首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Dynamic PRDX S-acylation modulates ROS stress and signaling
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-20 DOI: 10.1016/j.chembiol.2025.01.009
Tian Qiu , Saara-Anne Azizi , Shubhashree Pani , Bryan C. Dickinson
Peroxiredoxins (PRDXs) are a highly conserved family of peroxidases that serve as the primary scavengers of peroxides. Post-translational modifications play crucial roles modulating PRDX activities, tuning the balance between reactive oxygen species (ROS) signaling and stress. We previously reported that S-acylation occurs at the “peroxidatic” cysteine (Cp) site of PRDX5 and that it inhibits PRDX5 activity. Here, we show that the PRDX family more broadly is subject to S-acylation at the Cp site of all PRDXs and that PRDX S-acylation dynamically responds to cellular ROS levels. Using activity-based fluorescent imaging with DPP-Red, a red-shifted fluorescent indicator for acyl-protein thioesterase (APT) activity, we also discover that the instigation of ROS-stress via exogenous H2O2 activates both the cytosolic and mitochondrial APTs, whereas epidermal growth factor (EGF)-stimulated endogenous H2O2 deactivates the cytosolic APTs. These results indicate that APTs help tune H2O2 signal transduction and ROS protection through PRDX S-deacylation.
{"title":"Dynamic PRDX S-acylation modulates ROS stress and signaling","authors":"Tian Qiu ,&nbsp;Saara-Anne Azizi ,&nbsp;Shubhashree Pani ,&nbsp;Bryan C. Dickinson","doi":"10.1016/j.chembiol.2025.01.009","DOIUrl":"10.1016/j.chembiol.2025.01.009","url":null,"abstract":"<div><div>Peroxiredoxins (PRDXs) are a highly conserved family of peroxidases that serve as the primary scavengers of peroxides. Post-translational modifications play crucial roles modulating PRDX activities, tuning the balance between reactive oxygen species (ROS) signaling and stress. We previously reported that <em>S</em>-acylation occurs at the “peroxidatic” cysteine (Cp) site of PRDX5 and that it inhibits PRDX5 activity. Here, we show that the PRDX family more broadly is subject to <em>S</em>-acylation at the Cp site of all PRDXs and that PRDX <em>S</em>-acylation dynamically responds to cellular ROS levels. Using activity-based fluorescent imaging with DPP-Red, a red-shifted fluorescent indicator for acyl-protein thioesterase (APT) activity, we also discover that the instigation of ROS-stress via exogenous H<sub>2</sub>O<sub>2</sub> activates both the cytosolic and mitochondrial APTs, whereas epidermal growth factor (EGF)-stimulated endogenous H<sub>2</sub>O<sub>2</sub> deactivates the cytosolic APTs. These results indicate that APTs help tune H<sub>2</sub>O<sub>2</sub> signal transduction and ROS protection through PRDX <em>S</em>-deacylation.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 3","pages":"Pages 511-519.e5"},"PeriodicalIF":6.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms and functions of lysosomal lipid homeostasis
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-20 DOI: 10.1016/j.chembiol.2025.02.003
Michael Ebner , Florian Fröhlich , Volker Haucke
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
溶酶体是哺乳动物细胞的核心降解细胞器,已成为细胞代谢物通量的主要交汇点。来自食物和细胞内的大分子被输送到酸性溶酶体腔,在那里被酸性水解酶降解。来自脂蛋白、自吞噬货物或自吞噬体膜本身的脂质构成了溶酶体的主要底物。溶酶体脂质处理失调、脂质代谢产物输出缺陷以及溶酶体膜通透性是神经变性、代谢综合征和溶酶体贮积症等各种疾病的根源。哺乳动物细胞具有复杂的平衡控制机制,可保护溶酶体限制膜免受过度损伤,防止腔内水解酶溢出到细胞质中,并在溶酶体膜与内体和自噬体等异型细胞器不断融合的情况下保持溶酶体膜的组成。在这篇综述中,我们将讨论溶酶体脂质平衡的分子机制,以及溶酶体在健康和疾病中的功能。
{"title":"Mechanisms and functions of lysosomal lipid homeostasis","authors":"Michael Ebner ,&nbsp;Florian Fröhlich ,&nbsp;Volker Haucke","doi":"10.1016/j.chembiol.2025.02.003","DOIUrl":"10.1016/j.chembiol.2025.02.003","url":null,"abstract":"<div><div>Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 3","pages":"Pages 392-407"},"PeriodicalIF":6.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking 脂质供应通过调节多不饱和脂肪酸的运输影响癌细胞对铁蛋白沉积的敏感性
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-20 DOI: 10.1016/j.chembiol.2024.09.008
Kelly H. Sokol , Cameron J. Lee , Thomas J. Rogers , Althea Waldhart , Abigail E. Ellis , Sahithi Madireddy , Samuel R. Daniels , Rachel (Rae) J. House , Xinyu Ye , Mary Olesnavich , Amy Johnson , Benjamin R. Furness , Ryan D. Sheldon , Evan C. Lien
Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.
铁中毒是由脂质过氧化引起的一种细胞死亡形式,正逐渐成为癌症治疗的靶点,这突出表明有必要确定影响铁中毒易感性的因素。脂质过氧化主要发生在含有多不饱和脂肪酸(PUFA)的磷脂上。在这里,我们发现即使细胞外脂质限制降低了细胞中的多不饱和脂肪酸水平,但缺脂的癌细胞却对铁中毒更为敏感。利用基于质谱的脂质组学和稳定同位素脂肪酸标记,我们发现脂质限制诱导脂肪酸贩运途径,其中 PUFA 从甘油三酯中释放出来,合成高度不饱和的 PUFA,如花生四烯酸和肾上腺酸。然后,这些 PUFAs 会在磷脂(包括醚磷脂)中积聚,从而促进铁变态反应的敏感性。因此,癌细胞内的 PUFA 含量并不一定与铁中毒敏感性相关。相反,癌细胞如何通过将 PUFA 转化为适当的磷脂池来对细胞外脂质水平做出反应,才会导致其对铁中毒的敏感性。
{"title":"Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking","authors":"Kelly H. Sokol ,&nbsp;Cameron J. Lee ,&nbsp;Thomas J. Rogers ,&nbsp;Althea Waldhart ,&nbsp;Abigail E. Ellis ,&nbsp;Sahithi Madireddy ,&nbsp;Samuel R. Daniels ,&nbsp;Rachel (Rae) J. House ,&nbsp;Xinyu Ye ,&nbsp;Mary Olesnavich ,&nbsp;Amy Johnson ,&nbsp;Benjamin R. Furness ,&nbsp;Ryan D. Sheldon ,&nbsp;Evan C. Lien","doi":"10.1016/j.chembiol.2024.09.008","DOIUrl":"10.1016/j.chembiol.2024.09.008","url":null,"abstract":"<div><div>Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 3","pages":"Pages 408-422.e6"},"PeriodicalIF":6.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting biomolecular condensates: The rise of engineered chaperones
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-20 DOI: 10.1016/j.chembiol.2025.02.005
Yevheniia Bushman , Duhita A. Mirikar , Andrew.W. Truman
Molecular chaperones like Hsp70s are key players in protein quality control (PQC), capable of eliminating toxic intracellular condensates. In this issue of Cell Chemical Biology, Zhang et al.1 present a computational approach to design novel J-domain protein (JDP) constructs that bind to Hsp70 and enhance its chaperone activity.
{"title":"Targeting biomolecular condensates: The rise of engineered chaperones","authors":"Yevheniia Bushman ,&nbsp;Duhita A. Mirikar ,&nbsp;Andrew.W. Truman","doi":"10.1016/j.chembiol.2025.02.005","DOIUrl":"10.1016/j.chembiol.2025.02.005","url":null,"abstract":"<div><div>Molecular chaperones like Hsp70s are key players in protein quality control (PQC), capable of eliminating toxic intracellular condensates. In this issue of <em>Cell Chemical Biology</em>, Zhang et al.<span><span><sup>1</sup></span></span> present a computational approach to design novel J-domain protein (JDP) constructs that bind to Hsp70 and enhance its chaperone activity.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 3","pages":"Pages 381-383"},"PeriodicalIF":6.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders 选择性极光激酶A降解物靶向神经母细胞瘤N-Myc
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2024.12.006
Jian Tang , Ramkumar Moorthy , Laura E. Hirsch , Özlem Demir , Zachary D. Baker , Jordan A. Naumann , Katherine F.M. Jones , Michael J. Grillo , Ella S. Haefner , Ke Shi , Michaella J. Levy , Harshita B. Gupta , Hideki Aihara , Reuben S. Harris , Rommie E. Amaro , Nicholas M. Levinson , Daniel A. Harki
The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels. A potent Aurora-A degrader, HLB-0532259 (compound 4), was developed from an Aurora-A-binding ligand that engages the Aurora-A/N-Myc complex. HLB-0532259 promotes the degradation of Aurora-A, which elicits concomitant N-Myc degradation, with nanomolar potency and excellent selectivity. HLB-0532259 surpasses the cellular efficacy of established allosteric Aurora-A inhibitors, exhibits favorable pharmacokinetic properties, and elicits tumor reduction in a murine xenograft NB model. This study broadly delineates a strategy for targeting “undruggable” proteins that are reliant on accessory proteins for cellular stabilization.
由MYCN编码的N-Myc转录因子是神经母细胞瘤(NB)治疗发展的一个机制验证但具有挑战性的靶点。在正常的神经元祖细胞中,N-Myc经历快速降解,而在mycn扩增的NB细胞中,极光激酶A (Aurora-A)结合并稳定N-Myc,导致蛋白水平升高。在这里,我们证明了Aurora-A的靶向蛋白降解降低了N-Myc水平。一种有效的Aurora-A降解剂HLB-0532259(化合物4)是由Aurora-A结合配体与Aurora-A/N-Myc复合物结合而成的。HLB-0532259促进极光a的降解,同时引起N-Myc的降解,具有纳米摩尔的效力和良好的选择性。HLB-0532259优于已建立的变构性Aurora-A抑制剂的细胞功效,表现出良好的药代动力学特性,并在小鼠异种移植物NB模型中诱导肿瘤减少。这项研究广泛地描述了一种靶向“不可药物”蛋白质的策略,这些蛋白质依赖于辅助蛋白质来实现细胞稳定。
{"title":"Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders","authors":"Jian Tang ,&nbsp;Ramkumar Moorthy ,&nbsp;Laura E. Hirsch ,&nbsp;Özlem Demir ,&nbsp;Zachary D. Baker ,&nbsp;Jordan A. Naumann ,&nbsp;Katherine F.M. Jones ,&nbsp;Michael J. Grillo ,&nbsp;Ella S. Haefner ,&nbsp;Ke Shi ,&nbsp;Michaella J. Levy ,&nbsp;Harshita B. Gupta ,&nbsp;Hideki Aihara ,&nbsp;Reuben S. Harris ,&nbsp;Rommie E. Amaro ,&nbsp;Nicholas M. Levinson ,&nbsp;Daniel A. Harki","doi":"10.1016/j.chembiol.2024.12.006","DOIUrl":"10.1016/j.chembiol.2024.12.006","url":null,"abstract":"<div><div>The N-Myc transcription factor, encoded by <em>MYCN</em>, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in <em>MYCN</em>-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels. A potent Aurora-A degrader, HLB-0532259 (compound <strong>4</strong>), was developed from an Aurora-A-binding ligand that engages the Aurora-A/N-Myc complex. HLB-0532259 promotes the degradation of Aurora-A, which elicits concomitant N-Myc degradation, with nanomolar potency and excellent selectivity. HLB-0532259 surpasses the cellular efficacy of established allosteric Aurora-A inhibitors, exhibits favorable pharmacokinetic properties, and elicits tumor reduction in a murine xenograft NB model. This study broadly delineates a strategy for targeting “undruggable” proteins that are reliant on accessory proteins for cellular stabilization.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 352-362.e10"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic sampling of a surveillance state enables DNA proofreading by Cas9 监控状态的动态取样使 Cas9 能够进行 DNA 校对
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2024.10.001
Viviane S. De Paula , Abhinav Dubey , Haribabu Arthanari , Nikolaos G. Sgourakis
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
CRISPR-Cas9 通过对需要高特异性的单导 RNA 进行编程,彻底改变了基因组工程应用。然而,相对于引导 RNA 模板而言,区分目标 DNA 序列的精确分子机制仍未确定。在这里,我们利用基于甲基的核磁共振技术研究了体外组装的多个全酶,阐明了一种离散的蛋白质构象状态,它能识别原间隔邻接基序(PAM)远端的 DNA 错配。我们的研究结果勾勒出了一条异构途径,它将 REC3 结构域的动态构象转换与 HNH 结构域的催化状态取样连接起来。我们的核磁共振数据显示,HiFi Cas9 (R691A)通过稳定这种针对不匹配底物的 "监视状态",使 Cas9 的构象平衡偏离活性状态,从而提高了 DNA 识别的保真度。这些结果建立了一种通过基于异构蛋白的开关来识别底物的范例,为研究支配 Cas9 选择性的分子机制提供了独特的见解。
{"title":"Dynamic sampling of a surveillance state enables DNA proofreading by Cas9","authors":"Viviane S. De Paula ,&nbsp;Abhinav Dubey ,&nbsp;Haribabu Arthanari ,&nbsp;Nikolaos G. Sgourakis","doi":"10.1016/j.chembiol.2024.10.001","DOIUrl":"10.1016/j.chembiol.2024.10.001","url":null,"abstract":"<div><div>CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled <em>in vitro</em>, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this \"surveillance state\" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 267-279.e5"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor 利用工程细菌外膜囊泡与转铁蛋白受体介导的溶酶体靶向嵌合体融合抗肿瘤免疫治疗
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2024.12.008
Ling-Yan Su, Yang Tian, Qiang Zheng, Yu Cao, Mengyu Yao, Shuangping Wang, Wen Xu, Chuyu Xi, Andrea Clocchiatti, Guangjun Nie, Hejiang Zhou
{"title":"Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor","authors":"Ling-Yan Su,&nbsp;Yang Tian,&nbsp;Qiang Zheng,&nbsp;Yu Cao,&nbsp;Mengyu Yao,&nbsp;Shuangping Wang,&nbsp;Wen Xu,&nbsp;Chuyu Xi,&nbsp;Andrea Clocchiatti,&nbsp;Guangjun Nie,&nbsp;Hejiang Zhou","doi":"10.1016/j.chembiol.2024.12.008","DOIUrl":"10.1016/j.chembiol.2024.12.008","url":null,"abstract":"","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 377-378"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen 通过多路筛选发现铜绿假单胞菌外膜蛋白OprH-LPS相互作用的特异性小分子
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2024.12.001
Bradley E. Poulsen , Thulasi Warrier , Sulyman Barkho , Josephine Bagnall , Keith P. Romano , Tiantian White , Xiao Yu , Tomohiko Kawate , Phuong H. Nguyen , Kyra Raines , Kristina Ferrara , A. Lorelei Golas , Michael FitzGerald , Andras Boeszoermenyi , Virendar Kaushik , Michael Serrano-Wu , Noam Shoresh , Deborah T. Hung
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.
抗菌素耐药性的激增威胁到目前抗生素的有效性,特别是对铜绿假单胞菌(一种高度耐药的革兰氏阴性病原体)的有效性。铜绿假单胞菌(P. aeruginosa)的非对称外膜(OM)及其外排泵阵列为外生菌的积累提供了屏障,从而使抗生素的发现具有挑战性。我们采用了PROSPECT,一种基于靶标的全细胞筛选策略,来发现小分子探针,这些探针可以杀死在OM中缺乏必需蛋白质的铜绿假单胞菌突变体。我们鉴定出BRD1401,这是一种小分子,对缺乏必需脂蛋白OprL的铜绿假单胞菌突变体具有特异性活性。遗传和化学生物学研究发现,BRD1401通过靶向OM β-桶状蛋白OprH,破坏其与LPS的相互作用,增加膜流动性。对BRD1401的研究也揭示了OprL和OprH之间的相互作用,直接将OM与肽聚糖连接起来。因此,一个全细胞,多路筛选可以识别物种特异性的化学探针来揭示病原体生物学。
{"title":"Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen","authors":"Bradley E. Poulsen ,&nbsp;Thulasi Warrier ,&nbsp;Sulyman Barkho ,&nbsp;Josephine Bagnall ,&nbsp;Keith P. Romano ,&nbsp;Tiantian White ,&nbsp;Xiao Yu ,&nbsp;Tomohiko Kawate ,&nbsp;Phuong H. Nguyen ,&nbsp;Kyra Raines ,&nbsp;Kristina Ferrara ,&nbsp;A. Lorelei Golas ,&nbsp;Michael FitzGerald ,&nbsp;Andras Boeszoermenyi ,&nbsp;Virendar Kaushik ,&nbsp;Michael Serrano-Wu ,&nbsp;Noam Shoresh ,&nbsp;Deborah T. Hung","doi":"10.1016/j.chembiol.2024.12.001","DOIUrl":"10.1016/j.chembiol.2024.12.001","url":null,"abstract":"<div><div>The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against <em>Pseudomonas aeruginosa</em>, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of <em>P. aeruginosa</em> combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill <em>P. aeruginosa</em> mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a <em>P. aeruginosa</em> mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 307-324.e15"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer 一种广泛而古老的细菌机器组装细胞色素OmcS纳米线,对细胞外电子转移至关重要
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2024.12.013
Cong Shen , Aldo I. Salazar-Morales , Wonhyeuk Jung , Joey Erwin , Yangqi Gu , Anthony Coelho , Kallol Gupta , Sibel Ebru Yalcin , Fadel A. Samatey , Nikhil S. Malvankar
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed “nanowires” composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved omcS-companion (osc) cluster that drives the formation of cytochrome OmcS nanowires in Geobacter sulfurreducens. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of oscG accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; ΔoscD accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments
微生物胞外电子转移(EET)驱动着各种全球重要的环境现象,并具有生物技术应用。不同的原核生物已经被提出通过由多血红素细胞色素组成的表面显示的“纳米线”来执行EET。然而,使少数细胞色素聚合成纳米线的机制尚不清楚。在这里,我们确定了一个高度保守的OmcS -伴侣(osc)簇,该簇驱动硫还原地杆菌中细胞色素OmcS纳米线的形成。通过遗传学、生物化学和生物物理方法的结合,我们确定含有脯氨酰异构酶的伴侣蛋白OscH、通道状OscEFG和β-螺旋桨状OscD分别参与了OmcS纳米线的折叠、分泌和形态维持。OscH和OscG可以与omc交互。此外,oscG的过表达通过以atp依赖的方式过量产生纳米线来加速EET。血红素加载分裂OscD;ΔoscD加速细胞生长,将纳米线束成电缆。我们的研究结果建立了一种专门的、模块化的纳米线组装系统的机制和普遍性,这种系统可以跨越不同的物种和环境
{"title":"A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer","authors":"Cong Shen ,&nbsp;Aldo I. Salazar-Morales ,&nbsp;Wonhyeuk Jung ,&nbsp;Joey Erwin ,&nbsp;Yangqi Gu ,&nbsp;Anthony Coelho ,&nbsp;Kallol Gupta ,&nbsp;Sibel Ebru Yalcin ,&nbsp;Fadel A. Samatey ,&nbsp;Nikhil S. Malvankar","doi":"10.1016/j.chembiol.2024.12.013","DOIUrl":"10.1016/j.chembiol.2024.12.013","url":null,"abstract":"<div><div>Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed “nanowires” composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved <em><u>o</u>mc<u>S</u></em>-<u>c</u>ompanion (<em>osc</em>) cluster that drives the formation of cytochrome OmcS nanowires in <em>Geobacter sulfurreducens</em>. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of <em>oscG</em> accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; Δ<em>oscD</em> accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 239-254.e7"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.chembiol.2025.01.002
Joseph J. Smith , Taylor R. Valentino , Austin H. Ablicki , Riddhidev Banerjee , Adam R. Colligan , Debra M. Eckert , Gabrielle A. Desjardins , Katharine L. Diehl
Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. Herein, we engineered an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). The sensor, “PancACe,” has a maximum change of ∼2-fold and a response range of ∼10 μM–2 mM acetyl-CoA. We demonstrated that the sensor has a greater than 7-fold selectivity over coenzyme A, butyryl-CoA, malonyl-CoA, and succinyl-CoA, and a 2.3-fold selectivity over propionyl-CoA. We expressed the sensor in E. coli and showed that it enables detection of rapid changes in acetyl-CoA levels. By localizing the sensor to either the cytoplasm, nucleus, or mitochondria in human cells, we showed that it enables subcellular detection of changes in acetyl-CoA levels, the magnitudes of which agreed with an orthogonal PicoProbe assay.
{"title":"A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells","authors":"Joseph J. Smith ,&nbsp;Taylor R. Valentino ,&nbsp;Austin H. Ablicki ,&nbsp;Riddhidev Banerjee ,&nbsp;Adam R. Colligan ,&nbsp;Debra M. Eckert ,&nbsp;Gabrielle A. Desjardins ,&nbsp;Katharine L. Diehl","doi":"10.1016/j.chembiol.2025.01.002","DOIUrl":"10.1016/j.chembiol.2025.01.002","url":null,"abstract":"<div><div>Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. Herein, we engineered an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). The sensor, “PancACe,” has a maximum change of ∼2-fold and a response range of ∼10 μM–2 mM acetyl-CoA. We demonstrated that the sensor has a greater than 7-fold selectivity over coenzyme A, butyryl-CoA, malonyl-CoA, and succinyl-CoA, and a 2.3-fold selectivity over propionyl-CoA. We expressed the sensor in <em>E. coli</em> and showed that it enables detection of rapid changes in acetyl-CoA levels. By localizing the sensor to either the cytoplasm, nucleus, or mitochondria in human cells, we showed that it enables subcellular detection of changes in acetyl-CoA levels, the magnitudes of which agreed with an orthogonal PicoProbe assay.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 2","pages":"Pages 325-337.e10"},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1