首页 > 最新文献

Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)最新文献

英文 中文
Large area hybrid detectors at Sirius: Operation threshold optimization for Medipix3RX 天狼星的大面积混合探测器:Medipix3RX操作阈值优化
Matheus Gimenez Fernandes, R. B. Campanelli, Gustavo Siqueira Gomes, J. Polli, E.B. Antonio
At the Sirius synchrotron facility, large area photon counting detector systems are employed in different beamlines and experimental techniques. These detectors were developed at the Brazilian Synchrotron Light Laboratory (LNLS), the called PIMEGA series detectors feature Medipix3RX Application Specific Integrated Circuit (ASIC), with 256 x 256 squared pixels and 55 µ m pitch. In this work, the influence of the threshold energy level was evaluated in order to achieve optimized values for minimizing false counts during operation, which arise from the charge sharing effect. As a result, we have defined the Approximated Mean Multiplicity (AMM), which can be used as a new procedure in photon counting detectors to define an optimal operation threshold level. Additionally, energy calibrations and energy resolution experiments are presented, as well as the AMM values for multiple operation bias voltages and incident energies.
在天狼星同步加速器设施,大面积光子计数探测器系统采用不同的光束线和实验技术。这些探测器是由巴西同步加速器光实验室(LNLS)开发的,称为PIMEGA系列探测器具有Medipix3RX应用专用集成电路(ASIC),具有256 x 256平方像素和55 μ m间距。在这项工作中,评估了阈值能级的影响,以获得优化值,以最大限度地减少运行过程中由电荷共享效应引起的误计数。因此,我们定义了近似平均多重性(AMM),它可以作为光子计数检测器中定义最佳操作阈值水平的新方法。此外,还介绍了能量校准和能量分辨实验,以及多种工作偏置电压和入射能量下的AMM值。
{"title":"Large area hybrid detectors at Sirius: Operation threshold optimization for Medipix3RX","authors":"Matheus Gimenez Fernandes, R. B. Campanelli, Gustavo Siqueira Gomes, J. Polli, E.B. Antonio","doi":"10.22323/1.420.0066","DOIUrl":"https://doi.org/10.22323/1.420.0066","url":null,"abstract":"At the Sirius synchrotron facility, large area photon counting detector systems are employed in different beamlines and experimental techniques. These detectors were developed at the Brazilian Synchrotron Light Laboratory (LNLS), the called PIMEGA series detectors feature Medipix3RX Application Specific Integrated Circuit (ASIC), with 256 x 256 squared pixels and 55 µ m pitch. In this work, the influence of the threshold energy level was evaluated in order to achieve optimized values for minimizing false counts during operation, which arise from the charge sharing effect. As a result, we have defined the Approximated Mean Multiplicity (AMM), which can be used as a new procedure in photon counting detectors to define an optimal operation threshold level. Additionally, energy calibrations and energy resolution experiments are presented, as well as the AMM values for multiple operation bias voltages and incident energies.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115234308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Status of the LHCb Pixel Detector LHCb像素检测器的状态
E. Lemos Cid
The LHCb experiment at CERN is a general-purpose forward spectrometer at LHC (CERN) optimized for heavy flavour physics and rare decays. It provides a coverage of 2 < 𝜂 < 5 with a momentum resolution of 0.5 % at pT < 20 GeV. A data-set of 10 fb − 1 has been collected at the end of Run 2, followed by a major detector upgrade (Upgrade I), fully replacing the vertex and trigger subsystems [1]. The Vertex Locator (VELO) is a silicon pixel tracking detector in the heart of the LHCb spectrometer. As a higher instantaneous luminosity of 2 ∗ 10 33 𝑠 − 1 𝑐𝑚 − 2 is expected during Run 3 (2022 - 2025), the VELO has been upgraded by a brand-new detector. This new VELO replaces the silicon-strip technology with new 55 micrometers pitch pixels, operating as close as a 5 mm radius from the LHC beams. The VELO new readout ASIC, called VeloPix, is capable of operating at the 40 MHz collision rate, reaching 900 MHits/s. The detector is built with a modular design, composed of 52 modules divided into two-detector halves. The production of the required modules was completed in 2021, leading to the detector assembly phase. Both detector halves were successfully installed in May 2022. In this paper, the final steps of construction and installation will be shown. The detector is now under commissioning with beam and preliminary results will also be presented.
欧洲核子研究中心(CERN)的LHCb实验是一台针对重味物理和罕见衰变进行优化的通用正向光谱仪。它提供了2 <𝜂< 5的覆盖范围,在pT < 20 GeV时动量分辨率为0.5%。在Run 2结束时收集了10 fb−1的数据集,随后进行了一次主要的检测器升级(upgrade I),完全替换了顶点和触发器子系统[1]。顶点定位器(VELO)是LHCb光谱仪核心的硅像素跟踪探测器。由于预计在运行3(2022 - 2025)期间,VELO的瞬时光度将达到2∗10 33𝑠−1𝑐𝑚−2,因此VELO已通过全新的探测器进行了升级。这种新的VELO用新的55微米间距像素取代了硅条技术,工作半径接近LHC光束5毫米。VELO新的读出ASIC,称为VeloPix,能够在40 MHz的碰撞率下工作,达到900 MHits/s。探测器采用模块化设计,由52个模块组成,分为两部分。所需模块的生产于2021年完成,进入探测器组装阶段。两半探测器于2022年5月成功安装。在本文中,将展示施工和安装的最后步骤。探测器目前正在进行波束调试,初步结果也将公布。
{"title":"Status of the LHCb Pixel Detector","authors":"E. Lemos Cid","doi":"10.22323/1.420.0009","DOIUrl":"https://doi.org/10.22323/1.420.0009","url":null,"abstract":"The LHCb experiment at CERN is a general-purpose forward spectrometer at LHC (CERN) optimized for heavy flavour physics and rare decays. It provides a coverage of 2 < 𝜂 < 5 with a momentum resolution of 0.5 % at pT < 20 GeV. A data-set of 10 fb − 1 has been collected at the end of Run 2, followed by a major detector upgrade (Upgrade I), fully replacing the vertex and trigger subsystems [1]. The Vertex Locator (VELO) is a silicon pixel tracking detector in the heart of the LHCb spectrometer. As a higher instantaneous luminosity of 2 ∗ 10 33 𝑠 − 1 𝑐𝑚 − 2 is expected during Run 3 (2022 - 2025), the VELO has been upgraded by a brand-new detector. This new VELO replaces the silicon-strip technology with new 55 micrometers pitch pixels, operating as close as a 5 mm radius from the LHC beams. The VELO new readout ASIC, called VeloPix, is capable of operating at the 40 MHz collision rate, reaching 900 MHits/s. The detector is built with a modular design, composed of 52 modules divided into two-detector halves. The production of the required modules was completed in 2021, leading to the detector assembly phase. Both detector halves were successfully installed in May 2022. In this paper, the final steps of construction and installation will be shown. The detector is now under commissioning with beam and preliminary results will also be presented.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"12 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120858036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATLAS ITk Pixel Pre-production Planar Sensor Characterisation for the HL-LHC Upgrade 用于HL-LHC升级的ATLAS ITk像素预生产平面传感器特性
Yusong Tian, G. Calderini, I. Camp, Thibaud Idriss Carcone, P. Chabrillat, Artur Cordeiro Oudot Choi, F. Crescioli, J. Grosse-Knetter, S. Hadzic, Shunsuke Iizaka, Christopher Krause, L. Meng, K. Nakamura, A. Quadt, S. Terzo, Ana Sofia Torrento Coello, H. Ye
Yusong Tian,a,∗ Giovanni Calderini, Imogen Camp, Thibaud Idriss Carcone, Paul Mickael Chabrillat, Artur Cordeiro Oudot Choi, Francesco Crescioli, Jörn Große-Knetter, Šejla Hadžić, Shunsuke Iizaka, Christopher Krause, Lingxin Meng, f Koji Nakamura, Arnulf Quadt, Stefano Terzo, Ana Sofia Torrento Coello and Hua Ye II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, DE 37077 Göttingen, Germany LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, 4 place Jussieu, FR 75005 Paris, France Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, DE 80805 München, Germany Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, 1 Chome-1-1 Tennodai, Tsukuba, Japan Fakultät Physik, Technische Universität Dortmund, Otto-Hahn-Straße 4, DE 44227 Dortmund, Germany f Physics Department, Lancaster University, Bailrigg, Lancaster LA1 4YW, United Kingdom KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Japan Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, UAB Campus, Edifici CN, ES 08193 Barcelona, Spain Detectors and Instrumentation Department, IJCLab – Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, UMR 9012 – CNRS / Université Paris-Saclay / Université Paris Cité, 15 rue Georges Clémenceau, FR 91405 Orsay, France
Yusong Tian, a .∗Giovanni Calderini Imogen营地,Thibaud伊德里斯Carcone Paul Mickael Chabrillat,阿图尔Cordeiro崔Oudot Francesco Crescioli)的ŠGroße-Knetter ejla瞎子žić,Shunsuke Iizaka克劳斯,克里斯托弗,蒙Lingxin f内中村,Arnulf Quadt,斯特凡诺Terzo,安娜索菲亚Torrento Coello与虎II .勒物理学研究学院,Georg-August-Universität哥廷根1 Friedrich-Hund-Platz DE 37077哥廷根,德国LPNHE Universit索邦é,Université巴黎CitéCNRS / IN2P3 4 Jussieu广场,把牢75005巴黎,法国物理马普研究所(Werner-Heisenberg-Institut) Föhringer戒指6 DE 80805慕尼黑德国组织of Physics and友永Center for the Faculty of小时宇宙历史and Applied课程Tsukuba大学1 Chome-1-1 Tennodai Tsukuba,日本技术多特蒙德大学物理学科在Otto-Hahn-Straße 4、DE 44227德国多特蒙德f Physics警局,兰卡斯特大学Bailrigg,兰卡斯特LA1 4YW,联合王国案件High Energy Accelerator文化研究组织,1-1威武Tsukuba、日本研究所DE física d 'Altes幸存(IFAE),而巴塞罗那科学与技术研究所,UAB校园Edifici CN 08193巴塞罗那,献礼Detectors and Instrumentation警局,IJCLab - Laboratoire de Physique的2次工业革命Infinisène Joliot-Curie UMR 9012——CNRS / UniversitéParis-Saclay / Université巴黎Cité15 rue乔治Clémenceau,把牢91405 Orsay,法国
{"title":"ATLAS ITk Pixel Pre-production Planar Sensor Characterisation for the HL-LHC Upgrade","authors":"Yusong Tian, G. Calderini, I. Camp, Thibaud Idriss Carcone, P. Chabrillat, Artur Cordeiro Oudot Choi, F. Crescioli, J. Grosse-Knetter, S. Hadzic, Shunsuke Iizaka, Christopher Krause, L. Meng, K. Nakamura, A. Quadt, S. Terzo, Ana Sofia Torrento Coello, H. Ye","doi":"10.22323/1.420.0067","DOIUrl":"https://doi.org/10.22323/1.420.0067","url":null,"abstract":"Yusong Tian,a,∗ Giovanni Calderini, Imogen Camp, Thibaud Idriss Carcone, Paul Mickael Chabrillat, Artur Cordeiro Oudot Choi, Francesco Crescioli, Jörn Große-Knetter, Šejla Hadžić, Shunsuke Iizaka, Christopher Krause, Lingxin Meng, f Koji Nakamura, Arnulf Quadt, Stefano Terzo, Ana Sofia Torrento Coello and Hua Ye II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, DE 37077 Göttingen, Germany LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, 4 place Jussieu, FR 75005 Paris, France Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, DE 80805 München, Germany Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, 1 Chome-1-1 Tennodai, Tsukuba, Japan Fakultät Physik, Technische Universität Dortmund, Otto-Hahn-Straße 4, DE 44227 Dortmund, Germany f Physics Department, Lancaster University, Bailrigg, Lancaster LA1 4YW, United Kingdom KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Japan Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, UAB Campus, Edifici CN, ES 08193 Barcelona, Spain Detectors and Instrumentation Department, IJCLab – Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, UMR 9012 – CNRS / Université Paris-Saclay / Université Paris Cité, 15 rue Georges Clémenceau, FR 91405 Orsay, France","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131064264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATLAS ITk Pixel Module Bump Bond Stress Analysis ATLAS ITk像素模块碰撞键应力分析
J. Grosse-Knetter
The upgrade of ATLAS for the high-luminosity LHC (HL-LHC) will among many detector components replace the tracking detector with an all-silicon tracker (ITk). The outer layers are composed of strip modules while the innermost 5 layers of ITk are composed of hybrid pixel modules mounted on carbon local supports. The large temperature ranges during operation and the heterogeneous nature of the system means that thermally induced stress is present in the module bump bonds. This paper presents a model using finite element analysis of the pixel module to estimate the maximum stress in the bump bonds. Experimental results are shown of bump strength from lap-shear measurements. Finally, detailed module characterisation is presented of module bump failure due to thermal cycling. Bump bonds are demonstrated to survive 100 cycles over the design thermal cycling range with less than 0.1% thermally induced bump bond disconnects.
高亮度大型强子对撞机(HL-LHC)的ATLAS升级将在众多探测器组件中用全硅跟踪器(ITk)取代跟踪探测器。外层由条形模块组成,最里面的5层ITk由安装在碳局部支架上的混合像素模块组成。操作过程中的大温度范围和系统的非均质性意味着热诱导应力存在于模块碰撞键中。本文提出了一种利用像素模块的有限元分析模型来估计碰撞键的最大应力。实验结果表明,碰撞强度由拉剪测量得到。最后,对热循环引起的模块碰撞故障进行了详细的模块表征。在设计的热循环范围内,碰撞键可以存活100个循环,而热引起的碰撞键断开率小于0.1%。
{"title":"ATLAS ITk Pixel Module Bump Bond Stress Analysis","authors":"J. Grosse-Knetter","doi":"10.22323/1.420.0056","DOIUrl":"https://doi.org/10.22323/1.420.0056","url":null,"abstract":"The upgrade of ATLAS for the high-luminosity LHC (HL-LHC) will among many detector components replace the tracking detector with an all-silicon tracker (ITk). The outer layers are composed of strip modules while the innermost 5 layers of ITk are composed of hybrid pixel modules mounted on carbon local supports. The large temperature ranges during operation and the heterogeneous nature of the system means that thermally induced stress is present in the module bump bonds. This paper presents a model using finite element analysis of the pixel module to estimate the maximum stress in the bump bonds. Experimental results are shown of bump strength from lap-shear measurements. Finally, detailed module characterisation is presented of module bump failure due to thermal cycling. Bump bonds are demonstrated to survive 100 cycles over the design thermal cycling range with less than 0.1% thermally induced bump bond disconnects.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133953713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVTX: A MAPS Vertex Tracker for sPHENIX at RHIC MVTX:用于RHIC的sPHENIX的MAPS顶点跟踪器
Ho-San Ko
We assembled a MAPS (Monolithic Active Pixel Sensor) vertex tracker, MVTX, with 0 . 19 m 2 total silicon coverage and a pixel pitch of 27 µ m. 48 staves, each comprised of 9 sensors thinned down to 50 µ m thickness, are supported by carbon composite structures and organized into three concentric layers immediately surrounding the beampipe inside of the sPHENIX at RHIC of BNL. Reaching the designed resolution of MVTX is critical to the delivery of sPHENIX physics including heavy flavor studies. We present the construction and ∼ 20 µ m-level mechanical alignment in the carbon composite support structure.
我们组装了一个MAPS(单片主动像素传感器)顶点跟踪器,MVTX,与0。总硅覆盖面积为19平方米,像素间距为27微米。48根杆,每个由9个厚度减薄至50微米的传感器组成,由碳复合材料结构支撑,并组织成三个同心层,立即围绕着BNL RHIC的sPHENIX内部的光束管。达到MVTX的设计分辨率对sPHENIX物理传输至关重要,包括重味研究。我们提出了碳复合材料支撑结构的结构和~ 20 μ m级机械对准。
{"title":"MVTX: A MAPS Vertex Tracker for sPHENIX at RHIC","authors":"Ho-San Ko","doi":"10.22323/1.420.0073","DOIUrl":"https://doi.org/10.22323/1.420.0073","url":null,"abstract":"We assembled a MAPS (Monolithic Active Pixel Sensor) vertex tracker, MVTX, with 0 . 19 m 2 total silicon coverage and a pixel pitch of 27 µ m. 48 staves, each comprised of 9 sensors thinned down to 50 µ m thickness, are supported by carbon composite structures and organized into three concentric layers immediately surrounding the beampipe inside of the sPHENIX at RHIC of BNL. Reaching the designed resolution of MVTX is critical to the delivery of sPHENIX physics including heavy flavor studies. We present the construction and ∼ 20 µ m-level mechanical alignment in the carbon composite support structure.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128417234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Status of the ATLAS Pixel Detector ATLAS像素检测器的状态
M. Battaglia
{"title":"Status of the ATLAS Pixel Detector","authors":"M. Battaglia","doi":"10.22323/1.420.0006","DOIUrl":"https://doi.org/10.22323/1.420.0006","url":null,"abstract":"","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133317666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pixel detectors using single energetic quantum imaging: Past and future 使用单能量量子成像的像素探测器:过去与未来
E. Heijne
The early steps with 2-dimensional semiconductor detectors for particle physics experiments are briefly described. A comparison is made between monolithic devices, especially the CCD, and hybrid detectors, which combine a semiconductor sensor matrix with a separate ASIC in advanced CMOS technology. There is only a fragmentary treatment of the exploitation of the pixelated silicon systems in the LHC experiments, although these have become essential for tracking and vertexing in the high particle density in LHC. Some applications in other fields are mentioned. The difference is pointed out between the single quantum processing in these imagers, and the usual imagers for visible radiation. A few thoughts are developed in view of future pixel detector developments.
简要介绍了用于粒子物理实验的二维半导体探测器的早期步骤。比较了单片器件(尤其是CCD)和混合探测器(在先进的CMOS技术中结合了半导体传感器矩阵和单独的专用集成电路)之间的差异。尽管像素化硅系统在大型强子对撞机实验中对于高粒子密度的跟踪和顶点化是必不可少的,但对于这些系统的开发却只有零散的论述。并介绍了在其他领域的应用。指出了这些成像仪的单量子处理与普通可见光成像仪的区别。针对未来像素检测器的发展,提出了几点看法。
{"title":"Pixel detectors using single energetic quantum imaging: Past and future","authors":"E. Heijne","doi":"10.22323/1.420.0003","DOIUrl":"https://doi.org/10.22323/1.420.0003","url":null,"abstract":"The early steps with 2-dimensional semiconductor detectors for particle physics experiments are briefly described. A comparison is made between monolithic devices, especially the CCD, and hybrid detectors, which combine a semiconductor sensor matrix with a separate ASIC in advanced CMOS technology. There is only a fragmentary treatment of the exploitation of the pixelated silicon systems in the LHC experiments, although these have become essential for tracking and vertexing in the high particle density in LHC. Some applications in other fields are mentioned. The difference is pointed out between the single quantum processing in these imagers, and the usual imagers for visible radiation. A few thoughts are developed in view of future pixel detector developments.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":" 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120831179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Study and Empirical Modeling of Long Term Annealing of the ATLAS18 Sensors ATLAS18传感器长期退火的实验研究与经验建模
R. Orr
{"title":"Experimental Study and Empirical Modeling of Long Term Annealing of the ATLAS18 Sensors","authors":"R. Orr","doi":"10.22323/1.420.0043","DOIUrl":"https://doi.org/10.22323/1.420.0043","url":null,"abstract":"","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122024744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring Quality of ATLAS ITk Strip Sensors Through Database 利用数据库监测ATLAS ITk条传感器的质量
V. Fadeyev, M. Beranek, Eric Bach, M. Basso, A. Blue, P. Federicova, J. Fernandez-Tejero, A. Fournier, G. Greig, Derek Hamersly, K. Hara, E. Hill, S. Hirose, B. Hommels, D. Jones, C. Klein, T. Koffas, V. Latonova, M. Mikestikova, K. Nakamura, L. Poley, R. Orr, D. Rousso, B. Stelzer, M. Sykora, M. Ullán, Y. Unno
The High-Luminosity LHC upgrade necessitates a complete replacement of the ATLAS Inner Detector with a larger all-silicon tracker. The strip portion of it covers 165 m 2 area, afforded by the strip sensors. Following several prototype iterations and a successful pre-production, a full-scale production started in 2021, to finish in 2025. It will include about 21,000 wafers and a factor of 5 higher throughput than pre-production, with about 500 sensors produced and tested per month. The transition to production stressed the need to evaluate the results from the Quality Control (QC) and Quality Assurance (QA) tests quickly to meet the monthly delivery schedule. The test data come from 15 collaborating institutes, therefore a highly distributed system with standardized interfaces was required. Specialized software layers of QA and QC Python code were developed against the backend of the ITk database (DB) for this purpose. The developments included particularities and special needs of the Strip Sensors community, such as the large variety of different test devices and test types, the necessary test formats, and different workflows at the test sites. Special attention was paid to techniques facilitating the development and user operations, for example creation of “parallel” sets of dummy DB objects for practice purposes, iterative verification of operability, and the automatic upload of test data. The scalability concerns and automation of the data handling were included in the system architecture from the very inception. The full suite of functionalities includes data integrity checks, data processing to extract and evaluate key parameters, cross-test comparisons, and summary reporting for continuous monitoring. We will also describe the lessons learned and the necessary evolution of the system.
高亮度LHC的升级需要用一个更大的全硅跟踪器完全替换ATLAS内部探测器。它的条带部分覆盖165平方米的面积,由条带传感器提供。经过几次原型迭代和成功的预生产,2021年开始全面生产,2025年完成。它将包括约21,000片晶圆,吞吐量比预生产高5倍,每月生产和测试约500个传感器。向生产的过渡强调需要快速评估质量控制(QC)和质量保证(QA)测试的结果,以满足每月的交付时间表。测试数据来自15个合作机构,因此需要一个具有标准化接口的高度分布式系统。为此,针对ITk数据库(DB)的后端开发了QA和QC Python代码的专门软件层。这些发展包括了Strip Sensors社区的特殊性和特殊需求,例如各种不同的测试设备和测试类型,必要的测试格式,以及测试站点的不同工作流程。特别关注了促进开发和用户操作的技术,例如为实践目的创建“并行”虚拟DB对象集,可操作性的迭代验证,以及测试数据的自动上传。可伸缩性问题和数据处理的自动化从一开始就包含在系统架构中。全套功能包括数据完整性检查、提取和评估关键参数的数据处理、交叉测试比较以及持续监控的汇总报告。我们还将描述所吸取的教训和系统的必要演变。
{"title":"Monitoring Quality of ATLAS ITk Strip Sensors Through Database","authors":"V. Fadeyev, M. Beranek, Eric Bach, M. Basso, A. Blue, P. Federicova, J. Fernandez-Tejero, A. Fournier, G. Greig, Derek Hamersly, K. Hara, E. Hill, S. Hirose, B. Hommels, D. Jones, C. Klein, T. Koffas, V. Latonova, M. Mikestikova, K. Nakamura, L. Poley, R. Orr, D. Rousso, B. Stelzer, M. Sykora, M. Ullán, Y. Unno","doi":"10.22323/1.420.0058","DOIUrl":"https://doi.org/10.22323/1.420.0058","url":null,"abstract":"The High-Luminosity LHC upgrade necessitates a complete replacement of the ATLAS Inner Detector with a larger all-silicon tracker. The strip portion of it covers 165 m 2 area, afforded by the strip sensors. Following several prototype iterations and a successful pre-production, a full-scale production started in 2021, to finish in 2025. It will include about 21,000 wafers and a factor of 5 higher throughput than pre-production, with about 500 sensors produced and tested per month. The transition to production stressed the need to evaluate the results from the Quality Control (QC) and Quality Assurance (QA) tests quickly to meet the monthly delivery schedule. The test data come from 15 collaborating institutes, therefore a highly distributed system with standardized interfaces was required. Specialized software layers of QA and QC Python code were developed against the backend of the ITk database (DB) for this purpose. The developments included particularities and special needs of the Strip Sensors community, such as the large variety of different test devices and test types, the necessary test formats, and different workflows at the test sites. Special attention was paid to techniques facilitating the development and user operations, for example creation of “parallel” sets of dummy DB objects for practice purposes, iterative verification of operability, and the automatic upload of test data. The scalability concerns and automation of the data handling were included in the system architecture from the very inception. The full suite of functionalities includes data integrity checks, data processing to extract and evaluate key parameters, cross-test comparisons, and summary reporting for continuous monitoring. We will also describe the lessons learned and the necessary evolution of the system.","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123576983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Status of the BELLE II Pixel Detector BELLE II像素检测器的状态
G. Giakoustidis, F. Abudinén, K. Ackermann, P. Ahlburg, M. Albalawi, O. Alonso, L. Andricek, R. Ayad, Varghese Babu, Anselm Baur, F. Bernlochner, T. Bilka, A. Bolz, A. Bozek, C. Camien, A. C. Caldwell, L. Cao, V. Chekelian, Á. Diéguez, J. Dingfelder, Z. Doležal, M. Fras, A. Frey, M. Gabriel, K. Gadow, T. Gessler, D. Getzkow, L. L. Gioi, D. Greenwald, M. Heck, M. Hensel, M. Hoek, Stefan Huber, J. Kandra, P. Kapusta, R. Karl, Jasper Kehl, C. Kiesling, B. Kisielewski, D. Kittlinger, D. Klose, P. Kodyš, C. Koffmane, I. Konorov, Matthäus Krein, S. Krivokuca, T. Kuhr, S. Kurz, P. Kvasnička, J. S. Lange, K. Lautenbach, U. Leis, P. Leitl, D. Levit, G. Liemann, Qingyuan Liu, Zhen’An Liu, T. Lück, C. Marinas, S. Mccarney, H. Moser, D. Moya, F. Müller, F. Müller, C. Niebuhr, J. Ninkovic, B. Paschen, S. Paul, I. Perić, D. Pitzl, A. Rabusov, Markus Reif, S. Reiter, Rainer Richter, M. Ritter, M. Ritzert, J. Sanchez, B. Scavino, G. Schaller, J. Schmitz, M. Schnecke, F. Schopper, H. Schreeck, B. Schwenker, M. Schwickardi
The Belle II experiment at the Super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting 𝑒 + 𝑒 − collision data since March 2019. Operating at a record-breaking luminosity of up to 4 . 7 × 10 34 cm − 2 s − 1 , data corresponding to 424 fb − 1 has since been recorded. The Belle II Vertex Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer four-layer Silicon Vertex Detector (SVD) using double-sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within the pixels with a minimum pitch of ( 50 × 55 ) µ m 2 . A high gain and a high Signal-to-Noise Ratio (SNR) allow thinning the pixels to 75 µ m while retaining a high pixel hit efficiency of about 99 % for the Belle II
自2019年3月以来,位于日本筑波的超级KEK b工厂(SuperKEKB)的Belle II实验一直在收集𝑒+𝑒−碰撞数据。工作在破纪录的亮度高达4。7 × 10 34 cm−2 s−1,对应于424 fb−1的数据已被记录。Belle II顶点探测器(VXD)是Belle II探测器及其物理程序的核心,在重建精确的主顶点和衰变顶点方面起着至关重要的作用。它由外部采用双面硅条的四层硅顶点检测器(SVD)和内部采用耗尽p沟道场效应晶体管(DePFET)技术的两层像素检测器(PXD)组成。PXD DePFET结构结合了像素内的信号生成和放大,最小间距为(50 × 55)µm 2。高增益和高信噪比(SNR)允许将像素细化到75 μ m,同时保持约99%的高像素命中效率
{"title":"Status of the BELLE II Pixel Detector","authors":"G. Giakoustidis, F. Abudinén, K. Ackermann, P. Ahlburg, M. Albalawi, O. Alonso, L. Andricek, R. Ayad, Varghese Babu, Anselm Baur, F. Bernlochner, T. Bilka, A. Bolz, A. Bozek, C. Camien, A. C. Caldwell, L. Cao, V. Chekelian, Á. Diéguez, J. Dingfelder, Z. Doležal, M. Fras, A. Frey, M. Gabriel, K. Gadow, T. Gessler, D. Getzkow, L. L. Gioi, D. Greenwald, M. Heck, M. Hensel, M. Hoek, Stefan Huber, J. Kandra, P. Kapusta, R. Karl, Jasper Kehl, C. Kiesling, B. Kisielewski, D. Kittlinger, D. Klose, P. Kodyš, C. Koffmane, I. Konorov, Matthäus Krein, S. Krivokuca, T. Kuhr, S. Kurz, P. Kvasnička, J. S. Lange, K. Lautenbach, U. Leis, P. Leitl, D. Levit, G. Liemann, Qingyuan Liu, Zhen’An Liu, T. Lück, C. Marinas, S. Mccarney, H. Moser, D. Moya, F. Müller, F. Müller, C. Niebuhr, J. Ninkovic, B. Paschen, S. Paul, I. Perić, D. Pitzl, A. Rabusov, Markus Reif, S. Reiter, Rainer Richter, M. Ritter, M. Ritzert, J. Sanchez, B. Scavino, G. Schaller, J. Schmitz, M. Schnecke, F. Schopper, H. Schreeck, B. Schwenker, M. Schwickardi","doi":"10.22323/1.420.0005","DOIUrl":"https://doi.org/10.22323/1.420.0005","url":null,"abstract":"The Belle II experiment at the Super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting 𝑒 + 𝑒 − collision data since March 2019. Operating at a record-breaking luminosity of up to 4 . 7 × 10 34 cm − 2 s − 1 , data corresponding to 424 fb − 1 has since been recorded. The Belle II Vertex Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer four-layer Silicon Vertex Detector (SVD) using double-sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within the pixels with a minimum pitch of ( 50 × 55 ) µ m 2 . A high gain and a high Signal-to-Noise Ratio (SNR) allow thinning the pixels to 75 µ m while retaining a high pixel hit efficiency of about 99 % for the Belle II","PeriodicalId":275608,"journal":{"name":"Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128655582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1