein FIZ1 as a degraded target.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 192-200.e6"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden 基于酵母的口服疗法可提供免疫检查点抑制剂,减轻肠道肿瘤负担
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.10.013
Olivia N. Rebeck , Miranda J. Wallace , Jerome Prusa , Jie Ning , Esse M. Evbuomwan , Sunaina Rengarajan , LeMoyne Habimana-Griffin , Suryang Kwak , David Zahrah , Jason Tung , James Liao , Bejan Mahmud , Skye R.S. Fishbein , Erick S. Ramirez Tovar , Rehan Mehta , Bin Wang , Mark G. Gorelik , Beth A. Helmink , Gautam Dantas
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete “miniature” antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
工程益生菌是向肠道原位递送治疗药物的新兴平台。在此,我们开发了一种基于酵母的口服给药治疗递送系统,可直接向胃肠道肿瘤递送下一代免疫检查点抑制剂(ICI)蛋白。布拉氏酵母(Sb)是一种具有高度遗传可操作性和先天抗癌活性的益生酵母,我们将其改造成能分泌靶向程序性死亡配体1(Sb_haPD-1)的 "微型 "抗体变体。在 ICI 难治性结直肠癌(CRC)小鼠模型中进行测试时,Sb_haPD-1 显著降低了肠道肿瘤负担,并使免疫细胞谱和微生物组组成发生了显著变化。这种口服治疗平台是模块化的,可高度定制,开辟了靶向给药的新途径,可用于治疗各种胃肠道恶性肿瘤。
{"title":"A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden","authors":"Olivia N. Rebeck ,&nbsp;Miranda J. Wallace ,&nbsp;Jerome Prusa ,&nbsp;Jie Ning ,&nbsp;Esse M. Evbuomwan ,&nbsp;Sunaina Rengarajan ,&nbsp;LeMoyne Habimana-Griffin ,&nbsp;Suryang Kwak ,&nbsp;David Zahrah ,&nbsp;Jason Tung ,&nbsp;James Liao ,&nbsp;Bejan Mahmud ,&nbsp;Skye R.S. Fishbein ,&nbsp;Erick S. Ramirez Tovar ,&nbsp;Rehan Mehta ,&nbsp;Bin Wang ,&nbsp;Mark G. Gorelik ,&nbsp;Beth A. Helmink ,&nbsp;Gautam Dantas","doi":"10.1016/j.chembiol.2024.10.013","DOIUrl":"10.1016/j.chembiol.2024.10.013","url":null,"abstract":"<div><div>Engineered probiotics are an emerging platform for <em>in situ</em> delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered <em>Saccharomyces cerevisiae</em> var. <em>boulardii</em> (<em>Sb</em>), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete “miniature” antibody variants that target programmed death ligand 1 (<em>Sb</em>_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, <em>Sb</em>_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 98-110.e7"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens 代谢拔河:微生物代谢形成对肠道病原体的定植抗性
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.12.005
Katerina Jones , Camila Bernardo de Brito , Mariana Xavier Byndloss
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.
肠道微生物群的一个公认益处是,它能提供对肠道病原体的定植抵抗力。肠道微生物群及其产物可通过微生物与病原体之间的相互作用直接保护宿主免受入侵微生物的侵害,也可通过宿主与微生物群之间的相互作用间接保护宿主免受入侵微生物的侵害,从而调节免疫系统的功能。相比之下,肠道病原体已经进化出利用微生物群衍生代谢物的机制,以克服定植阻力并增加其致病潜力。本综述将重点介绍最近对代谢介导的定植阻力机制和肠道病原体用来克服这些阻力的毒力策略的研究,以及致病菌诱导炎症如何改变肠道景观并启用替代代谢途径。我们将重点关注肠道病原体如何抵消微生物群衍生代谢物的保护作用,以说明人们对代谢因素如何作为关键的毒力决定因素并克服定植阻力的认识不断提高。
{"title":"Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens","authors":"Katerina Jones ,&nbsp;Camila Bernardo de Brito ,&nbsp;Mariana Xavier Byndloss","doi":"10.1016/j.chembiol.2024.12.005","DOIUrl":"10.1016/j.chembiol.2024.12.005","url":null,"abstract":"<div><div>A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 46-60"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration 微生物衍生代谢物对神经退行性病变产生影响的机制
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.08.014
Lara Kern , Ignacio Mastandrea , Anna Melekhova , Eran Elinav
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the ‘sterile’ host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
微生物组研究的最新进展表明,肠道微生物组可能会远程调节中枢和外周神经元过程,包括从早期大脑发育到与年龄相关的变化。微生物组配置失调与神经系统疾病(如神经变性)的关系日益密切,但对这些关联的因果关系的了解仍然有限。解释微生物群如何诱发神经元远端效应的大多数机制都涉及微生物调节的代谢物流入 "无菌 "宿主体内。一些代谢物能够穿过血脑屏障(BBB)到达中枢神经系统,对各种细胞和过程产生影响。另外,代谢物也可能直接向周围神经发出信号,充当神经递质或发挥调节功能,或影响免疫反应,进而调节神经元功能和相关疾病倾向。在此,我们将回顾目前的知识,重点介绍微生物组调控的代谢物对神经元疾病的影响,同时讨论影响这一快速发展的研究领域的未知因素、争议和前景。
{"title":"Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration","authors":"Lara Kern ,&nbsp;Ignacio Mastandrea ,&nbsp;Anna Melekhova ,&nbsp;Eran Elinav","doi":"10.1016/j.chembiol.2024.08.014","DOIUrl":"10.1016/j.chembiol.2024.08.014","url":null,"abstract":"<div><div>Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the ‘sterile’ host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 25-45"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases 肠道微生物相关胆盐水解酶底物特异性的化学蛋白质组学分析
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.chembiol.2024.05.009
Lin Han , Augustus Pendleton , Adarsh Singh , Raymond Xu , Samantha A. Scott , Jaymee A. Palma , Peter Diebold , Kien P. Malarney , Ilana L. Brito , Pamela V. Chang
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host’s overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
肠道微生物群拥有许多生化酶,它们能生物合成影响人类健康的代谢物。胆汁酸由多种代谢物组成,在新陈代谢和免疫中发挥着重要作用。胆盐水解酶(BSH)是肠道微生物相关酶,负责胆汁酸代谢过程中的门户反应,控制宿主的总体胆汁酸池。尽管这些酶起着关键作用,但由于肠道微生物群的复杂性(其元蛋白组包括种类繁多的蛋白质),对它们的活性和底物偏好进行剖析仍然具有挑战性。利用基于活性探针的系统生物化学方法,我们发现了表现出不同底物偏好的肠道微生物相关胆汁酸,揭示了不同微生物对宿主胆汁酸池多样性的贡献。我们设想这种化学蛋白组学方法将揭示由 BSHs 控制的次级胆汁酸代谢如何导致各种炎症性疾病的病因。
{"title":"Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases","authors":"Lin Han ,&nbsp;Augustus Pendleton ,&nbsp;Adarsh Singh ,&nbsp;Raymond Xu ,&nbsp;Samantha A. Scott ,&nbsp;Jaymee A. Palma ,&nbsp;Peter Diebold ,&nbsp;Kien P. Malarney ,&nbsp;Ilana L. Brito ,&nbsp;Pamela V. Chang","doi":"10.1016/j.chembiol.2024.05.009","DOIUrl":"10.1016/j.chembiol.2024.05.009","url":null,"abstract":"<div><div><span><span>The gut microbiome<span> possesses numerous biochemical enzymes<span><span> that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in </span>bile acid metabolism<span><span> is bile salt </span>hydrolase (BSH), which controls the host’s overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the </span></span></span></span>gut microbiota<span>, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various </span></span>inflammatory diseases.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 1","pages":"Pages 145-156.e9"},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1