Pub Date : 2019-07-01DOI: 10.13189/UJME.2019.070412
N. Penkova, Petar Chervenliev, B. Mladenov, K. Krumov
An algorithm for numerical simulation of transient moisture content fields and mechanical processes in ceramic ware at drying in industrial aggregates is developed. It is based on mathematical models of the mass transfer and mechanical behavior in the ceramic bodies, data for the drying regime and physical properties of the material as function of water content. The models allow variations of the drying conditions in order to choice the most efficient regime at existing or design dryers. The algorithm is applied for a direct coupled finite element analysis of wet bricks behavior in continuous working drying installation. The shrinkage mode, modulus of elasticity, Poisson ratio, modulus of rupture, effective mass transfer coefficient and critical moisture content are determined by experimental tests of the material. They are used to simulate numerically three-dimensional moisture, stress and strain fields in ceramic bodies at the existing drying regime. Ways for improvement of the models and their application for estimation of the potential for energy savings in industrial dryers are discussed.
{"title":"Mathematical Modeling and Numerical Simulation of Coupled Mass Transfer and Mechanical Processes in Ceramic Ware at Industrial Drying","authors":"N. Penkova, Petar Chervenliev, B. Mladenov, K. Krumov","doi":"10.13189/UJME.2019.070412","DOIUrl":"https://doi.org/10.13189/UJME.2019.070412","url":null,"abstract":"An algorithm for numerical simulation of transient moisture content fields and mechanical processes in ceramic ware at drying in industrial aggregates is developed. It is based on mathematical models of the mass transfer and mechanical behavior in the ceramic bodies, data for the drying regime and physical properties of the material as function of water content. The models allow variations of the drying conditions in order to choice the most efficient regime at existing or design dryers. The algorithm is applied for a direct coupled finite element analysis of wet bricks behavior in continuous working drying installation. The shrinkage mode, modulus of elasticity, Poisson ratio, modulus of rupture, effective mass transfer coefficient and critical moisture content are determined by experimental tests of the material. They are used to simulate numerically three-dimensional moisture, stress and strain fields in ceramic bodies at the existing drying regime. Ways for improvement of the models and their application for estimation of the potential for energy savings in industrial dryers are discussed.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122611844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.13189/UJME.2019.070407
M. Abobaker
In this paper, we take several different analytical and numerical approaches to studying the equilibrium of a gravitating system of a gas-dust cloud. We consider one-dimensional self-gravitating spherically symmetric fluid flow of a gas-dust cloud. We discuss the equilibrium of the system of gas-dust cloud by using simplified analytic stellar, polytropic models. A condition for the equilibrium of the cloud in the form of a differential equation is used. Using mass density in the cloud as a given function, we obtained the corresponding pressure analytically within the cloud and determined the central pressure. In dealing with a polytropic model, we found the analytical and numerical solution of the Lane-Emden equation for the various values of the polytropic index after that, central density and central pressure were obtained. Finally, the density and pressure of the cloud for the various values of the polytropic index are calculated. The result found by the simplified analytical method and the polytropic method is compared.
{"title":"Equilibrium of Gravitating System of Spherical Gas-Dust Cloud","authors":"M. Abobaker","doi":"10.13189/UJME.2019.070407","DOIUrl":"https://doi.org/10.13189/UJME.2019.070407","url":null,"abstract":"In this paper, we take several different analytical and numerical approaches to studying the equilibrium of a gravitating system of a gas-dust cloud. We consider one-dimensional self-gravitating spherically symmetric fluid flow of a gas-dust cloud. We discuss the equilibrium of the system of gas-dust cloud by using simplified analytic stellar, polytropic models. A condition for the equilibrium of the cloud in the form of a differential equation is used. Using mass density in the cloud as a given function, we obtained the corresponding pressure analytically within the cloud and determined the central pressure. In dealing with a polytropic model, we found the analytical and numerical solution of the Lane-Emden equation for the various values of the polytropic index after that, central density and central pressure were obtained. Finally, the density and pressure of the cloud for the various values of the polytropic index are calculated. The result found by the simplified analytical method and the polytropic method is compared.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127201429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.13189/UJME.2019.070406
N. Rahman, N. Bachok, H. Rosali
In this study, we investigated the problem of steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow over a linearly stretching/shrinking sheet in nanofluids. There are three types of metallic nanoparticles considered such as copper (Cu), alumina (Al 2 O 3 ) and titania (TiO 2 ) in the base fluid of water with the Prandtl number Pr = 6.2 to investigate the effect of the nanoparticles volume fraction parameter φ of the nanofluids. In this problem, the governing nonlinear partial differential equations are transformed into the nonlinear ordinary differential equations by using a similarity transformation and then solved numerically using the boundary value problems solver bvp4c in Matlab software. The influence of magnetic field parameter, M on the skin friction coefficient C f , local Nusselt number Nu and the velocity and temperature profiles are presented graphically and discussed. The results show that the velocity and temperature are influenced by the magnetic field and nanoparticles volume fraction. The dual solutions exist for shrinking sheet case and the solutions are non-unique, different from a stretching sheet. The numerical values of and for M=0 are also computed, which show a favourable agreement with previous work.
{"title":"MHD Stagnation-point Flow over a Stretching/ Shrinking Sheet in Nanofluids","authors":"N. Rahman, N. Bachok, H. Rosali","doi":"10.13189/UJME.2019.070406","DOIUrl":"https://doi.org/10.13189/UJME.2019.070406","url":null,"abstract":"In this study, we investigated the problem of steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow over a linearly stretching/shrinking sheet in nanofluids. There are three types of metallic nanoparticles considered such as copper (Cu), alumina (Al 2 O 3 ) and titania (TiO 2 ) in the base fluid of water with the Prandtl number Pr = 6.2 to investigate the effect of the nanoparticles volume fraction parameter φ of the nanofluids. In this problem, the governing nonlinear partial differential equations are transformed into the nonlinear ordinary differential equations by using a similarity transformation and then solved numerically using the boundary value problems solver bvp4c in Matlab software. The influence of magnetic field parameter, M on the skin friction coefficient C f , local Nusselt number Nu and the velocity and temperature profiles are presented graphically and discussed. The results show that the velocity and temperature are influenced by the magnetic field and nanoparticles volume fraction. The dual solutions exist for shrinking sheet case and the solutions are non-unique, different from a stretching sheet. The numerical values of and for M=0 are also computed, which show a favourable agreement with previous work.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123921954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.13189/UJME.2019.070408
Nurazleen Abdul Majid, N. Mohammad, A. Kasim, M. R. Ilias, S. Shafie
Due to the many applications of micropolar fluid such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid, it has become a prominent subject among the researchers. However, the characteristics of micropolar fluid flow over a surface of another quiescent fluid with heavier density of micropolar fluid under the effect of constant heat flux are still unknown. Therefore, the objective of the present work is to investigate numerically the forced convection of micropolar fluid flow over a surface of another quiescent fluid using constant heat flux boundary condition. In this study, the similarity transformation is used to reduce the boundary layer governing equations for mass, momentum, angular momentum and energy from partial differential equations to a system of nonlinear ordinary differential equations. This problem is solved numerically using shooting technique with Runge-Kutta-Gill method and implemented in Jupyter Notebook using Python 3 language. The behaviour of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed and discussed. It is found that, the temperature is higher in constant wall temperature (CWT) compared to constant heat flux (CHF) at stretching or shrinking parameter and various micropolar parameter K. Furthermore, as Prandtl number increases, the temperature is decreasing in both CHF and CWT.
{"title":"Effect of Constant Heat Flux on Forced Convective Micropolar Fluid Flow over a Surface of Another Quiescent Fluid","authors":"Nurazleen Abdul Majid, N. Mohammad, A. Kasim, M. R. Ilias, S. Shafie","doi":"10.13189/UJME.2019.070408","DOIUrl":"https://doi.org/10.13189/UJME.2019.070408","url":null,"abstract":"Due to the many applications of micropolar fluid such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid, it has become a prominent subject among the researchers. However, the characteristics of micropolar fluid flow over a surface of another quiescent fluid with heavier density of micropolar fluid under the effect of constant heat flux are still unknown. Therefore, the objective of the present work is to investigate numerically the forced convection of micropolar fluid flow over a surface of another quiescent fluid using constant heat flux boundary condition. In this study, the similarity transformation is used to reduce the boundary layer governing equations for mass, momentum, angular momentum and energy from partial differential equations to a system of nonlinear ordinary differential equations. This problem is solved numerically using shooting technique with Runge-Kutta-Gill method and implemented in Jupyter Notebook using Python 3 language. The behaviour of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed and discussed. It is found that, the temperature is higher in constant wall temperature (CWT) compared to constant heat flux (CHF) at stretching or shrinking parameter and various micropolar parameter K. Furthermore, as Prandtl number increases, the temperature is decreasing in both CHF and CWT.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131971957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.071305
Nia Nuraeni Suryaman
An engineer needed the ability to design an experiment research to be effective and efficient to obtain optimal results. The purpose of this experiment is to determine the fastest rate of freezing saline solution. The research process begins with determining the independent variables as much as possible and determines the three independent variables to be tested. After determine variables, and then create table factorial design to determine the research steps as much as 8 times. Then determine the most influential variables using Yates's algorithm was then tested again using response surface methodology (RSM), but for this study only uses two steps of the three step RSM. So it can be concluded that the lower temperature and salinity the faster the rate of freezing for both type of salt, Krosok and salt.
{"title":"Study of the Fastest Rate of Freezing Saline Solution Using Factorial Design Method","authors":"Nia Nuraeni Suryaman","doi":"10.13189/UJME.2019.071305","DOIUrl":"https://doi.org/10.13189/UJME.2019.071305","url":null,"abstract":"An engineer needed the ability to design an experiment research to be effective and efficient to obtain optimal results. The purpose of this experiment is to determine the fastest rate of freezing saline solution. The research process begins with determining the independent variables as much as possible and determines the three independent variables to be tested. After determine variables, and then create table factorial design to determine the research steps as much as 8 times. Then determine the most influential variables using Yates's algorithm was then tested again using response surface methodology (RSM), but for this study only uses two steps of the three step RSM. So it can be concluded that the lower temperature and salinity the faster the rate of freezing for both type of salt, Krosok and salt.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133437506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.071306
Asep Anwar, Didit Damur Rochman
Company X in 2017 has a delay in the Turning and Milling department of 58% of the total order of 2,334. The actual condition is the number of machines used, namely 5 CNC machines with a production capacity of 230.4 hours / week and the number of work orders from 2013-2018 that must be done is 2767,458 hours. The delay was due to the absence of an appropriate engine scheduling system. Modeling uses mathematical models and runs using lingo software. The results of calculations using LINGO for mathematical models are 14,274 hours with a calculation time of 17 minutes 55 seconds.
{"title":"Parallel Machine Scheduling for Minimizing Flowtime: Case Study at Aircraft Company X Turnin and Milling Departments","authors":"Asep Anwar, Didit Damur Rochman","doi":"10.13189/UJME.2019.071306","DOIUrl":"https://doi.org/10.13189/UJME.2019.071306","url":null,"abstract":"Company X in 2017 has a delay in the Turning and Milling department of 58% of the total order of 2,334. The actual condition is the number of machines used, namely 5 CNC machines with a production capacity of 230.4 hours / week and the number of work orders from 2013-2018 that must be done is 2767,458 hours. The delay was due to the absence of an appropriate engine scheduling system. Modeling uses mathematical models and runs using lingo software. The results of calculations using LINGO for mathematical models are 14,274 hours with a calculation time of 17 minutes 55 seconds.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122232771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.071304
Yani Iriani, Harrys Bachtiar
Purpose: The purpose of this study was to determine the maintenance intervals of critical components of jet dyeing machines in an effort to minimize downtime and calculate maintenance costs for engine damage to the jet dyeing. Design/ methodology/ approach: In this study an optimization method was developed to determine the replacement interval of a critical component, namely the Age Replacement Method. Findings: Based on the results of the calculation interval obtained preventive care critical components of jet engines during dyeing 1549 hours. It means that the component must be replaced before operation for 1549 hours or there is 6 times the turnover of prevention under taken in the interval of one year and the resulting decrease in the total cost of 82%. Research limitations/ implications: A review conducted in this paper against one component only, and then it can be developed for this type of component production machines. Practical implications: If the company is implementing a policy of replacement of critical components of the engine on the jet dyeing machine with a method of age replacement, then it will occur treatment cost savings amounting to Rp. 6,752,886 lower when compared with the initial conditions the company previously Rp 37,441,132. Originality/ value: This study combines the Pareto Diagram method and the Age Replacement Method to obtain optimum maintenance scheduling.
{"title":"Analysis of Maintenance Systems in Jet Dyeing Machine Components Using the Age Replacement Method","authors":"Yani Iriani, Harrys Bachtiar","doi":"10.13189/UJME.2019.071304","DOIUrl":"https://doi.org/10.13189/UJME.2019.071304","url":null,"abstract":"Purpose: The purpose of this study was to determine the maintenance intervals of critical components of jet dyeing machines in an effort to minimize downtime and calculate maintenance costs for engine damage to the jet dyeing. Design/ methodology/ approach: In this study an optimization method was developed to determine the replacement interval of a critical component, namely the Age Replacement Method. Findings: Based on the results of the calculation interval obtained preventive care critical components of jet engines during dyeing 1549 hours. It means that the component must be replaced before operation for 1549 hours or there is 6 times the turnover of prevention under taken in the interval of one year and the resulting decrease in the total cost of 82%. Research limitations/ implications: A review conducted in this paper against one component only, and then it can be developed for this type of component production machines. Practical implications: If the company is implementing a policy of replacement of critical components of the engine on the jet dyeing machine with a method of age replacement, then it will occur treatment cost savings amounting to Rp. 6,752,886 lower when compared with the initial conditions the company previously Rp 37,441,132. Originality/ value: This study combines the Pareto Diagram method and the Age Replacement Method to obtain optimum maintenance scheduling.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121572684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.070301
Juanjuan Wang, Xueliang Ping
The profile design of cycloid disk in cycloidal steel ball reducer is the core of reducer design, which directly affects the performance of reducer. The cycloidal ball reducer is driven by a certain number of steel balls in a tooth profile composed of a pair of intermeshing internal and external cycloidal lines. The performance of the reducer can be optimized by adjusting the design equation of the cycloidal disc type line. However, in the process of design and optimization, the requirement of freedom and controllability of cycloid is getting higher and higher. The traditional design method of cycloidal profile based on cycloid parameter equation can no longer meet the requirements of design. The NURBS method can accurately represent the free curve and the conic quadratic curve. The cycloidal profile is actually a complex curve composed of a certain number of arcs. In this paper, the NURBS curve is applied to the design of cycloid disk of reducer, and the cycloidal profile based on NURBS is deeply studied. By sampling the known cycloidal profile, the sample point, the inverse control point, the weight factor, the node vector and the sample point are obtained, and the analysis verifies that the error between the fitted NURBS curve and the original curve is within the feasible range. Taking the BR85us-10G-6 reducer as an example, the fitting curve of the inner cycloid disk profile is obtained by using cubic NURBS curve, which can improve the flexibility and local adjustment of the cycloidal disc profile design.
{"title":"NURBS Method for Cycloidal Steel Ball Reducer Profile Design","authors":"Juanjuan Wang, Xueliang Ping","doi":"10.13189/UJME.2019.070301","DOIUrl":"https://doi.org/10.13189/UJME.2019.070301","url":null,"abstract":"The profile design of cycloid disk in cycloidal steel ball reducer is the core of reducer design, which directly affects the performance of reducer. The cycloidal ball reducer is driven by a certain number of steel balls in a tooth profile composed of a pair of intermeshing internal and external cycloidal lines. The performance of the reducer can be optimized by adjusting the design equation of the cycloidal disc type line. However, in the process of design and optimization, the requirement of freedom and controllability of cycloid is getting higher and higher. The traditional design method of cycloidal profile based on cycloid parameter equation can no longer meet the requirements of design. The NURBS method can accurately represent the free curve and the conic quadratic curve. The cycloidal profile is actually a complex curve composed of a certain number of arcs. In this paper, the NURBS curve is applied to the design of cycloid disk of reducer, and the cycloidal profile based on NURBS is deeply studied. By sampling the known cycloidal profile, the sample point, the inverse control point, the weight factor, the node vector and the sample point are obtained, and the analysis verifies that the error between the fitted NURBS curve and the original curve is within the feasible range. Taking the BR85us-10G-6 reducer as an example, the fitting curve of the inner cycloid disk profile is obtained by using cubic NURBS curve, which can improve the flexibility and local adjustment of the cycloidal disc profile design.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128250170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.070304
M. Abobaker
In this paper, we present a simple model for the dynamics of one dimensional of a self-gravitating spherical symmetrical gas-dust cloud. We take two analytical approaches to study the dynamics of a gravitating system of a gasdust cloud. The first approach solves a set of non-linear equation of dynamics of a gravitating system. The second approach is a Cole-Hopf transformation, which is used to simplify the equations of dynamics and after that, we applied the method of characteristics to reduce partial differential equations to a system of entirely solvable ordinary differential equations. The results found by the analytical method and the Cole-Hopf method are compared with each other, showing that both lead to the same result. The obtained results in this study are presented in plots. We used the Mathematica software package in performing calculation and plotting graphs.
{"title":"An Analytical Solution of Dynamics of Self-gravitating Spherical Gas-Dust Cloud","authors":"M. Abobaker","doi":"10.13189/UJME.2019.070304","DOIUrl":"https://doi.org/10.13189/UJME.2019.070304","url":null,"abstract":"In this paper, we present a simple model for the dynamics of one dimensional of a self-gravitating spherical symmetrical gas-dust cloud. We take two analytical approaches to study the dynamics of a gravitating system of a gasdust cloud. The first approach solves a set of non-linear equation of dynamics of a gravitating system. The second approach is a Cole-Hopf transformation, which is used to simplify the equations of dynamics and after that, we applied the method of characteristics to reduce partial differential equations to a system of entirely solvable ordinary differential equations. The results found by the analytical method and the Cole-Hopf method are compared with each other, showing that both lead to the same result. The obtained results in this study are presented in plots. We used the Mathematica software package in performing calculation and plotting graphs.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116942272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.13189/UJME.2019.070303
Abdullh Saiwan Majli, S. H. Mnaathr
Solar energy is obtainable in the earth as an unlimited source of clean energy. There is an increasing bearing in the carbon release in the world. There are two parameters mainly affect the efficiency of the solar system that are solar radiation and temperature. In this research, the Effect of the Solar Irradiance and Temperature on the Characteristic of Photovoltaic in Al-Nasiriya City is studied. PVsyst simulation facility is to be used for design and optimization. A computation has been conducted to verify the change in i-v and p-v characteristics of the system. The suggest model is based on a behavioral cell model for styling solar radiance to electricity transformation and to confirm the different factors assuming the solar PV system competence. The temperature and radiation data has been possessed from the position of Al-Nasiriya City in Iraq south.
{"title":"Studying and Detecting the Influences of the Solar Irradiance and Temperature Regarding the Characteristic of Photovoltaic at Al- Nasiriya City","authors":"Abdullh Saiwan Majli, S. H. Mnaathr","doi":"10.13189/UJME.2019.070303","DOIUrl":"https://doi.org/10.13189/UJME.2019.070303","url":null,"abstract":"Solar energy is obtainable in the earth as an unlimited source of clean energy. There is an increasing bearing in the carbon release in the world. There are two parameters mainly affect the efficiency of the solar system that are solar radiation and temperature. In this research, the Effect of the Solar Irradiance and Temperature on the Characteristic of Photovoltaic in Al-Nasiriya City is studied. PVsyst simulation facility is to be used for design and optimization. A computation has been conducted to verify the change in i-v and p-v characteristics of the system. The suggest model is based on a behavioral cell model for styling solar radiance to electricity transformation and to confirm the different factors assuming the solar PV system competence. The temperature and radiation data has been possessed from the position of Al-Nasiriya City in Iraq south.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"7 14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114754876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}