Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145263
Stefano Basso, G. Frigo, G. Giorgi
The World Health Organization assesses the number of visually impaired people to be nearly 285 million in August 2014, of whom 39 million are blind. One of the most important discomfort factors for these persons is known to be the difficulty in moving and orienting by themselves in unfamiliar surroundings. Nowadays, several devices are currently available for supporting these persons in there everyday life. To this end, the attention in this paper is mainly focused on the localization and navigation in indoor environment. The solution adopted in this paper consists in populating a database of virtual maps, that the user itself contributes to create by exploring the surrounding environment. An inertial platform, represented by a set of sensors (basically accelerometer, gyroscope, electronic compass) placed in a device worn by user, is used at the purpose as sensing system. This approach does not require the installation of external equipments since it relies on a smartphone, which is used both as measurement platform and user interface, and, in particular, does not require any a-priori knowledge of the indoor environment. The application will be described in the paper where some experimental preliminary results will also be discussed.
{"title":"A smartphone-based indoor localization system for visually impaired people","authors":"Stefano Basso, G. Frigo, G. Giorgi","doi":"10.1109/MeMeA.2015.7145263","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145263","url":null,"abstract":"The World Health Organization assesses the number of visually impaired people to be nearly 285 million in August 2014, of whom 39 million are blind. One of the most important discomfort factors for these persons is known to be the difficulty in moving and orienting by themselves in unfamiliar surroundings. Nowadays, several devices are currently available for supporting these persons in there everyday life. To this end, the attention in this paper is mainly focused on the localization and navigation in indoor environment. The solution adopted in this paper consists in populating a database of virtual maps, that the user itself contributes to create by exploring the surrounding environment. An inertial platform, represented by a set of sensors (basically accelerometer, gyroscope, electronic compass) placed in a device worn by user, is used at the purpose as sensing system. This approach does not require the installation of external equipments since it relies on a smartphone, which is used both as measurement platform and user interface, and, in particular, does not require any a-priori knowledge of the indoor environment. The application will be described in the paper where some experimental preliminary results will also be discussed.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"207 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124650318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145217
E. Schena, P. Saccomandi, Marina Piccolo, C. Massaroni, S. Silvestri, C. Piccolo, G. Frauenfelder, F. Giurazza, B. Zobel
Minimally invasive thermal procedures are gaining acceptance in tumor treatment. Among others, laser ablation (LA) is considered a valid alternative to surgical resection for inoperable patients. LA damages the tumor by increasing the tissue temperature. The temperature distribution within the tissue strongly influences the outcomes of the procedure. Hence, some thermometric techniques are employed in this scenario. Among them, MRI-based thermometry presents some advantages, such as the non-invasiveness. In this work, two sequences (EPI and FIESTA) have been used to monitor liver temperature. During the whole MRI procedure, the liver temperature has been monitored by MRcompatible, fiber optic-based sensors. The temperature measured by these sensors has been used as reference in order to assess the sensitivity of MRI-thermometry. Moreover, the influence of Region of interests (ROIs) size on precision has been investigated. Results show that the absolute value of thermal sensitivity of FIESTA is double with respect to the sensitivity obtained with EPI (about -15 °C-1 vs -7 °C-1). Regarding the influence of ROI size, results show that the wider the extension the better the precision.
微创热手术在肿瘤治疗中得到越来越多的认可。其中,激光消融(LA)被认为是一个有效的替代手术切除不能手术的患者。LA通过提高组织温度来破坏肿瘤。组织内的温度分布强烈影响手术的结果。因此,在这种情况下采用了一些测温技术。其中,核磁共振测温具有无创性等优点。在这项工作中,两个序列(EPI和FIESTA)已被用于监测肝脏温度。在整个核磁共振过程中,肝脏温度由核磁共振兼容的光纤传感器监测。用这些传感器测得的温度作为参考,以评估核磁共振测温的灵敏度。此外,还研究了利益区域(roi)大小对精度的影响。结果表明,FIESTA的热敏度绝对值是EPI的两倍(约为-15°C-1 vs -7°C-1)。对于ROI大小的影响,结果表明,扩展越宽,精度越好。
{"title":"MRI-thermometry on ex vivo swine liver: Preliminary trials to assess the sensitivity of two sequences","authors":"E. Schena, P. Saccomandi, Marina Piccolo, C. Massaroni, S. Silvestri, C. Piccolo, G. Frauenfelder, F. Giurazza, B. Zobel","doi":"10.1109/MeMeA.2015.7145217","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145217","url":null,"abstract":"Minimally invasive thermal procedures are gaining acceptance in tumor treatment. Among others, laser ablation (LA) is considered a valid alternative to surgical resection for inoperable patients. LA damages the tumor by increasing the tissue temperature. The temperature distribution within the tissue strongly influences the outcomes of the procedure. Hence, some thermometric techniques are employed in this scenario. Among them, MRI-based thermometry presents some advantages, such as the non-invasiveness. In this work, two sequences (EPI and FIESTA) have been used to monitor liver temperature. During the whole MRI procedure, the liver temperature has been monitored by MRcompatible, fiber optic-based sensors. The temperature measured by these sensors has been used as reference in order to assess the sensitivity of MRI-thermometry. Moreover, the influence of Region of interests (ROIs) size on precision has been investigated. Results show that the absolute value of thermal sensitivity of FIESTA is double with respect to the sensitivity obtained with EPI (about -15 °C-1 vs -7 °C-1). Regarding the influence of ROI size, results show that the wider the extension the better the precision.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"211 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124735720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145163
Mario Klunder, R. Feuer, O. Sawodny, M. Ederer
Urethral Pressure Profilometry (UPP) is a tool in the diagnosis of urinary incontinence. The pressure profile along the urethra is measured by a special catheter in order to assess the contraction strength of the sphincter muscle. However, the diagnostic value of pressure profilometry is limited. We seek to increase the diagnostic value by providing a detailed spatial reconstruction of the pressure profile on the outside surface of the urethra. We use deconvolution in order to solve the inverse problem of determining the pressure distribution on the outside of a tube from measured data on the inside. Therefore, we propose a parametric Point-Spread-Function (PSF) and optimize its parameters using a Finite-Element (FE) model. Simulation results verifying accuracy and robustness of this method conclude this work.
{"title":"Using deconvolution to determine the sphincter strength distribution around the urethra","authors":"Mario Klunder, R. Feuer, O. Sawodny, M. Ederer","doi":"10.1109/MeMeA.2015.7145163","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145163","url":null,"abstract":"Urethral Pressure Profilometry (UPP) is a tool in the diagnosis of urinary incontinence. The pressure profile along the urethra is measured by a special catheter in order to assess the contraction strength of the sphincter muscle. However, the diagnostic value of pressure profilometry is limited. We seek to increase the diagnostic value by providing a detailed spatial reconstruction of the pressure profile on the outside surface of the urethra. We use deconvolution in order to solve the inverse problem of determining the pressure distribution on the outside of a tube from measured data on the inside. Therefore, we propose a parametric Point-Spread-Function (PSF) and optimize its parameters using a Finite-Element (FE) model. Simulation results verifying accuracy and robustness of this method conclude this work.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126198428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145251
G. Barabino, D. Pani, A. Dessì, L. Raffo
The issue of biopotentials acquisition with surface electrodes has been studied for several years, during which a number of reliable techniques have been developed. Nowadays, they form a solid background of practices exploited in every commercially available biopotential acquisition module. Nevertheless, in some application fields where signal processing of the acquired signals is controversial, due to the lack of a deep understanding of the underlying physical aspects, there is the need to test several recording setups to define the one producing the best results. In fact, signal acquisition has strong influence on the signal processing techniques that can be deployed to post-process the data. Non-invasive fetal electrocardiography (ECG) is one of those field. In order to enable the investigation of the aspects connected with the signal acquisition, we developed a custom biopotential acquisition unit, with configurable measurement setup. It is intrinsically general purpose, but has been conceived to support studies on non-invasive fetal ECG on the animal model. Based on the ADS1298 analog front-end, the developed system achieves comparable performance with respect to commercial systems for physiological research opening to the first animals studies about the influence of the acquisition setup on the effectiveness of the signal processing algorithms for fetal ECG extraction.
{"title":"A configurable biopotentials acquisition module suitable for fetal electrocardiography studies","authors":"G. Barabino, D. Pani, A. Dessì, L. Raffo","doi":"10.1109/MeMeA.2015.7145251","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145251","url":null,"abstract":"The issue of biopotentials acquisition with surface electrodes has been studied for several years, during which a number of reliable techniques have been developed. Nowadays, they form a solid background of practices exploited in every commercially available biopotential acquisition module. Nevertheless, in some application fields where signal processing of the acquired signals is controversial, due to the lack of a deep understanding of the underlying physical aspects, there is the need to test several recording setups to define the one producing the best results. In fact, signal acquisition has strong influence on the signal processing techniques that can be deployed to post-process the data. Non-invasive fetal electrocardiography (ECG) is one of those field. In order to enable the investigation of the aspects connected with the signal acquisition, we developed a custom biopotential acquisition unit, with configurable measurement setup. It is intrinsically general purpose, but has been conceived to support studies on non-invasive fetal ECG on the animal model. Based on the ADS1298 analog front-end, the developed system achieves comparable performance with respect to commercial systems for physiological research opening to the first animals studies about the influence of the acquisition setup on the effectiveness of the signal processing algorithms for fetal ECG extraction.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125727721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145243
G. Andria, A. Lanzolla, Giuseppe Russo, Mirko Parabita, R. Incalzi, G. Cavallo, M. Benvenuto
This paper proposes the development of an innovative measurement system for telerehabilitation with the aim to provide objective evaluation of functional capacity of patients subject to lower limb rehabilitation. In particular the system has based on the set of wearable MEMs sensors which detect the 3D orientation of the limbs and communicate with a Central Remote Unit for storing and elaborating all measurement data. The proposed study has been performed under the research project PRO-DOMO SUD funded by Apulia Region within the Project “Apulian ICT Living Labs”.
{"title":"An innovative measurement system based on MEMs for telerehabilitation","authors":"G. Andria, A. Lanzolla, Giuseppe Russo, Mirko Parabita, R. Incalzi, G. Cavallo, M. Benvenuto","doi":"10.1109/MeMeA.2015.7145243","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145243","url":null,"abstract":"This paper proposes the development of an innovative measurement system for telerehabilitation with the aim to provide objective evaluation of functional capacity of patients subject to lower limb rehabilitation. In particular the system has based on the set of wearable MEMs sensors which detect the 3D orientation of the limbs and communicate with a Central Remote Unit for storing and elaborating all measurement data. The proposed study has been performed under the research project PRO-DOMO SUD funded by Apulia Region within the Project “Apulian ICT Living Labs”.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128097681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145170
M. Maffongelli, S. Poretti, A. Salvadè, R. Monleone, F. Meani, A. Fedeli, M. Pastorino, A. Randazzo
An existing prototype of microwave imaging tomograph, previously designed by the present Authors for non destructive testing (NDT) applications, has been adapted in order to deal with biomedical targets. The developed system allows collecting multi-view multi-frequency data. An efficient inversion procedure is used to retrieve the distributions of the dielectric properties from the measured field samples. Some numerical simulations aimed at validating the proposed system and preliminary measurement results obtained by using a breast phantom are presented in this paper.
{"title":"Preliminary test of a prototype of microwave axial tomograph for medical applications","authors":"M. Maffongelli, S. Poretti, A. Salvadè, R. Monleone, F. Meani, A. Fedeli, M. Pastorino, A. Randazzo","doi":"10.1109/MeMeA.2015.7145170","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145170","url":null,"abstract":"An existing prototype of microwave imaging tomograph, previously designed by the present Authors for non destructive testing (NDT) applications, has been adapted in order to deal with biomedical targets. The developed system allows collecting multi-view multi-frequency data. An efficient inversion procedure is used to retrieve the distributions of the dielectric properties from the measured field samples. Some numerical simulations aimed at validating the proposed system and preliminary measurement results obtained by using a breast phantom are presented in this paper.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127290465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145271
Shilun Feng, L. Roseng, T. Dong
Electrochemical nitrite sensor was used to quantitatively detect the nitrite concentration in urine and by building the approximate relationship between the nitrite concentration and number of E.coli bacterias, electrochemical nitrite sensor can count the numbers of Escherichia coli and do the Urinary Tract Infection (UTI) Diagnosis. Electrochemical nitrite sensor was assembled and calibrated, the artificial urine sample was detected; the feasibility of electrochemical nitrite sensor including the errors effect had been checked and proved at around -5.1~2.3%; the possibility to detect artificial UTI urine sample out is around 95.5%; the approximate relationship between the number of E.coli and electrode potential had been built as E=228.3193-3.78225×Ln (N+2.29101e6), thereby building the relationship between UTI possibilities and the measurement. Finally, the conception and design of electrochemical sensor array had been made, thus to measure different biomarkers for the maximum possibilities of UTI and can show the data of the possibility of UTI directly on the screen. Furthermore, it can easily be used and transported for the home-users or patients in hospitals.
{"title":"Quantitative detection of Escherichia coli and measurement of urinary tract infection diagnosis possibility by use of a portable, handheld sensor","authors":"Shilun Feng, L. Roseng, T. Dong","doi":"10.1109/MeMeA.2015.7145271","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145271","url":null,"abstract":"Electrochemical nitrite sensor was used to quantitatively detect the nitrite concentration in urine and by building the approximate relationship between the nitrite concentration and number of E.coli bacterias, electrochemical nitrite sensor can count the numbers of Escherichia coli and do the Urinary Tract Infection (UTI) Diagnosis. Electrochemical nitrite sensor was assembled and calibrated, the artificial urine sample was detected; the feasibility of electrochemical nitrite sensor including the errors effect had been checked and proved at around -5.1~2.3%; the possibility to detect artificial UTI urine sample out is around 95.5%; the approximate relationship between the number of E.coli and electrode potential had been built as E=228.3193-3.78225×Ln (N+2.29101e6), thereby building the relationship between UTI possibilities and the measurement. Finally, the conception and design of electrochemical sensor array had been made, thus to measure different biomarkers for the maximum possibilities of UTI and can show the data of the possibility of UTI directly on the screen. Furthermore, it can easily be used and transported for the home-users or patients in hospitals.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115470516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145242
Yu-Cheng Fan, Hung-Kuan Liu
In this paper, we propose a three-dimensional gesture interactive system design of home automation for physically handicapped people. In order to provide a convenient and comfortable environment, we design a finger and hand gesture user interface for physically handicapped people based on stereo cameras to achieve remote control and gesture recognition system. We use stereo camera to capture stereo image and calculate disparity map and depth map for supplying physically handicapped people a real-time interface based on hand gesture and finger action. The system can achieve 93% accuracy of eight direction function, 93.75% accuracy of zoom function, and 90% accuracy of click function. The experimental results prove the efficiency of the proposed system.
{"title":"Three-dimensional gesture interactive system design of home automation for physically handicapped people","authors":"Yu-Cheng Fan, Hung-Kuan Liu","doi":"10.1109/MeMeA.2015.7145242","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145242","url":null,"abstract":"In this paper, we propose a three-dimensional gesture interactive system design of home automation for physically handicapped people. In order to provide a convenient and comfortable environment, we design a finger and hand gesture user interface for physically handicapped people based on stereo cameras to achieve remote control and gesture recognition system. We use stereo camera to capture stereo image and calculate disparity map and depth map for supplying physically handicapped people a real-time interface based on hand gesture and finger action. The system can achieve 93% accuracy of eight direction function, 93.75% accuracy of zoom function, and 90% accuracy of click function. The experimental results prove the efficiency of the proposed system.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122445130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145188
Juri Taborri, E. Scalona, S. Rossi, E. Palermo, F. Patané, P. Cappa
In this paper we present and validate a methodology to avoid the training procedure of a classifier based on an Hidden Markov Model (HMM) for a real-time gait recognition of two or four phases, implemented to control pediatric active orthoses of lower limb. The new methodology consists in the identification of a set of standardized parameters, obtained by a data set of angular velocities of healthy subjects age-matched. Sagittal angular velocities of lower limbs of ten typically developed children (TD) and ten children with hemiplegia (HC) were acquired by means of the tri-axial gyroscope embedded into Magnetic Inertial Measurement Units (MIMU). The actual sequence of gait phases was captured through a set of four foot switches. The experimental protocol consists in two walking tasks on a treadmill set at 1.0 and 1.5 km/h. We used the Goodness (G) as parameter, computed from Receiver Operating Characteristic (ROC) space, to compare the results obtained by the new methodology with the ones obtained by the subject-specific training of HMM via the Baum-Welch Algorithm. Paired-sample t-tests have shown no significant statistically differences between the two procedures when the gait phase detection was performed with the gyroscopes placed on the foot. Conversely, significant differences were found in data gathered by means of gyroscopes placed on shank. Actually, data relative to both groups presented G values in the range of good/optimum classifier (i.e. G ≤ 0.3), with better performance for the two-phase classifier model. In conclusion, the novel methodology here proposed guarantees the possibility to omit the off-line subject-specific training procedure for gait phase detection and it can be easily implemented in the control algorithm of active orthoses.
{"title":"Real-time gait detection based on Hidden Markov Model: Is it possible to avoid training procedure?","authors":"Juri Taborri, E. Scalona, S. Rossi, E. Palermo, F. Patané, P. Cappa","doi":"10.1109/MeMeA.2015.7145188","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145188","url":null,"abstract":"In this paper we present and validate a methodology to avoid the training procedure of a classifier based on an Hidden Markov Model (HMM) for a real-time gait recognition of two or four phases, implemented to control pediatric active orthoses of lower limb. The new methodology consists in the identification of a set of standardized parameters, obtained by a data set of angular velocities of healthy subjects age-matched. Sagittal angular velocities of lower limbs of ten typically developed children (TD) and ten children with hemiplegia (HC) were acquired by means of the tri-axial gyroscope embedded into Magnetic Inertial Measurement Units (MIMU). The actual sequence of gait phases was captured through a set of four foot switches. The experimental protocol consists in two walking tasks on a treadmill set at 1.0 and 1.5 km/h. We used the Goodness (G) as parameter, computed from Receiver Operating Characteristic (ROC) space, to compare the results obtained by the new methodology with the ones obtained by the subject-specific training of HMM via the Baum-Welch Algorithm. Paired-sample t-tests have shown no significant statistically differences between the two procedures when the gait phase detection was performed with the gyroscopes placed on the foot. Conversely, significant differences were found in data gathered by means of gyroscopes placed on shank. Actually, data relative to both groups presented G values in the range of good/optimum classifier (i.e. G ≤ 0.3), with better performance for the two-phase classifier model. In conclusion, the novel methodology here proposed guarantees the possibility to omit the off-line subject-specific training procedure for gait phase detection and it can be easily implemented in the control algorithm of active orthoses.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123471134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-05-07DOI: 10.1109/MeMeA.2015.7145225
P. Drotár, J. Mekyska, Z. Smékal, I. Rektorová, L. Masarová, M. Faúndez-Zanuy
In this paper, we evaluate the contribution of different handwriting modalities to the diagnosis of Parkinson's disease. We analyse on-surface movement, in-air movement and pressure exerted on the tablet surface. Especially in-air movement and pressure-based features have been rarely taken into account in previous studies. We show that pressure and in-air movement also possess information that is relevant for the diagnosis of Parkinson's Disease (PD) from handwriting. In addition to the conventional kinematic and spatio-temporal features, we present a group of the novel features based on entropy and empirical mode decomposition of the handwriting signal. The presented results indicate that handwriting can be used as biomarker for PD providing classification performance around 89% area under the ROC curve (AUC) for PD classification.
{"title":"Contribution of different handwriting modalities to differential diagnosis of Parkinson's Disease","authors":"P. Drotár, J. Mekyska, Z. Smékal, I. Rektorová, L. Masarová, M. Faúndez-Zanuy","doi":"10.1109/MeMeA.2015.7145225","DOIUrl":"https://doi.org/10.1109/MeMeA.2015.7145225","url":null,"abstract":"In this paper, we evaluate the contribution of different handwriting modalities to the diagnosis of Parkinson's disease. We analyse on-surface movement, in-air movement and pressure exerted on the tablet surface. Especially in-air movement and pressure-based features have been rarely taken into account in previous studies. We show that pressure and in-air movement also possess information that is relevant for the diagnosis of Parkinson's Disease (PD) from handwriting. In addition to the conventional kinematic and spatio-temporal features, we present a group of the novel features based on entropy and empirical mode decomposition of the handwriting signal. The presented results indicate that handwriting can be used as biomarker for PD providing classification performance around 89% area under the ROC curve (AUC) for PD classification.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125138204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}