首页 > 最新文献

Chem最新文献

英文 中文
A sustainable cobalt separation with validation by techno-economic analysis and life-cycle assessment
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-03 DOI: 10.1016/j.chempr.2024.10.028
Boyang Zhang, Alexander B. Weberg, Andrew J. Ahn, Marta Guron, Leighton O. Jones, Michael R. Gau, George C. Schatz, Eric J. Schelter
Sustainable, cost-effective cobalt/nickel separations chemistry contributes to the realization of economically competitive lithium-ion battery recycling, as well as primary mining of cobalt and nickel. Such improvements can address supply chain challenges for cobalt, a critical element. Herein, we disclose a simple method for separating Co/Ni by second coordination-sphere molecular recognition. Selective cobalt precipitation is achieved using carbonate ions in an ammonia solution due to the outer-sphere, hydrogen bonding interactions between [Co(NH3)6]3+ and CO32−, evaluated with density functional theory calculations. We demonstrate this method on mixtures of Co/Ni chlorides comprising a 10-fold excess of Ni and provide comparisons with ore-processing systems. High purities (99.4(3)% Co; 98.2(4)% Ni) and recoveries (77(8)% Co; ∼100% Ni) were observed for both Co- and Ni-enriched products using optimized conditions. This method is potentially economically competitive based on initial techno-economic analysis (TEA) and life-cycle assessment (LCA) that also illustrate advantages in terms of sustainability.
{"title":"A sustainable cobalt separation with validation by techno-economic analysis and life-cycle assessment","authors":"Boyang Zhang, Alexander B. Weberg, Andrew J. Ahn, Marta Guron, Leighton O. Jones, Michael R. Gau, George C. Schatz, Eric J. Schelter","doi":"10.1016/j.chempr.2024.10.028","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.028","url":null,"abstract":"Sustainable, cost-effective cobalt/nickel separations chemistry contributes to the realization of economically competitive lithium-ion battery recycling, as well as primary mining of cobalt and nickel. Such improvements can address supply chain challenges for cobalt, a critical element. Herein, we disclose a simple method for separating Co/Ni by second coordination-sphere molecular recognition. Selective cobalt precipitation is achieved using carbonate ions in an ammonia solution due to the outer-sphere, hydrogen bonding interactions between [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> and CO<sub>3</sub><sup>2−</sup>, evaluated with density functional theory calculations. We demonstrate this method on mixtures of Co/Ni chlorides comprising a 10-fold excess of Ni and provide comparisons with ore-processing systems. High purities (99.4(3)% Co; 98.2(4)% Ni) and recoveries (77(8)% Co; ∼100% Ni) were observed for both Co- and Ni-enriched products using optimized conditions. This method is potentially economically competitive based on initial techno-economic analysis (TEA) and life-cycle assessment (LCA) that also illustrate advantages in terms of sustainability.","PeriodicalId":268,"journal":{"name":"Chem","volume":"9 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordered [2]catenanes in covalent organic frameworks: From molecules to materials
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-03 DOI: 10.1016/j.chempr.2024.10.024
Ruozhou Huang, Yuping Wang
In a recent issue of Chem, an innovative approach for the synthesis of crystalline [2]catenane-containing covalent organic frameworks was developed. This breakthrough elucidates how the dynamics of microscopic, interlocked components influence material properties, thereby advancing the design of two-dimensional materials with sophisticated topological features.
{"title":"Ordered [2]catenanes in covalent organic frameworks: From molecules to materials","authors":"Ruozhou Huang, Yuping Wang","doi":"10.1016/j.chempr.2024.10.024","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.024","url":null,"abstract":"In a recent issue of <em>Chem</em>, an innovative approach for the synthesis of crystalline [2]catenane-containing covalent organic frameworks was developed. This breakthrough elucidates how the dynamics of microscopic, interlocked components influence material properties, thereby advancing the design of two-dimensional materials with sophisticated topological features.","PeriodicalId":268,"journal":{"name":"Chem","volume":"116 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amorphous CuSbOx composite-catalyzed electrocatalytic reduction of CO2 to CO: CO2 demand-supply-regulated performance
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-02 DOI: 10.1016/j.chempr.2024.10.029
Huai Qin Fu, Tingting Yu, Jessica White, Ji Wei Sun, Yuming Wu, Wen Jing Li, Nicholas M. Bedford, Yun Wang, Thomas E. Rufford, Cheng Lian, Porun Liu, Hua Gui Yang, Huijun Zhao
The path to practical production of targeted chemicals and fuels application via carbon dioxide reduction reactions (CO2RRs) remains a significant challenge mainly due to low CO2 solubility. Aiming to tackle this key issue, herein, we used the CuSbOx cathode-catalyzed reduction of CO2 to CO as a model system to quantitatively depict CO2 demand-supply and performance relationships. We propose a cathode/electrolyte interface model consisting of a porous catalyst layer, and we combined the experimental and computational COMSOL Multiphysics finite-element studies to quantitatively unveil CO2 demand-supply relationships and determine the maximum CO2 supply capacity in both stationary H cell and gas diffusion electrode (GDE) flow cell. This work exemplifies that experimentally measured catalytic performance may not accurately reflect the maximum capacity/intrinsic electrocatalytic activity of electrocatalysts and reveals that CO2 supply capacity in the GDE flow cell can be dramatically affected by the thickness of the liquid layer between the hydrophobic gas diffusion layer and the catalyst layer.
{"title":"Amorphous CuSbOx composite-catalyzed electrocatalytic reduction of CO2 to CO: CO2 demand-supply-regulated performance","authors":"Huai Qin Fu, Tingting Yu, Jessica White, Ji Wei Sun, Yuming Wu, Wen Jing Li, Nicholas M. Bedford, Yun Wang, Thomas E. Rufford, Cheng Lian, Porun Liu, Hua Gui Yang, Huijun Zhao","doi":"10.1016/j.chempr.2024.10.029","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.029","url":null,"abstract":"The path to practical production of targeted chemicals and fuels application via carbon dioxide reduction reactions (CO<sub>2</sub>RRs) remains a significant challenge mainly due to low CO<sub>2</sub> solubility. Aiming to tackle this key issue, herein, we used the CuSbO<sub>x</sub> cathode-catalyzed reduction of CO<sub>2</sub> to CO as a model system to quantitatively depict CO<sub>2</sub> demand-supply and performance relationships. We propose a cathode/electrolyte interface model consisting of a porous catalyst layer, and we combined the experimental and computational COMSOL Multiphysics finite-element studies to quantitatively unveil CO<sub>2</sub> demand-supply relationships and determine the maximum CO<sub>2</sub> supply capacity in both stationary H cell and gas diffusion electrode (GDE) flow cell. This work exemplifies that experimentally measured catalytic performance may not accurately reflect the maximum capacity/intrinsic electrocatalytic activity of electrocatalysts and reveals that CO<sub>2</sub> supply capacity in the GDE flow cell can be dramatically affected by the thickness of the liquid layer between the hydrophobic gas diffusion layer and the catalyst layer.","PeriodicalId":268,"journal":{"name":"Chem","volume":"3 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodical strategy for achieving efficient electro-solar reduction, incorporating appropriate in situ techniques
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-29 DOI: 10.1016/j.chempr.2024.10.025
Amol Uttam Pawar, Ramesh Poonchi Sivasankaran, Long Yang, Don Keun Lee, Young Soo Kang
Solar-to-fuel production via the carbon dioxide (CO2) reduction reaction (CO2RR) is a crucial and widely discussed topic, particularly in the context of climate change. Electro-solar approaches, such as electrochemical (EC), photochemical (PC), and photoelectrochemical (PEC) methods, are promising for CO2RR due to their efficiency and mild operating conditions. The process of converting CO2 into valuable products involves multiple steps and requires a deep understanding of reaction mechanisms and product selectivity. In situ and operando spectroscopic techniques are essential for elucidating these mechanisms. This review focuses on advanced in situ spectroscopic methods, such as X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy, Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy, which provide insights into CO2 adsorption, activation, and electron-proton transfer, leading to intermediate radical formation. Additionally, advanced X-ray techniques are briefly discussed, offering refined approaches to studying CO2RR dynamics. These integrated techniques are crucial for designing and optimizing catalysts for efficient CO2 reduction and conversion.
{"title":"A methodical strategy for achieving efficient electro-solar reduction, incorporating appropriate in situ techniques","authors":"Amol Uttam Pawar, Ramesh Poonchi Sivasankaran, Long Yang, Don Keun Lee, Young Soo Kang","doi":"10.1016/j.chempr.2024.10.025","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.025","url":null,"abstract":"Solar-to-fuel production via the carbon dioxide (CO<sub>2</sub>) reduction reaction (CO2RR) is a crucial and widely discussed topic, particularly in the context of climate change. Electro-solar approaches, such as electrochemical (EC), photochemical (PC), and photoelectrochemical (PEC) methods, are promising for CO2RR due to their efficiency and mild operating conditions. The process of converting CO<sub>2</sub> into valuable products involves multiple steps and requires a deep understanding of reaction mechanisms and product selectivity. <em>In situ</em> and <em>operando</em> spectroscopic techniques are essential for elucidating these mechanisms. This review focuses on advanced <em>in situ</em> spectroscopic methods, such as X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy, Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy, which provide insights into CO<sub>2</sub> adsorption, activation, and electron-proton transfer, leading to intermediate radical formation. Additionally, advanced X-ray techniques are briefly discussed, offering refined approaches to studying CO2RR dynamics. These integrated techniques are crucial for designing and optimizing catalysts for efficient CO<sub>2</sub> reduction and conversion.","PeriodicalId":268,"journal":{"name":"Chem","volume":"259 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out-of-equilibrium compartments: Thinking inside the box 失去平衡的隔间:框内思考
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-26 DOI: 10.1016/j.chempr.2024.09.032
James M. Gallagher, Joaquin Baixeras Buye, David A. Leigh
Biological cells sustain an out-of-equilibrium state by harnessing energy flows across compartment boundaries. In this issue of Chem, Penocchio et al. quantify how out-of-equilibrium chemical reaction networks respond to compartmentalization—providing a framework on which to build and understand aspects of nonequilibrium self-assembly, molecular machinery, and other endergonic processes.
生物细胞通过利用跨室边界的能量流来维持非平衡态。在本期《化学》(Chem)杂志上,Penocchio 等人量化了失衡化学反应网络如何对区隔化做出反应--为建立和理解非平衡自组装、分子机械和其他内能过程提供了一个框架。
{"title":"Out-of-equilibrium compartments: Thinking inside the box","authors":"James M. Gallagher, Joaquin Baixeras Buye, David A. Leigh","doi":"10.1016/j.chempr.2024.09.032","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.032","url":null,"abstract":"Biological cells sustain an out-of-equilibrium state by harnessing energy flows across compartment boundaries. In this issue of <em>Chem</em>, Penocchio et al. quantify how out-of-equilibrium chemical reaction networks respond to compartmentalization—providing a framework on which to build and understand aspects of nonequilibrium self-assembly, molecular machinery, and other endergonic processes.","PeriodicalId":268,"journal":{"name":"Chem","volume":"4 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142719061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes 利用商用碳气扩散电极实现高过氧化氢生产率的电解质设计
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-22 DOI: 10.1016/j.chempr.2024.11.001
Jessica Liane Hübner, Gina Ruland, Florian Pietschmann, Zita Brejwo, Benjamin Paul, Peter Strasser
The electrolyte design plays a key, yet underexplored, role in the two-electron oxygen reduction reaction (2e ORR) to hydrogen peroxide (H2O2). Here, we investigate the dramatic beneficial impact of alkali metal cations (AMCs) on the H2O2 production in commercial carbon gas diffusion electrode-based flow electrolyzers in single-pass and closed-loop modes using online analytics. We demonstrate previously unavailable single-pass H2O2 production rates of up to 123 mg cm−2 h−1 with a Faraday efficiency (FE) of 96.9% at −200 mA cm−2 in the presence of potassium cations, exceeding the corresponding production rate and FE in 0.1 M H2SO4 by a factor of 34. Additionally, to the increased selectivity, the onset potential of the 2e ORR shifted by 0.42 V toward a less negative potential. Furthermore, we explore and quantify the influence of multivalent metal cations (Ca2+, Mg2+, and Al3+) on the 2e ORR.
在双电子氧还原反应(2e- ORR)生成过氧化氢(H2O2)的过程中,电解质设计起着关键作用,但尚未得到充分探索。在这里,我们利用在线分析技术研究了碱金属阳离子(AMC)对商用碳气扩散电极流式电解槽在单通道和闭环模式下产生 H2O2 的显著有利影响。我们证明了以前无法获得的单程 H2O2 产率,在钾阳离子存在下,-200 mA cm-2 时的产率高达 123 mg cm-2 h-1,法拉第效率 (FE) 为 96.9%,比 0.1 M H2SO4 中的相应产率和 FE 高出 34 倍。此外,由于选择性的提高,2e- ORR 的起始电位向较低的负电位移动了 0.42 V。此外,我们还探索并量化了多价金属阳离子(Ca2+、Mg2+ 和 Al3+)对 2e- ORR 的影响。
{"title":"Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes","authors":"Jessica Liane Hübner, Gina Ruland, Florian Pietschmann, Zita Brejwo, Benjamin Paul, Peter Strasser","doi":"10.1016/j.chempr.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.11.001","url":null,"abstract":"The electrolyte design plays a key, yet underexplored, role in the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Here, we investigate the dramatic beneficial impact of alkali metal cations (AMCs) on the H<sub>2</sub>O<sub>2</sub> production in commercial carbon gas diffusion electrode-based flow electrolyzers in single-pass and closed-loop modes using online analytics. We demonstrate previously unavailable single-pass H<sub>2</sub>O<sub>2</sub> production rates of up to 123 mg cm<sup>−2</sup> h<sup>−1</sup> with a Faraday efficiency (FE) of 96.9% at −200 mA cm<sup>−2</sup> in the presence of potassium cations, exceeding the corresponding production rate and FE in 0.1 M H<sub>2</sub>SO<sub>4</sub> by a factor of 34. Additionally, to the increased selectivity, the onset potential of the 2e<sup>−</sup> ORR shifted by 0.42 V toward a less negative potential. Furthermore, we explore and quantify the influence of multivalent metal cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, and Al<sup>3+</sup>) on the 2e<sup>−</sup> ORR.","PeriodicalId":268,"journal":{"name":"Chem","volume":"4 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excited-state protonation and reduction enables the umpolung Birch reduction of naphthalenes 激发态质子化和还原使萘的umpolung Birch 还原成为可能
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-22 DOI: 10.1016/j.chempr.2024.10.009
Javier Corpas, Eva Rivera-Chao, Enrique M. Arpa, Miguel Gomez-Mendoza, Yuri Katayama, Victor A. de la Peña O’Shea, Céline Bouchel, Clément Jacob, Pierre-Georges Echeverria, Alessandro Ruffoni, Daniele Leonori
The Birch reaction is a classical process used for the partial reduction of aromatics into non-conjugated cyclohexadienes that can be further functionalized. This strategy and its more modern variants are all based on an initial single-electron transfer event converting the arene into the corresponding radical anion for either protonation or hydrogen-atom transfer. Herein, we demonstrate an umpolung approach where the aromatic is first protonated to its corresponding carbocation and then reduced using the Lewis acid-base complex Et3N−BH3. This strategy requires aromatic photoexcitation so that protonation is favored by charge-transfer and driven by excited-state antiaromaticity relief. This means that aromatic excited-state basicity rather than ground-state redox potential needs to be considered when approaching reaction development. The mild conditions and the avoidance of strong reductants have enabled tolerance of functionalities generally not compatible under standard Birch conditions.
桦木反应是将芳烃部分还原成可进一步官能化的非共轭环己二烯的经典工艺。这种策略及其更现代的变体都是基于最初的单电子转移事件,将炔转化为相应的自由基阴离子,进行质子化或氢原子转移。在这里,我们展示了一种umpolung 方法,即首先将芳香族质子化为其相应的碳位,然后使用路易斯酸碱复合物 Et3N-BH3 还原。这种策略需要芳香族的光激发,从而通过电荷转移促进质子化,并通过激发态反芳香性缓解来驱动质子化。这意味着在进行反应发展时,需要考虑芳香激发态碱性,而不是基态氧化还原电位。由于条件温和,且避免使用强还原剂,因此可以容许在标准桦木条件下通常不兼容的官能团。
{"title":"Excited-state protonation and reduction enables the umpolung Birch reduction of naphthalenes","authors":"Javier Corpas, Eva Rivera-Chao, Enrique M. Arpa, Miguel Gomez-Mendoza, Yuri Katayama, Victor A. de la Peña O’Shea, Céline Bouchel, Clément Jacob, Pierre-Georges Echeverria, Alessandro Ruffoni, Daniele Leonori","doi":"10.1016/j.chempr.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.009","url":null,"abstract":"The Birch reaction is a classical process used for the partial reduction of aromatics into non-conjugated cyclohexadienes that can be further functionalized. This strategy and its more modern variants are all based on an initial single-electron transfer event converting the arene into the corresponding radical anion for either protonation or hydrogen-atom transfer. Herein, we demonstrate an umpolung approach where the aromatic is first protonated to its corresponding carbocation and then reduced using the Lewis acid-base complex Et<sub>3</sub>N−BH<sub>3</sub>. This strategy requires aromatic photoexcitation so that protonation is favored by charge-transfer and driven by excited-state antiaromaticity relief. This means that aromatic excited-state basicity rather than ground-state redox potential needs to be considered when approaching reaction development. The mild conditions and the avoidance of strong reductants have enabled tolerance of functionalities generally not compatible under standard Birch conditions.","PeriodicalId":268,"journal":{"name":"Chem","volume":"37 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antigen spatial-matching polyaptamer nanostructure to block coronavirus infection and alleviate inflammation 用于阻断冠状病毒感染和缓解炎症的抗原空间匹配聚aptamer 纳米结构
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-21 DOI: 10.1016/j.chempr.2024.10.021
Jingqi Chen, Yuqing Li, Xueliang Liu, Hongyi Li, Jiawei Zhu, Rui Ma, Linxin Tian, Lu Yu, Jiabei Li, Zhuang Liu, Weihong Tan, Yu Yang
Preparation for the potential emergence of future human coronaviruses (HCoVs) calls for the development of versatile and effective treatment strategies. The signs and symptoms of HCoVs include an immune inflammatory response. Therefore, our study focuses on the simultaneous inhibition of HCoV infection and the alleviation of lung inflammation. Inspired by conformational epitope matching, we engineered a de novo antigen spatial-matching polyaptamer (ASM-pApt) nanostructure designed to align perfectly with multiple spike (S) proteins on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus (PsV). Compared with monovalent aptamer, the dissociation constant (KD) of the ASM-pApt nanostructure decreased by over 1,000-fold, and its viral semi-inhibitory concentration (IC50) improved by over 100,000-fold to 89.7 fM (fmol/L), indicating the effectiveness of antigen spatial matching. By loading polyphenol as anti-inflammatory drug and chitosan (CS) as an excipient, the ASM-pApt nanostructure showed anti-inflammatory and long drug retention properties. Our design shows the promise of polyaptamer as an antiviral/anti-inflammatory candidate against emerging HCoVs in the future.
为应对未来可能出现的人类冠状病毒(HCoVs),需要开发多种有效的治疗策略。HCoVs 的症状和体征包括免疫炎症反应。因此,我们的研究重点是同时抑制 HCoV 感染和缓解肺部炎症。受构象表位匹配的启发,我们设计了一种全新的抗原空间匹配多肽aptamer(ASM-pApt)纳米结构,旨在与严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)伪病毒(PsV)上的多个尖峰(S)蛋白完美匹配。与单价aptamer相比,ASM-pApt纳米结构的解离常数(KD)降低了1000多倍,其病毒半抑制浓度(IC50)提高了10万多倍,达到89.7 fM(fmol/L),显示了抗原空间匹配的有效性。通过负载多酚作为抗炎药物和壳聚糖(CS)作为赋形剂,ASM-pApt 纳米结构显示出抗炎性和长效药物保留特性。我们的设计表明,聚aptamer有望在未来成为一种抗病毒/消炎候选药物,用于对抗新出现的HCoVs。
{"title":"Antigen spatial-matching polyaptamer nanostructure to block coronavirus infection and alleviate inflammation","authors":"Jingqi Chen, Yuqing Li, Xueliang Liu, Hongyi Li, Jiawei Zhu, Rui Ma, Linxin Tian, Lu Yu, Jiabei Li, Zhuang Liu, Weihong Tan, Yu Yang","doi":"10.1016/j.chempr.2024.10.021","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.021","url":null,"abstract":"Preparation for the potential emergence of future human coronaviruses (HCoVs) calls for the development of versatile and effective treatment strategies. The signs and symptoms of HCoVs include an immune inflammatory response. Therefore, our study focuses on the simultaneous inhibition of HCoV infection and the alleviation of lung inflammation. Inspired by conformational epitope matching, we engineered a <em>de novo</em> antigen spatial-matching polyaptamer (ASM-pApt) nanostructure designed to align perfectly with multiple spike (S) proteins on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus (PsV). Compared with monovalent aptamer, the dissociation constant (K<sub>D</sub>) of the ASM-pApt nanostructure decreased by over 1,000-fold, and its viral semi-inhibitory concentration (IC<sub>50</sub>) improved by over 100,000-fold to 89.7 fM (fmol/L), indicating the effectiveness of antigen spatial matching. By loading polyphenol as anti-inflammatory drug and chitosan (CS) as an excipient, the ASM-pApt nanostructure showed anti-inflammatory and long drug retention properties. Our design shows the promise of polyaptamer as an antiviral/anti-inflammatory candidate against emerging HCoVs in the future.","PeriodicalId":268,"journal":{"name":"Chem","volume":"2 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drinking water purification using metal-organic frameworks: Removal of disinfection by-products 利用金属有机框架净化饮用水:去除消毒副产品
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-21 DOI: 10.1016/j.chempr.2024.10.023
Gabriel Sanchez-Cano, Pablo Cristobal-Cueto, Lydia Saez, Antonio Lastra, Ana Marti-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero, Sara Rojas, Patricia Horcajada
Water disinfection is one of the most challenging processes for public health. Nevertheless, this process can generate inorganic by-products (chlorite [ClO2] and chlorate [ClO3]) associated with human diseases. Recently, the European Union established a permissible maximum concentration of 0.25 mg⋅L−1 for both oxyanions in drinking water; thus, the existing technologies have to be adapted. Here, the earliest use of metal-organic frameworks (MOFs) in the elimination of the disinfection by-products ClO2 and ClO3 from fresh water is presented. Among the Fe-MOFs proposed, the robust MIL-88B-NH2 demonstrated exceptional oxyanions elimination capacities (100% and 30% of ClO2 and ClO3 in 1 and 5 min, respectively). Based on these results, a continuous-flow device based on MIL-88B-NH2 was tested under simulated realistic conditions, achieving high oxyanions elimination capacities, and the reusability of the system was demonstrated. This pioneering work opens new perspectives in the implementation of MOFs in real drinking water treatment plants (DWTPs).
水消毒是对公共卫生最具挑战性的过程之一。然而,这一过程会产生与人类疾病相关的无机副产品(亚氯酸盐 [ClO2-] 和氯酸盐 [ClO3-])。最近,欧盟规定这两种氧阴离子在饮用水中的最大允许浓度为 0.25 mg-L-1;因此,必须对现有技术进行调整。本文介绍了最早利用金属有机框架(MOFs)消除淡水中消毒副产物 ClO2- 和 ClO3-的方法。在提出的铁-MOFs 中,坚固耐用的 MIL-88B-NH2 显示出卓越的氧阴离子消除能力(1 分钟和 5 分钟内分别消除 100% 和 30% 的 ClO2- 和 ClO3-)。在这些结果的基础上,基于 MIL-88B-NH2 的连续流装置在模拟现实条件下进行了测试,实现了较高的氧阴离子消除能力,并证明了系统的可重复使用性。这项开创性工作为在实际饮用水处理厂(DWTP)中应用 MOFs 开辟了新的前景。
{"title":"Drinking water purification using metal-organic frameworks: Removal of disinfection by-products","authors":"Gabriel Sanchez-Cano, Pablo Cristobal-Cueto, Lydia Saez, Antonio Lastra, Ana Marti-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero, Sara Rojas, Patricia Horcajada","doi":"10.1016/j.chempr.2024.10.023","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.023","url":null,"abstract":"Water disinfection is one of the most challenging processes for public health. Nevertheless, this process can generate inorganic by-products (chlorite [ClO<sub>2</sub><sup>−</sup>] and chlorate [ClO<sub>3</sub><sup>−</sup>]) associated with human diseases. Recently, the European Union established a permissible maximum concentration of 0.25 mg⋅L<sup>−1</sup> for both oxyanions in drinking water; thus, the existing technologies have to be adapted. Here, the earliest use of metal-organic frameworks (MOFs) in the elimination of the disinfection by-products ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> from fresh water is presented. Among the Fe-MOFs proposed, the robust MIL-88B-NH<sub>2</sub> demonstrated exceptional oxyanions elimination capacities (100% and 30% of ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> in 1 and 5 min, respectively). Based on these results, a continuous-flow device based on MIL-88B-NH<sub>2</sub> was tested under simulated realistic conditions, achieving high oxyanions elimination capacities, and the reusability of the system was demonstrated. This pioneering work opens new perspectives in the implementation of MOFs in real drinking water treatment plants (DWTPs).","PeriodicalId":268,"journal":{"name":"Chem","volume":"14 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion 太阳能-化学转换的生物-生物混合系统工程
IF 23.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-20 DOI: 10.1016/j.chempr.2024.10.018
Wentao Song, Xinyue Zhang, Wanrong Li, Bowen Li, Bin Liu
Constructing biotic-abiotic hybrid systems for solar energy conversion receives growing interest owing to their sustainable and eco-friendly approach to producing chemicals. The integration of intracellular biochemical pathways with semiconductor materials offers superior product selectivity and efficient light utilization in solar-driven biocatalysis. However, the complicated multidisciplinary features and limited understanding of extracellular electron transfer at the biological-material interfaces hinder the practical application of biotic-abiotic hybrid systems for converting solar energy. In this perspective, we summarize the fundamental mechanisms of biohybrid systems for solar-to-chemical conversion and highlight ongoing challenges and promising directions for future development. First, a comprehensive overview of biotic-abiotic hybrid systems is introduced together with the mechanism of extracellular electron transfer for chemical production. Then, recent achievements of biohybrid systems for H2 production, CO2 reduction, N2 fixation, and chemical synthesis are discussed in detail. Finally, the current challenges in biotic-abiotic hybrid systems and prospective research directions are explored.
构建用于太阳能转换的生物-非生物混合系统越来越受到人们的关注,因为这种系统采用可持续和生态友好的方法来生产化学品。在太阳能驱动的生物催化过程中,细胞内生化途径与半导体材料的整合提供了卓越的产品选择性和高效的光利用率。然而,生物-材料界面上复杂的多学科特征和对细胞外电子传递的有限了解,阻碍了用于转换太阳能的生物-非生物混合系统的实际应用。在这一视角中,我们总结了用于太阳能到化学能转换的生物-生物混合系统的基本机制,并强调了当前面临的挑战和未来有希望的发展方向。首先,我们全面介绍了生物-非生物杂交系统,以及用于化学生产的胞外电子传递机制。然后,详细讨论了生物杂交系统在生产 H2、还原 CO2、固定 N2 和化学合成方面的最新成果。最后,探讨了生物-生物杂交系统目前面临的挑战和未来的研究方向。
{"title":"Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion","authors":"Wentao Song, Xinyue Zhang, Wanrong Li, Bowen Li, Bin Liu","doi":"10.1016/j.chempr.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.018","url":null,"abstract":"Constructing biotic-abiotic hybrid systems for solar energy conversion receives growing interest owing to their sustainable and eco-friendly approach to producing chemicals. The integration of intracellular biochemical pathways with semiconductor materials offers superior product selectivity and efficient light utilization in solar-driven biocatalysis. However, the complicated multidisciplinary features and limited understanding of extracellular electron transfer at the biological-material interfaces hinder the practical application of biotic-abiotic hybrid systems for converting solar energy. In this perspective, we summarize the fundamental mechanisms of biohybrid systems for solar-to-chemical conversion and highlight ongoing challenges and promising directions for future development. First, a comprehensive overview of biotic-abiotic hybrid systems is introduced together with the mechanism of extracellular electron transfer for chemical production. Then, recent achievements of biohybrid systems for H<sub>2</sub> production, CO<sub>2</sub> reduction, N<sub>2</sub> fixation, and chemical synthesis are discussed in detail. Finally, the current challenges in biotic-abiotic hybrid systems and prospective research directions are explored.","PeriodicalId":268,"journal":{"name":"Chem","volume":"23 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1