Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135644
Guangjian Tian , Wenjun Wang , Zhou Wang, Haidong Wang, Chuyu Zhu, Yi Zhang
Silicates with the antibacterial hemostatic effects used in wound healing that could be served as antibiotic alternatives to traditional biomedicines. Mixed silicates containing two or more silicates with different morphologies exhibit an accelerated antibacterial hemostatic effects (e.g., the antibacterial rate toward kaolinite-montmorillonite against E. coli and S. aureus reached a maximum value of 59.14 ± 1.46 % and 91.83 ± 0.85 %, the blood clotting index and the hemostatic time toward kaolinite-montmorillonite reached a maximum value of 4.06 ± 1.56 % and 165.67 ± 6.13 s), that could be attributed to the individual silicate’s intrinsic antibacterial hemostatic effects arising from the silicate’s surface/edge charge and the constructed three-dimensional micro-architectural characteristics arising from the individual silicate’s loose stack state in mixed silicates. Besides, those ineffective antibacterial hemostatic effects were attributed to the unsuccessful three-dimensional micro-architectural construction originated from the silicate’s unreasonable mass ratio. The current findings illustrated that mixed silicates with an accelerated antibacterial hemostatic effects could be used in wound healing with taking into account biomedical functional module collocation and actual scenario orientation.
{"title":"Mixed silicates with three-dimensional micro-architecture toward accelerate the antibacterial hemostatic effects in wound healing","authors":"Guangjian Tian , Wenjun Wang , Zhou Wang, Haidong Wang, Chuyu Zhu, Yi Zhang","doi":"10.1016/j.colsurfa.2024.135644","DOIUrl":"10.1016/j.colsurfa.2024.135644","url":null,"abstract":"<div><div>Silicates with the antibacterial hemostatic effects used in wound healing that could be served as antibiotic alternatives to traditional biomedicines. Mixed silicates containing two or more silicates with different morphologies exhibit an accelerated antibacterial hemostatic effects (e.g., the antibacterial rate toward kaolinite-montmorillonite against <em>E. coli</em> and <em>S. aureus</em> reached a maximum value of 59.14 ± 1.46 % and 91.83 ± 0.85 %, the blood clotting index and the hemostatic time toward kaolinite-montmorillonite reached a maximum value of 4.06 ± 1.56 % and 165.67 ± 6.13 s), that could be attributed to the individual silicate’s intrinsic antibacterial hemostatic effects arising from the silicate’s surface/edge charge and the constructed three-dimensional micro-architectural characteristics arising from the individual silicate’s loose stack state in mixed silicates. Besides, those ineffective antibacterial hemostatic effects were attributed to the unsuccessful three-dimensional micro-architectural construction originated from the silicate’s unreasonable mass ratio. The current findings illustrated that mixed silicates with an accelerated antibacterial hemostatic effects could be used in wound healing with taking into account biomedical functional module collocation and actual scenario orientation.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135644"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135648
Manju Manuel, Suvardhan Kanchi
A novel and cost-efficient electrochemical sensor was designed by immobilizing IL/Ni-MOF/Co3O4 nanodiamonds on the graphite (GE) electrode, marking the first application for the detection of aspartame. The graphite electrode was extracted and recycled from discharged batteries to serve as a working electrode. The nanocomposite features unique Co3O4 nanodiamonds, generated using Coriandrum sativum seed extract, alongside Ni-metal organic framework (MOF), which were synthesized through a solvothermal method. The conductivity and stability of the electrochemical sensor were enhanced through the incorporation of the ionic liquid (IL) ([BMIM][MeSO4]. The phytochemical profile of Coriandrum sativum seed extract, analyzed by GC-MS, identified key compounds involved in the synthesis of Co3O4 nanodiamonds. A comprehensive characterization of the nanocomposite was performed using UV-Vis, FTIR, DLS, Zeta potential, XRD, XPS, FE-SEM, TEM, optical profilometry, and AFM to confirm the structural and elemental modifications. Electrochemical characterization of the bare and modified electrodes was conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The GE/IL/Ni-MOF/Co3O4 nanodiamonds modified electrode displayed enhanced electroanalytical performance for aspartame detection, characterized by signal amplification at +7.0 V. Quantitative analysis by Differential Pulse Voltammetry (DPV) and Square Wave Voltammetry (SWV) revealed a linear detection range of 3–15 µM for aspartame. A comparison of SWV and DPV revealed superior analytical performance for SWV, with limit of detection (LOD) and limit of quantification (LOQ) values of 1.02 µM and 3.1 µM (R2 = 0.993) compared to 1.81 µM and 5.5 µM (R2 = 0.986) for DPV. This study reveals the excellent adsorption capabilities of Ni-MOF and Co3O4 nanodiamonds (Co3O4 NDs), attributed to their high porosity and large surface area, paving the way for the development of affordable sensing devices for artificial sweeteners.
{"title":"Construction of a waste-derived graphite electrode integrated IL/Ni-MOF flowers/Co3O4 NDs for specific enrichment and signal amplification to detect aspartame","authors":"Manju Manuel, Suvardhan Kanchi","doi":"10.1016/j.colsurfa.2024.135648","DOIUrl":"10.1016/j.colsurfa.2024.135648","url":null,"abstract":"<div><div>A novel and cost-efficient electrochemical sensor was designed by immobilizing IL/Ni-MOF/Co<sub>3</sub>O<sub>4</sub> nanodiamonds on the graphite (GE) electrode, marking the first application for the detection of aspartame. The graphite electrode was extracted and recycled from discharged batteries to serve as a working electrode. The nanocomposite features unique Co<sub>3</sub>O<sub>4</sub> nanodiamonds, generated using <em>Coriandrum sativum</em> seed extract, alongside Ni-metal organic framework (MOF), which were synthesized through a solvothermal method. The conductivity and stability of the electrochemical sensor were enhanced through the incorporation of the ionic liquid (IL) ([BMIM][MeSO<sub>4</sub>]. The phytochemical profile of <em>Coriandrum sativum</em> seed extract, analyzed by GC-MS, identified key compounds involved in the synthesis of Co<sub>3</sub>O<sub>4</sub> nanodiamonds. A comprehensive characterization of the nanocomposite was performed using UV-Vis, FTIR, DLS, Zeta potential, XRD, XPS, FE-SEM, TEM, optical profilometry, and AFM to confirm the structural and elemental modifications. Electrochemical characterization of the bare and modified electrodes was conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The GE/IL/Ni-MOF/Co<sub>3</sub>O<sub>4</sub> nanodiamonds modified electrode displayed enhanced electroanalytical performance for aspartame detection, characterized by signal amplification at +7.0 V. Quantitative analysis by Differential Pulse Voltammetry (DPV) and Square Wave Voltammetry (SWV) revealed a linear detection range of 3–15 µM for aspartame. A comparison of SWV and DPV revealed superior analytical performance for SWV, with limit of detection (LOD) and limit of quantification (LOQ) values of 1.02 µM and 3.1 µM (R<sup>2</sup> = 0.993) compared to 1.81 µM and 5.5 µM (R<sup>2</sup> = 0.986) for DPV. This study reveals the excellent adsorption capabilities of Ni-MOF and Co<sub>3</sub>O<sub>4</sub> nanodiamonds (Co<sub>3</sub>O<sub>4</sub> NDs), attributed to their high porosity and large surface area, paving the way for the development of affordable sensing devices for artificial sweeteners.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135648"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135674
B. Janani , V. Vinotha Sre , Asad Syed , Abdallah M. Elgorban , Islem Abid , Ling Shing Wong , S. Sudheer Khan
Defects and interface engineering play pivotal roles in optimizing the photocatalytic performance of heterojunctions. Among these, layered double hydroxides (LDH) stand out due to their two-dimensional lamellar structure and optical properties. This study focuses on creating a heterojunction between 2D-Co(OH)2 platelets and defect-induced 2D-MgFe LDH by constructing interfacial electric field via p-n junction and enhanced the photocatalytic degradation of chloramphenicol. HR-TEM analysis shows abundant vacancies and lattice disorientation, affirming the effectiveness of defect engineering. The MgFe LDH–Co(OH)2 nanocomposite (NCs) was synthesized through a straightforward co-precipitation and ultrasonic method. The band gap of 2.05 eV for MgFe LDH–Co(OH)2 facilitated visible light absorption, leading to a remarkable 95.9 % degradation of chloramphenicol within 180 min under optimal conditions. The comparison studies conducted with layered double oxides (LDO) showed its lower efficacy than LDH. The stability of the NCs over five cycles and magnetic nature showcased their potential for large-scale wastewater treatment applications. Furthermore, both hydroxyl radicals (•OH) and superoxide radicals (O2•⁻) were generated by the photocatalysis, as well as through the assistance of the Fenton reaction. The intermediates detected by GC-MS was tested for its toxicity using ECOSAR program which indicates its ideal for safe practical applications. This comprehensive study highlights the importance of defect engineering and heterojunction design in advancing photocatalytic materials for environmental remediation and paves a way for manufacturing innovation.
{"title":"Engineering defects and lattice disorientation in layered double hydroxides by coupling 2D-Co(OH)2 platelets via p-n heterojunction for enhanced photocatalytic degradation chloramphenicol","authors":"B. Janani , V. Vinotha Sre , Asad Syed , Abdallah M. Elgorban , Islem Abid , Ling Shing Wong , S. Sudheer Khan","doi":"10.1016/j.colsurfa.2024.135674","DOIUrl":"10.1016/j.colsurfa.2024.135674","url":null,"abstract":"<div><div>Defects and interface engineering play pivotal roles in optimizing the photocatalytic performance of heterojunctions. Among these, layered double hydroxides (LDH) stand out due to their two-dimensional lamellar structure and optical properties. This study focuses on creating a heterojunction between 2D-Co(OH)<sub>2</sub> platelets and defect-induced 2D-MgFe LDH by constructing interfacial electric field via p-n junction and enhanced the photocatalytic degradation of chloramphenicol. HR-TEM analysis shows abundant vacancies and lattice disorientation, affirming the effectiveness of defect engineering. The MgFe LDH–Co(OH)<sub>2</sub> nanocomposite (NCs) was synthesized through a straightforward co-precipitation and ultrasonic method. The band gap of 2.05 eV for MgFe LDH–Co(OH)<sub>2</sub> facilitated visible light absorption, leading to a remarkable 95.9 % degradation of chloramphenicol within 180 min under optimal conditions. The comparison studies conducted with layered double oxides (LDO) showed its lower efficacy than LDH. The stability of the NCs over five cycles and magnetic nature showcased their potential for large-scale wastewater treatment applications. Furthermore, both hydroxyl radicals (•OH) and superoxide radicals (O<sub>2</sub>•⁻) were generated by the photocatalysis, as well as through the assistance of the Fenton reaction. The intermediates detected by GC-MS was tested for its toxicity using ECOSAR program which indicates its ideal for safe practical applications. This comprehensive study highlights the importance of defect engineering and heterojunction design in advancing photocatalytic materials for environmental remediation and paves a way for manufacturing innovation.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135674"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135654
Peng Wang , Chenyu Gao , Qianpeng Dong , Lianlian Wang , Dianming Chu , Yan He , Wenjuan Bai
The application of carbon nanotubes in materials science is rapidly expanding, leading to an increasingly urgent demand for large-scale synthesis. Central to the growth of carbon nanotubes is the development of effective catalysts; thus, the large-scale production of these catalysts becomes crucial for successful carbon nanotube synthesis. Extensive research has been conducted on the mechanisms and regulation of interfacial interactions between metals and supports during catalyst synthesis. This paper is based on the interface interactions between common metal catalysts such as Fe, Co, Ni, and Al2O3, and Fe-Co, Fe-Ni, and Fe-Co-Ni metal catalysts were prepared by a one-step method. The catalysts were synthesized through a "one-step process," and the formation mechanisms of bimetallic and trimetallic catalysts, as well as the influence of interfacial interactions on catalyst formation and catalytic activity, were thoroughly investigated. The results indicate that with the involvement of Fe, Co and Ni on the surface of Al2O3 maintain a small size morphology due to interfacial interaction. Meanwhile, the nanoparticles form a doped structure with Al2O3, effectively avoiding the deactivation of nanoparticles caused by agglomeration. In addition, the three catalysts for growing CNTs were analyzed in order to investigate the effects of different concentrations of metal ratios and time of carbon source on the catalytic activity, which provides new ideas for improving the catalyst design system.
碳纳米管在材料科学中的应用正在迅速扩大,导致对大规模合成的需求日益迫切。碳纳米管生长的核心是开发有效的催化剂;因此,大规模生产这些催化剂对于成功合成碳纳米管至关重要。人们对催化剂合成过程中金属与载体之间界面相互作用的机理和调控进行了广泛的研究。本文基于常见金属催化剂如 Fe、Co、Ni 和 Al2O3 之间的界面相互作用,采用一步法制备了 Fe-Co、Fe-Ni 和 Fe-Co-Ni 金属催化剂。通过 "一步法 "合成了催化剂,并深入研究了双金属和三金属催化剂的形成机理,以及界面相互作用对催化剂形成和催化活性的影响。结果表明,在铁的参与下,Al2O3 表面的 Co 和 Ni 因界面相互作用而保持小尺寸形态。同时,纳米颗粒与 Al2O3 形成掺杂结构,有效避免了纳米颗粒因团聚而失活。此外,还对生长 CNT 的三种催化剂进行了分析,以研究不同浓度的金属配比和碳源时间对催化活性的影响,为改进催化剂设计体系提供了新思路。
{"title":"Formation mechanism of Fe-based multi-catalysts for growing CNTs","authors":"Peng Wang , Chenyu Gao , Qianpeng Dong , Lianlian Wang , Dianming Chu , Yan He , Wenjuan Bai","doi":"10.1016/j.colsurfa.2024.135654","DOIUrl":"10.1016/j.colsurfa.2024.135654","url":null,"abstract":"<div><div>The application of carbon nanotubes in materials science is rapidly expanding, leading to an increasingly urgent demand for large-scale synthesis. Central to the growth of carbon nanotubes is the development of effective catalysts; thus, the large-scale production of these catalysts becomes crucial for successful carbon nanotube synthesis. Extensive research has been conducted on the mechanisms and regulation of interfacial interactions between metals and supports during catalyst synthesis. This paper is based on the interface interactions between common metal catalysts such as Fe, Co, Ni, and Al<sub>2</sub>O<sub>3</sub>, and Fe-Co, Fe-Ni, and Fe-Co-Ni metal catalysts were prepared by a one-step method. The catalysts were synthesized through a \"one-step process,\" and the formation mechanisms of bimetallic and trimetallic catalysts, as well as the influence of interfacial interactions on catalyst formation and catalytic activity, were thoroughly investigated. The results indicate that with the involvement of Fe, Co and Ni on the surface of Al<sub>2</sub>O<sub>3</sub> maintain a small size morphology due to interfacial interaction. Meanwhile, the nanoparticles form a doped structure with Al<sub>2</sub>O<sub>3</sub>, effectively avoiding the deactivation of nanoparticles caused by agglomeration. In addition, the three catalysts for growing CNTs were analyzed in order to investigate the effects of different concentrations of metal ratios and time of carbon source on the catalytic activity, which provides new ideas for improving the catalyst design system.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135654"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135672
Can Cheng , Xinyun Pu , Xu Peng , Yihao Luo , Xu Wei , Ling Wang , Yuhang Wang , Xixun Yu
In this work, we prepared a novel calcium-containing nanoparticles (CaNPs) and added it to a hydrogel composed of guar gum (GG) and gelatin (Gel) as a backbone to prepare a novel hydrogel (GG@Gel-Ca) with rapid hemostasis, antibacterial effect and wound healing promotion. We conducted a series of test to characterize the structure and properties of CaNPs and GG@Gel-Ca hydrogel. The results showed that CaNPs had been successfully prepared and had regular morphology, and the GG@Gel-Ca hydrogel had good swelling ability, good antibacterial ability and excellent hemocompatibility/hemostasis and perfect cytocompatibility. Animal experiments also showed that GG@Gel-Ca hydrogel was able to achieve rapid hemostasis in the rat liver hemostasis model and it could also accelerate wound healing in S. aureus infections. In summary, we developed an innovative and practical method to prepare a gentle hydrogel, employing two natural polysaccharides that remained unmodified and untreated with chemicals. By incorporating the prepared calcium nanoparticles into this hydrogel, we successfully achieved effective hemostasis. Therefore, the GG@Gel-Ca hydrogel has the potential for application as hemostatic wound dressings with antibacterial properties and good wound healing.
{"title":"Guar gum and gelatin-based hydrogel wound dressing loaded calcium-containing nanoparticles: Simpler preparation, faster hemostasis and faster pro-wound healing properties","authors":"Can Cheng , Xinyun Pu , Xu Peng , Yihao Luo , Xu Wei , Ling Wang , Yuhang Wang , Xixun Yu","doi":"10.1016/j.colsurfa.2024.135672","DOIUrl":"10.1016/j.colsurfa.2024.135672","url":null,"abstract":"<div><div>In this work, we prepared a novel calcium-containing nanoparticles (CaNPs) and added it to a hydrogel composed of guar gum (GG) and gelatin (Gel) as a backbone to prepare a novel hydrogel (GG@Gel-Ca) with rapid hemostasis, antibacterial effect and wound healing promotion. We conducted a series of test to characterize the structure and properties of CaNPs and GG@Gel-Ca hydrogel. The results showed that CaNPs had been successfully prepared and had regular morphology, and the GG@Gel-Ca hydrogel had good swelling ability, good antibacterial ability and excellent hemocompatibility/hemostasis and perfect cytocompatibility. Animal experiments also showed that GG@Gel-Ca hydrogel was able to achieve rapid hemostasis in the rat liver hemostasis model and it could also accelerate wound healing in S. aureus infections. In summary, we developed an innovative and practical method to prepare a gentle hydrogel, employing two natural polysaccharides that remained unmodified and untreated with chemicals. By incorporating the prepared calcium nanoparticles into this hydrogel, we successfully achieved effective hemostasis. Therefore, the GG@Gel-Ca hydrogel has the potential for application as hemostatic wound dressings with antibacterial properties and good wound healing.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135672"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135656
Jingjing Jiang, Changlai Li, Shijian Zhou, Haoran Xie, Zheng Wei, Yuyao Chen, Yan Kong
Engineering of functional groups is a promising way to optimize the structure and facilitate photocatalytic H2O2 production of covalent organic frameworks (COFs), and hydrophilic groups (such as –OH, -COOH, et al.) are easy to combine with water molecules through hydrogen bonding to improve the mass transfer efficiency between O2 and COFs. However, the presence of -OH groups in the imine-linked COF, a keto-type structure would be formed which seriously affects the photocatalytic H2O2 production process. To solve this difficulty, here we use pyruvate as additive during the synthesis process of keto-type structure COFs, in which -OH would be re-exposed and the extra -COOH would be introduced meanwhile. Since the presence of these hydrophilic groups in Tz-Dha-H, the adsorption of O2 is highly improved, and an electron donor-acceptor unit is reasonably formed, which results in a synergistically activated electron-push-pull effect and the acceleration of charge transfer and separation. As a result, the photocatalytic H2O2 yield of Tz-Dha-H in pure water is as high as 694.99 μmol g−1 h−1, which is 1.67 times higher than that of Tz-Dha. Undoubtedly, this work proposes a new idea for improving the photocatalytic activity of H2O2 production by the construction of electron-donor-acceptor unit in keto-type COFs.
{"title":"Constructing the electron donor-acceptor unit in keto-type structure COFs for enhanced photocatalytic H2O2 production","authors":"Jingjing Jiang, Changlai Li, Shijian Zhou, Haoran Xie, Zheng Wei, Yuyao Chen, Yan Kong","doi":"10.1016/j.colsurfa.2024.135656","DOIUrl":"10.1016/j.colsurfa.2024.135656","url":null,"abstract":"<div><div>Engineering of functional groups is a promising way to optimize the structure and facilitate photocatalytic H<sub>2</sub>O<sub>2</sub> production of covalent organic frameworks (COFs), and hydrophilic groups (such as –OH, -COOH, et al.) are easy to combine with water molecules through hydrogen bonding to improve the mass transfer efficiency between O<sub>2</sub> and COFs. However, the presence of -OH groups in the imine-linked COF, a keto-type structure would be formed which seriously affects the photocatalytic H<sub>2</sub>O<sub>2</sub> production process. To solve this difficulty, here we use pyruvate as additive during the synthesis process of keto-type structure COFs, in which -OH would be re-exposed and the extra -COOH would be introduced meanwhile. Since the presence of these hydrophilic groups in Tz-Dha-H, the adsorption of O<sub>2</sub> is highly improved, and an electron donor-acceptor unit is reasonably formed, which results in a synergistically activated electron-push-pull effect and the acceleration of charge transfer and separation. As a result, the photocatalytic H<sub>2</sub>O<sub>2</sub> yield of Tz-Dha-H in pure water is as high as 694.99 μmol g<sup>−1</sup> h<sup>−1</sup>, which is 1.67 times higher than that of Tz-Dha. Undoubtedly, this work proposes a new idea for improving the photocatalytic activity of H<sub>2</sub>O<sub>2</sub> production by the construction of electron-donor-acceptor unit in keto-type COFs.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135656"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135655
Fumiya Omori , Ikki Tateishi , Hideyuki Katsumata , Mai Furukawa , Satoshi Kaneco
The design of novel semiconducting photocatalysts is crucial for hydrogen production using sunlight. Covalent organic frameworks (COFs), which are porous materials formed solely by the covalent bonding of light elements, have garnered significant attention as efficient photocatalysts. However, common COFs face challenges related to visible light absorption, the recombination rate of electron-hole pairs, and hydrogen production activity. In this study, we successfully synthesized a 1,3,5-Triformylphloroglucinol (TP) -based hybrid COF {(TP-TTA/TP-TSN)-COF}, using a simple hydrothermal method, incorporating two amine linkers: 4,4',4''-(1,3,5-triazine-2,4,6-triyl) trianiline (TTA) and 3,7-diamino-2,8-dimethyldibenzothiophenesulfone (TSN). This hybrid COF exhibits excellent optical and electrochemical properties due to the large electron transport characteristics of the triazine ring and the electron-withdrawing nature of the sulfonic group. It achieved a hydrogen production rate of 2200 μmol g⁻¹ h⁻¹, approximately twice that of conventional TP-TTA-COF (980 μmol g⁻¹ h⁻¹) and TP-TSN-COF (1100 μmol g⁻¹ h⁻¹). This study presents an effective strategy for enhancing the photocatalytic activity of COF-based materials.
{"title":"Visible light-driven hydrogen production using an imine-based hybrid covalent organic framework with triazine and sulfone amine linkers","authors":"Fumiya Omori , Ikki Tateishi , Hideyuki Katsumata , Mai Furukawa , Satoshi Kaneco","doi":"10.1016/j.colsurfa.2024.135655","DOIUrl":"10.1016/j.colsurfa.2024.135655","url":null,"abstract":"<div><div>The design of novel semiconducting photocatalysts is crucial for hydrogen production using sunlight. Covalent organic frameworks (COFs), which are porous materials formed solely by the covalent bonding of light elements, have garnered significant attention as efficient photocatalysts. However, common COFs face challenges related to visible light absorption, the recombination rate of electron-hole pairs, and hydrogen production activity. In this study, we successfully synthesized a 1,3,5-Triformylphloroglucinol (TP) -based hybrid COF {(TP-TTA/TP-TSN)-COF}, using a simple hydrothermal method, incorporating two amine linkers: 4,4',4''-(1,3,5-triazine-2,4,6-triyl) trianiline (TTA) and 3,7-diamino-2,8-dimethyldibenzothiophenesulfone (TSN). This hybrid COF exhibits excellent optical and electrochemical properties due to the large electron transport characteristics of the triazine ring and the electron-withdrawing nature of the sulfonic group. It achieved a hydrogen production rate of 2200 μmol g⁻¹ h⁻¹, approximately twice that of conventional TP-TTA-COF (980 μmol g⁻¹ h⁻¹) and TP-TSN-COF (1100 μmol g⁻¹ h⁻¹). This study presents an effective strategy for enhancing the photocatalytic activity of COF-based materials.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135655"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135661
Chang-Geun Son , Geun-Pyo Hong , Yeon-Ji Jo
In this study, we formulated oil-in-water emulsions stabilized with thermally induced mung bean protein aggregates (MBA) and soy lecithin (LEC) to improve emulsion stability during storage. First, MBA was produced by adjusting the pH of mung bean protein isolate (5 %) to 2 using 6 M HCl, followed by heating (90 °C) and stirring for different times (0, 1, 2, and 4 h). LEC (1 %) was then added to the MBA solution to prepare an MBA/LEC complex. The MBA/LEC complex exhibited greater aggregation and shorter and thinner fibers than MBA alone. MBA/LEC effectively coated the oil droplet surface and was evenly distributed in the aqueous phase of the emulsion system, suggesting that MBA/LEC suppressed droplet flocculation during storage (14 days). These findings highlight the potential of MBA and MBA/LEC as natural plant-based emulsifiers for improving the stability of oil-in-water emulsions in food production.
在这项研究中,我们用热诱导绿豆蛋白聚集体(MBA)和大豆卵磷脂(LEC)配制了水包油乳剂,以提高乳剂在储存期间的稳定性。首先,用 6 M HCl 将绿豆蛋白分离物(5 %)的 pH 值调至 2,然后加热(90 °C)并搅拌不同的时间(0、1、2 和 4 小时),制得 MBA。然后向 MBA 溶液中加入 LEC(1%),制备 MBA/LEC 复合物。与单独的 MBA 相比,MBA/LEC 复合物的聚集程度更高,纤维更短更细。MBA/LEC 能有效包覆油滴表面,并均匀地分布在乳液体系的水相中,这表明 MBA/LEC 能抑制油滴在储存(14 天)期间的絮凝。这些发现凸显了 MBA 和 MBA/LEC 作为天然植物乳化剂在提高食品生产中水包油乳液稳定性方面的潜力。
{"title":"Fabrication and stability of oil-in-water emulsions with mung bean protein aggregates and soy lecithin","authors":"Chang-Geun Son , Geun-Pyo Hong , Yeon-Ji Jo","doi":"10.1016/j.colsurfa.2024.135661","DOIUrl":"10.1016/j.colsurfa.2024.135661","url":null,"abstract":"<div><div>In this study, we formulated oil-in-water emulsions stabilized with thermally induced mung bean protein aggregates (MBA) and soy lecithin (LEC) to improve emulsion stability during storage. First, MBA was produced by adjusting the pH of mung bean protein isolate (5 %) to 2 using 6 M HCl, followed by heating (90 °C) and stirring for different times (0, 1, 2, and 4 h). LEC (1 %) was then added to the MBA solution to prepare an MBA/LEC complex. The MBA/LEC complex exhibited greater aggregation and shorter and thinner fibers than MBA alone. MBA/LEC effectively coated the oil droplet surface and was evenly distributed in the aqueous phase of the emulsion system, suggesting that MBA/LEC suppressed droplet flocculation during storage (14 days). These findings highlight the potential of MBA and MBA/LEC as natural plant-based emulsifiers for improving the stability of oil-in-water emulsions in food production.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135661"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.colsurfa.2024.135663
Haichen Yao , Hongkun Liu , Yihang Hou , Shuang Gao , Jiazi Hou
Perspiration conduction is essential for regulating the body's water and temperature balance. Significant advancements have been achieved in the field of textiles engineered for guiding water movement, thanks to their outstanding and practical control of uneven wetting properties. This progress carries important implications for preserving energy, promoting human well-being, and enhancing comfort. Nonetheless, current textile materials intended for sweat conduction are primarily focus on unidirectional transport of water, neglecting the air permeability during water transportation results in dampness and stickiness especially during heavy perspiration. In this study, a fabric with a tailored antisymmetrical wettability establishing an array of gas transport windows was fabricated via electro-blown spinning, endowing the fabric with long-term air permeability. It demonstrated an air permeability rate (APR) of up to 307.49 mm s−1, a water vapor transmission (WVT) rate of 3133.76 g m−2 day−1, and a water absorption rate (WAR) capacity of 2039.01 %. Especially, during the process of sweat wicking, the water infiltration restricted air permeability, however, the designed breathable window still maintained a high gas permeation rate of up to 214.61 mm s−1, which was much higher than non-soaked commercial jeans and lab coat. Additionally, blueberry anthocyanins was incorporated into fabrics, acting as a portable sweat pH sensor based on colorimetric analysis, which was capable of monitoring the pH levels of sweat. When sweat shifted from acidic to alkaline, the anthocyanins underwent a structural transformation from flavylium cations to quinoid alkali. During the process, the fabric underwent a transition in color, changing from red to blue, which contributed to real-time monitoring of human body health performance in a non-invasive manner. This study presented a dependable method for creating intelligent textiles with patterned antisymmetric wettability, demonstrating significant promise for use in functional fabrics designed for individual moisture control.
汗液传导对于调节人体的水分和温度平衡至关重要。由于对不均匀润湿特性的出色而实用的控制,用于引导水分运动的纺织品领域取得了重大进展。这一进步对保存能量、促进人体健康和提高舒适度具有重要意义。然而,目前用于汗液传导的纺织材料主要关注水的单向传输,而忽视了水传输过程中的空气渗透性,导致潮湿和粘滞,尤其是在大量出汗时。在这项研究中,我们通过电喷纺丝技术制造了一种具有定制的非对称润湿性的织物,这种织物建立了一系列气体传输窗口,使织物具有长期透气性。它的透气率(APR)高达 307.49 mm s-1,水蒸气透过率(WVT)为 3133.76 g m-2 day-1,吸水率(WAR)为 2039.01 %。特别是在吸汗过程中,水分的渗入限制了透气性,但所设计的透气窗仍保持了高达 214.61 mm s-1 的气体渗透率,远高于未浸泡的商业牛仔裤和白大褂。此外,织物中还加入了蓝莓花青素,作为一种基于比色分析的便携式汗液 pH 传感器,能够监测汗液的 pH 值。当汗液从酸性转为碱性时,花青素发生了结构转变,从黄素阳离子变为醌碱。在这一过程中,织物的颜色也发生了转变,由红色变为蓝色,从而有助于以非侵入性方式实时监测人体健康状况。这项研究提出了一种可靠的方法,用于制造具有图案化非对称润湿性的智能纺织品,为设计用于个体湿度控制的功能性织物带来了巨大的应用前景。
{"title":"Electro-blown spinning of hygroscopic breathable fabrics with patterned antisymmetrical wettability for visualized health state diagnosis","authors":"Haichen Yao , Hongkun Liu , Yihang Hou , Shuang Gao , Jiazi Hou","doi":"10.1016/j.colsurfa.2024.135663","DOIUrl":"10.1016/j.colsurfa.2024.135663","url":null,"abstract":"<div><div>Perspiration conduction is essential for regulating the body's water and temperature balance. Significant advancements have been achieved in the field of textiles engineered for guiding water movement, thanks to their outstanding and practical control of uneven wetting properties. This progress carries important implications for preserving energy, promoting human well-being, and enhancing comfort. Nonetheless, current textile materials intended for sweat conduction are primarily focus on unidirectional transport of water, neglecting the air permeability during water transportation results in dampness and stickiness especially during heavy perspiration. In this study, a fabric with a tailored antisymmetrical wettability establishing an array of gas transport windows was fabricated via electro-blown spinning, endowing the fabric with long-term air permeability. It demonstrated an air permeability rate (APR) of up to 307.49 mm s<sup>−1</sup>, a water vapor transmission (WVT) rate of 3133.76 g m<sup>−2</sup> day<sup>−1</sup>, and a water absorption rate (WAR) capacity of 2039.01 %. Especially, during the process of sweat wicking, the water infiltration restricted air permeability, however, the designed breathable window still maintained a high gas permeation rate of up to 214.61 mm s<sup>−1</sup>, which was much higher than non-soaked commercial jeans and lab coat. Additionally, blueberry anthocyanins was incorporated into fabrics, acting as a portable sweat pH sensor based on colorimetric analysis, which was capable of monitoring the pH levels of sweat. When sweat shifted from acidic to alkaline, the anthocyanins underwent a structural transformation from flavylium cations to quinoid alkali. During the process, the fabric underwent a transition in color, changing from red to blue, which contributed to real-time monitoring of human body health performance in a non-invasive manner. This study presented a dependable method for creating intelligent textiles with patterned antisymmetric wettability, demonstrating significant promise for use in functional fabrics designed for individual moisture control.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135663"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.colsurfa.2024.135653
Majid Naseri , Omid Imantalab , Davood Gholami , Seyedmehdi Hosseini , Mohammad Alvand , Mostafa Amra , Yong-Cheng Lin , Mohammad Mahdi Dana , Ehsan Borhani , Abdel-Hamid I. Mourad
The correlation of deformation route changes and crystallographic texture with the electrochemical properties of AA2024 aluminum alloy in a phosphate buffer solution (pH = 9) was investigated. Commercial 2024 aluminum alloy sheets underwent up to eight cycles of processing at room temperature using two different deformation routes: accumulative roll bonding (ARB) and cross accumulative roll bonding (CARB), involving a 90° rotation around the normal direction (ND) axis between each cycle. The ARB-processed AA2024 alloy exhibited an elongated lamellar ultrafine-grained structure and included texture components such as Copper {112}<111>, Dillamor {4 4 11}<11 11 8>, S {123}<634>, Brass {110}<221>, and P {110}<221>. Meanwhile, the CARB-processed AA2024 alloy had a near equiaxed ultrafine grain structure with a size of 150–100 nm and texture components including Copper {112}<111>, Brass {011}<211>, P {110}<221>, Rotated Cube {001}<110>, S {123}<634>, and Goss {011}<100>. The study revealed that the variation of electrochemical properties during different deformation routes was closely linked to texture manipulation and microstructure. The lamellar ultrafine-grained structure resulting from the ARB processing route increased the corrosion current density, whereas the opposite trend was observed in the CARB route. Moreover, it was concluded that the combination of uniform grain refinement and high-intensity {011} orientation textures achieved through CARB processing provided ideal conditions for forming a passive layer with superior protection properties.
{"title":"Elucidating the effect of accumulative roll bonding deformation routes on the electrochemical and passive behavior of AA2024 aluminum alloy","authors":"Majid Naseri , Omid Imantalab , Davood Gholami , Seyedmehdi Hosseini , Mohammad Alvand , Mostafa Amra , Yong-Cheng Lin , Mohammad Mahdi Dana , Ehsan Borhani , Abdel-Hamid I. Mourad","doi":"10.1016/j.colsurfa.2024.135653","DOIUrl":"10.1016/j.colsurfa.2024.135653","url":null,"abstract":"<div><div>The correlation of deformation route changes and crystallographic texture with the electrochemical properties of AA2024 aluminum alloy in a phosphate buffer solution (pH = 9) was investigated. Commercial 2024 aluminum alloy sheets underwent up to eight cycles of processing at room temperature using two different deformation routes: accumulative roll bonding (ARB) and cross accumulative roll bonding (CARB), involving a 90° rotation around the normal direction (ND) axis between each cycle. The ARB-processed AA2024 alloy exhibited an elongated lamellar ultrafine-grained structure and included texture components such as Copper {112}<111>, Dillamor {4 4 11}<11 11 8>, S {123}<634>, Brass {110}<221>, and P {110}<221>. Meanwhile, the CARB-processed AA2024 alloy had a near equiaxed ultrafine grain structure with a size of 150–100 nm and texture components including Copper {112}<111>, Brass {011}<211>, P {110}<221>, Rotated Cube {001}<110>, S {123}<634>, and Goss {011}<100>. The study revealed that the variation of electrochemical properties during different deformation routes was closely linked to texture manipulation and microstructure. The lamellar ultrafine-grained structure resulting from the ARB processing route increased the corrosion current density, whereas the opposite trend was observed in the CARB route. Moreover, it was concluded that the combination of uniform grain refinement and high-intensity {011} orientation textures achieved through CARB processing provided ideal conditions for forming a passive layer with superior protection properties.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135653"},"PeriodicalIF":4.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}