首页 > 最新文献

Chem最新文献

英文 中文
Electrochemistry enables room-temperature Matteson-type homologation with trifluoromethyl arenes as carbenoid precursors 电化学使室温马特森型同源与三氟甲基芳烃作为类碳前体
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-26 DOI: 10.1016/j.chempr.2026.102935
Yee Lin Phang, Feng-Lian Zhang, Yi-Feng Wang
{"title":"Electrochemistry enables room-temperature Matteson-type homologation with trifluoromethyl arenes as carbenoid precursors","authors":"Yee Lin Phang, Feng-Lian Zhang, Yi-Feng Wang","doi":"10.1016/j.chempr.2026.102935","DOIUrl":"https://doi.org/10.1016/j.chempr.2026.102935","url":null,"abstract":"","PeriodicalId":268,"journal":{"name":"Chem","volume":"1 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting immunocyte activation for cell therapy with a phase-separation culture system 用相分离培养系统促进免疫细胞的活化
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-26 DOI: 10.1016/j.chempr.2026.102944
Yuxin Guo, Daokuan An, Lu-Lu Qu, Xiaochen Dong
{"title":"Boosting immunocyte activation for cell therapy with a phase-separation culture system","authors":"Yuxin Guo, Daokuan An, Lu-Lu Qu, Xiaochen Dong","doi":"10.1016/j.chempr.2026.102944","DOIUrl":"https://doi.org/10.1016/j.chempr.2026.102944","url":null,"abstract":"","PeriodicalId":268,"journal":{"name":"Chem","volume":"14 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Write and erase: Macrocyclic effectors regulate imine expression in water 写和擦除:大环效应物调节亚胺在水中的表达
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-23 DOI: 10.1016/j.chempr.2025.102834
Ferran Esteve, Martina Mazzaferro, Jean-Marie Lehn
{"title":"Write and erase: Macrocyclic effectors regulate imine expression in water","authors":"Ferran Esteve, Martina Mazzaferro, Jean-Marie Lehn","doi":"10.1016/j.chempr.2025.102834","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102834","url":null,"abstract":"","PeriodicalId":268,"journal":{"name":"Chem","volume":"7 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-centric framework for confinement catalysis: Beyond nanomaterials 以水为中心的限制催化框架:超越纳米材料
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-23 DOI: 10.1016/j.chempr.2025.102832
Changze Song, Jianghua Yang, Shujuan Zhang
{"title":"Water-centric framework for confinement catalysis: Beyond nanomaterials","authors":"Changze Song, Jianghua Yang, Shujuan Zhang","doi":"10.1016/j.chempr.2025.102832","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102832","url":null,"abstract":"","PeriodicalId":268,"journal":{"name":"Chem","volume":"102 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the free rotary oscillations around a single ruthenium atom in an organometallic complex 探测有机金属配合物中单个钌原子周围的自由旋转振荡
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102691
Xun Li , Yohan Gisbert , Maxime Ledent , Damien Sluysmans , Gwénaël Rapenne , Claire Kammerer , Anne-Sophie Duwez
A variety of rotary molecular machine prototypes powered by light, chemical energy, or electrons have been synthesized and their operation in solution, gels, or on surfaces has been demonstrated. However, little data regarding their performances have been disclosed. Here, we report on the synthesis of molecules incorporating a five-arm rotor and the direct measurement of the work required to block the rotation around the central atom. We used single-molecule force spectroscopy (SMFS) to detect the free rotary oscillations and measure the work performed by the molecules against the mechanical load. We show that the chemical nature of the arms influences the energy barrier, causing differences in the work that the molecules can generate. Our results illustrate that SMFS, which is now widely used to probe linear displacements at a few tens of nanometer scale in macromolecules, can detect rotary motions around a single atom in a tiny synthetic molecule.
各种由光、化学能或电子驱动的旋转分子机器原型已经被合成,并且它们在溶液、凝胶或表面上的操作已经被证明。然而,有关他们的表现的数据很少被披露。在这里,我们报告了结合五臂转子的分子的合成,并直接测量了阻止围绕中心原子旋转所需的功。我们使用单分子力谱(SMFS)来检测自由旋转振荡,并测量分子对机械载荷所做的功。我们表明,臂的化学性质影响能量势垒,导致分子可以产生的功的差异。我们的研究结果表明,SMFS现在广泛用于探测大分子中几十纳米尺度的线性位移,可以检测微小合成分子中单个原子周围的旋转运动。
{"title":"Probing the free rotary oscillations around a single ruthenium atom in an organometallic complex","authors":"Xun Li ,&nbsp;Yohan Gisbert ,&nbsp;Maxime Ledent ,&nbsp;Damien Sluysmans ,&nbsp;Gwénaël Rapenne ,&nbsp;Claire Kammerer ,&nbsp;Anne-Sophie Duwez","doi":"10.1016/j.chempr.2025.102691","DOIUrl":"10.1016/j.chempr.2025.102691","url":null,"abstract":"<div><div>A variety of rotary molecular machine prototypes powered by light, chemical energy, or electrons have been synthesized and their operation in solution, gels, or on surfaces has been demonstrated. However, little data regarding their performances have been disclosed. Here, we report on the synthesis of molecules incorporating a five-arm rotor and the direct measurement of the work required to block the rotation around the central atom. We used single-molecule force spectroscopy (SMFS) to detect the free rotary oscillations and measure the work performed by the molecules against the mechanical load. We show that the chemical nature of the arms influences the energy barrier, causing differences in the work that the molecules can generate. Our results illustrate that SMFS, which is now widely used to probe linear displacements at a few tens of nanometer scale in macromolecules, can detect rotary motions around a single atom in a tiny synthetic molecule.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102691"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144778643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manganese low-energy photocatalysis for remodeling nitrogenation of alkenes 锰低能光催化烯烃重塑氮化反应
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102702
Wei Yang , Yu Lan , Yihang Bai , Zhenyan Zhao , Yawen Song , Ruiying Chang , Xuwei Shang , Shuang Li , Shiqi Jia , Shihan Liu , Shi-Jun Li , Linbin Niu
Due to the unique mildness and good penetration ability of low-energy light (λ > 595 nm), assembling a low-energy photoredox catalytic platform in situ to circumvent the pre-preparation of the low-energy photocatalyst is intriguing and significant. Herein, we describe a manganese low-energy photoredox catalytic platform generated by the modular in situ assembly of manganese(II) salt, bidentate N ligand, nucleophilic azide reagent, and alcohol, which can enable the generation of valuable azido radicals under 850 nm light irradiation and is further used to furnish the oxidative remodeling nitrogenation of alkenes via carbon-carbon double-bond cleavage to afford value-added ketonitriles, ketones, or nitriles with excellent functional group compatibility. The utility of this procedure is underscored by late-stage functionalization of drug/natural molecule derivatives and the streamlined synthesis of anabasine, showcasing its unique potential for applications in synthetic organic chemistry and biomedicine.
由于低能光(λ > 595 nm)具有独特的温和性和良好的穿透能力,在原位组装低能光氧化还原催化平台以绕过低能光催化剂的预制备是一项有趣而有意义的研究。本文描述了由锰(II)盐、双齿N配体、亲核叠氮化物试剂和醇组成的模块化原位组装生成的锰低能光氧化还原催化平台,该平台可以在850 nm光照射下生成有价值的叠氮自由基,并进一步用于通过碳-碳双键裂解提供烯烃的氧化重塑氮化,从而产生增值的酮腈、酮、或具有优异官能团相容性的腈。药物/天然分子衍生物的后期功能化和水杨桃碱的流线型合成强调了这一过程的实用性,展示了其在合成有机化学和生物医学方面的独特应用潜力。
{"title":"Manganese low-energy photocatalysis for remodeling nitrogenation of alkenes","authors":"Wei Yang ,&nbsp;Yu Lan ,&nbsp;Yihang Bai ,&nbsp;Zhenyan Zhao ,&nbsp;Yawen Song ,&nbsp;Ruiying Chang ,&nbsp;Xuwei Shang ,&nbsp;Shuang Li ,&nbsp;Shiqi Jia ,&nbsp;Shihan Liu ,&nbsp;Shi-Jun Li ,&nbsp;Linbin Niu","doi":"10.1016/j.chempr.2025.102702","DOIUrl":"10.1016/j.chempr.2025.102702","url":null,"abstract":"<div><div>Due to the unique mildness and good penetration ability of low-energy light (λ &gt; 595 nm), assembling a low-energy photoredox catalytic platform <em>in situ</em> to circumvent the pre-preparation of the low-energy photocatalyst is intriguing and significant. Herein, we describe a manganese low-energy photoredox catalytic platform generated by the modular <em>in situ</em> assembly of manganese(II) salt, bidentate <em>N</em> ligand, nucleophilic azide reagent, and alcohol, which can enable the generation of valuable azido radicals under 850 nm light irradiation and is further used to furnish the oxidative remodeling nitrogenation of alkenes via carbon-carbon double-bond cleavage to afford value-added ketonitriles, ketones, or nitriles with excellent functional group compatibility. The utility of this procedure is underscored by late-stage functionalization of drug/natural molecule derivatives and the streamlined synthesis of anabasine, showcasing its unique potential for applications in synthetic organic chemistry and biomedicine.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102702"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Force spectroscopy on molecular rotors 分子转子的力谱
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102690
Ludovic Bellon
In this issue of Chem, Li et al. describe the use of atomic force spectroscopy for detecting, stalling, and characterizing single-molecule rotors. Their work extends force spectroscopy beyond linear deformations, offering a powerful, accessible alternative to tunneling microscopy for probing molecular rotation and associated energy landscapes.
在本期的Chem中,Li等人描述了原子力光谱用于检测、熄火和表征单分子转子的方法。他们的工作将力光谱学扩展到线性变形之外,为探测分子旋转和相关能量景观提供了一种强大的、可访问的隧道显微镜替代方案。
{"title":"Force spectroscopy on molecular rotors","authors":"Ludovic Bellon","doi":"10.1016/j.chempr.2025.102690","DOIUrl":"10.1016/j.chempr.2025.102690","url":null,"abstract":"<div><div>In this issue of <em>Chem</em>, Li et al. describe the use of atomic force spectroscopy for detecting, stalling, and characterizing single-molecule rotors. Their work extends force spectroscopy beyond linear deformations, offering a powerful, accessible alternative to tunneling microscopy for probing molecular rotation and associated energy landscapes.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102690"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large current rectification inside symmetric molecular junctions caused by redox-coupled conformational changes 由氧化还原偶联构象变化引起的对称分子结内大电流整流
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102698
Jin-Liang Lin , Ran Liu , Francis Adoah , Zhou Cao , Shengzhe Qiu , Ningyue Chen , Feng Sun , Zhikang Wu , Chuan-Kui Wang , Bingqian Xu , Enrique del Barco , Yuan Li
The ability to test the limits of diodes scaled down to the molecular (quantum) scale could advance the development of nanoelectronic devices. So far, strategies for molecular rectification have mostly relied on the intrinsic asymmetry of molecules or on changes in the external environment. These approaches require complex synthetic designs or specific device structures, and their performance is far beyond theoretical prediction. Here, we report an alternative strategy that leads to giant rectification by inducing a topological change in the molecular conformation through unidirectional electric-field-driven electron delocalization, an approach also applicable to molecules without asymmetric structures. This method reverses the polarity of the applied bias, which induces the rectifying group to oxidize and transition from a buckled and cross-conjugated group into a planar aromatic group. As a result, the transformed molecule forms a fully conjugated structure resulting in a substantial increase in the current density.
测试缩小到分子(量子)尺度的二极管极限的能力可以推动纳米电子器件的发展。到目前为止,分子纠偏的策略大多依赖于分子固有的不对称性或外部环境的变化。这些方法需要复杂的合成设计或特定的器件结构,其性能远远超出理论预测。在这里,我们报告了一种替代策略,通过单向电场驱动的电子离域诱导分子构象的拓扑变化,从而导致巨大的整流,这种方法也适用于没有不对称结构的分子。该方法反转了外加偏压的极性,导致整流基团氧化并从屈曲和交叉共轭基团转变为平面芳香基团。结果,转化后的分子形成完全共轭结构,导致电流密度大幅增加。
{"title":"Large current rectification inside symmetric molecular junctions caused by redox-coupled conformational changes","authors":"Jin-Liang Lin ,&nbsp;Ran Liu ,&nbsp;Francis Adoah ,&nbsp;Zhou Cao ,&nbsp;Shengzhe Qiu ,&nbsp;Ningyue Chen ,&nbsp;Feng Sun ,&nbsp;Zhikang Wu ,&nbsp;Chuan-Kui Wang ,&nbsp;Bingqian Xu ,&nbsp;Enrique del Barco ,&nbsp;Yuan Li","doi":"10.1016/j.chempr.2025.102698","DOIUrl":"10.1016/j.chempr.2025.102698","url":null,"abstract":"<div><div>The ability to test the limits of diodes scaled down to the molecular (quantum) scale could advance the development of nanoelectronic devices. So far, strategies for molecular rectification have mostly relied on the intrinsic asymmetry of molecules or on changes in the external environment. These approaches require complex synthetic designs or specific device structures, and their performance is far beyond theoretical prediction. Here, we report an alternative strategy that leads to giant rectification by inducing a topological change in the molecular conformation through unidirectional electric-field-driven electron delocalization, an approach also applicable to molecules without asymmetric structures. This method reverses the polarity of the applied bias, which induces the rectifying group to oxidize and transition from a buckled and cross-conjugated group into a planar aromatic group. As a result, the transformed molecule forms a fully conjugated structure resulting in a substantial increase in the current density.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102698"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distal peptide elongation by a protease-like ligase and two distinct carrier proteins 远端肽延伸由蛋白酶样连接酶和两个不同的载体蛋白
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102740
Finn Gude , Annkathrin Bohne , Maria Dell , Jonathan Franke , Kyle L. Dunbar , Michael Groll , Christian Hertweck
Closthioamide (CTA) is a potent antibiotic with a unique polythioamide scaffold produced by Ruminiclostridium cellulolyticum. Unlike classical non-ribosomal peptide synthetases (NRPSs), which use modular adenylation and condensation domains, CTA biosynthesis proceeds through non-canonical standalone enzymes. Central to this process is the papain-like ligase CtaG, which catalyzes amide bond formation between two distinct peptidyl carrier proteins (PCPs): CtaH, presenting para-hydroxybenzoic acid (PHBA), and CtaE, carrying a tri-β-alanine ((βAla)3) chain. Using biochemical assays, chemical probes, crystallography, and mutational analysis, we show that CtaG operates via a ping-pong mechanism involving an enzyme-bound intermediate. A single substrate tunnel mediates directional transfer, enabling distal chain elongation that mirrors solid-phase peptide synthesis. Structure-based genome mining revealed homologous enzymes in the biosynthetic pathways of petrobactin, butirosin, and methylolanthanin. Together, our findings uncover a previously overlooked class of thiotemplated ligases and provide a mechanistic blueprint for engineering ribosome-independent peptide assembly lines.
clothioamide (CTA)是一种有效的抗生素,具有独特的多硫酰胺支架,由反刍芽胞杆菌产生。与经典的非核糖体肽合成酶(NRPSs)不同,CTA的生物合成是通过非规范的独立酶进行的,后者使用模块化的腺苷化和缩合结构域。这个过程的核心是木瓜蛋白酶样连接酶CtaG,它催化两种不同的肽基载体蛋白(pcp)之间的酰胺键形成:CtaH,呈现对羟基苯甲酸(PHBA), CtaE,携带三β-丙氨酸((βAla)3)链。通过生化分析、化学探针、晶体学和突变分析,我们发现CtaG通过一种涉及酶结合中间体的乒乓机制起作用。单一底物隧道介导定向转移,使远端链延伸反映固相肽合成。基于结构的基因组挖掘揭示了在石蜡蛋白、丁松香和甲基黄烷素的生物合成途径中存在同源酶。总之,我们的发现揭示了以前被忽视的一类硫模板化连接酶,并为工程核糖体非依赖性肽装配线提供了机制蓝图。
{"title":"Distal peptide elongation by a protease-like ligase and two distinct carrier proteins","authors":"Finn Gude ,&nbsp;Annkathrin Bohne ,&nbsp;Maria Dell ,&nbsp;Jonathan Franke ,&nbsp;Kyle L. Dunbar ,&nbsp;Michael Groll ,&nbsp;Christian Hertweck","doi":"10.1016/j.chempr.2025.102740","DOIUrl":"10.1016/j.chempr.2025.102740","url":null,"abstract":"<div><div>Closthioamide (CTA) is a potent antibiotic with a unique polythioamide scaffold produced by <em>Ruminiclostridium cellulolyticum</em>. Unlike classical non-ribosomal peptide synthetases (NRPSs), which use modular adenylation and condensation domains, CTA biosynthesis proceeds through non-canonical standalone enzymes. Central to this process is the papain-like ligase CtaG, which catalyzes amide bond formation between two distinct peptidyl carrier proteins (PCPs): CtaH, presenting para-hydroxybenzoic acid (PHBA), and CtaE, carrying a tri-β-alanine ((βAla)<sub>3</sub>) chain. Using biochemical assays, chemical probes, crystallography, and mutational analysis, we show that CtaG operates via a ping-pong mechanism involving an enzyme-bound intermediate. A single substrate tunnel mediates directional transfer, enabling distal chain elongation that mirrors solid-phase peptide synthesis. Structure-based genome mining revealed homologous enzymes in the biosynthetic pathways of petrobactin, butirosin, and methylolanthanin. Together, our findings uncover a previously overlooked class of thiotemplated ligases and provide a mechanistic blueprint for engineering ribosome-independent peptide assembly lines.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102740"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145068133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring kcat/KM values for over 200,000 enzymatic substrates with mRNA display 用mRNA显示测量超过200,000种酶促底物的kcat/KM值
IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1016/j.chempr.2025.102737
Alexander A. Vinogradov , Hiroaki Suga
Recent advances in enzymology are enabled by the methods for high-throughput kinetic measurements. Common instrumentation-based techniques can examine thousands of enzymatic reactions in parallel, but scaling the throughput further can be challenging. Here, we establish DOMEK (mRNA-display-based one-shot measurement of enzymatic kinetics), an integrated experimental and computational pipeline for ultra-high-throughput kinetic measurements using mRNA display-derived next-generation sequencing data. The method can accurately determine kcat/KM specificity constants of post-translational modification enzyme substrates. We benchmark the platform by measuring kcat/KM values for ∼2.86 × 105 peptide substrates of a dehydroalanine reductase and leverage the resulting data to build interpretable models of the substrate fitness landscape. The resulting model accurately decomposes reaction activation energies of a peptide substrate into energetic contributions of individual amino acids to reveal microscopic and macroscopic aspects of the enzyme catalysis. Our results establish a generalizable, enzyme-agnostic framework for scaling kinetic measurements to millions of reactions.
酶学的最新进展是由高通量动力学测量方法实现的。常见的基于仪器的技术可以并行检查数千个酶促反应,但进一步扩展吞吐量可能具有挑战性。在这里,我们建立了DOMEK(基于mRNA显示的酶动力学一次性测量),这是一个集成的实验和计算管道,用于利用mRNA显示衍生的下一代测序数据进行超高通量动力学测量。该方法能准确测定翻译后修饰酶底物的kcat/KM特异性常数。我们通过测量脱氢丙氨酸还原酶的~ 2.86 × 105肽底物的kcat/KM值对平台进行基准测试,并利用所得数据构建底物适应度景观的可解释模型。由此产生的模型准确地将肽底物的反应活化能分解为单个氨基酸的能量贡献,以揭示酶催化的微观和宏观方面。我们的结果建立了一个可推广的,酶不可知的框架缩放动力学测量数以百万计的反应。
{"title":"Measuring kcat/KM values for over 200,000 enzymatic substrates with mRNA display","authors":"Alexander A. Vinogradov ,&nbsp;Hiroaki Suga","doi":"10.1016/j.chempr.2025.102737","DOIUrl":"10.1016/j.chempr.2025.102737","url":null,"abstract":"<div><div>Recent advances in enzymology are enabled by the methods for high-throughput kinetic measurements. Common instrumentation-based techniques can examine thousands of enzymatic reactions in parallel, but scaling the throughput further can be challenging. Here, we establish DOMEK (mRNA-display-based one-shot measurement of enzymatic kinetics), an integrated experimental and computational pipeline for ultra-high-throughput kinetic measurements using mRNA display-derived next-generation sequencing data. The method can accurately determine k<sub>cat</sub>/K<sub>M</sub> specificity constants of post-translational modification enzyme substrates. We benchmark the platform by measuring k<sub>cat</sub>/K<sub>M</sub> values for ∼2.86 × 10<sup>5</sup> peptide substrates of a dehydroalanine reductase and leverage the resulting data to build interpretable models of the substrate fitness landscape. The resulting model accurately decomposes reaction activation energies of a peptide substrate into energetic contributions of individual amino acids to reveal microscopic and macroscopic aspects of the enzyme catalysis. Our results establish a generalizable, enzyme-agnostic framework for scaling kinetic measurements to millions of reactions.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":"Article 102737"},"PeriodicalIF":19.6,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144930565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1