首页 > 最新文献

Combustion and Flame最新文献

英文 中文
Exploring the first-stage ignition and model optimization in the comprehensive study of n-dodecane oxidation 正十二烷氧化综合研究中的一级点火和模型优化探索
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-12 DOI: 10.1016/j.combustflame.2024.113489
Congjie Hong , Yilong Ao , Yuyang Zhang , Wuchuan Sun , Zemin Tian , Yingwen Yan , Zuohua Huang , Yingjia Zhang

n-Dodecane is commonly employed as a surrogate for investigating the combustion characteristics of jet and diesel fuels. Enhancing comprehension of its combustion behavior and developing accurate chemical kinetics models for simulating combustion is of paramount importance in engine development. This study focuses on a detailed exploration of n-dodecane oxidation kinetics under low-temperature conditions and presents a novel dataset concerning the first-stage ignition delay time. A broad spectrum of experimental conditions is investigated, encompassing a range of temperature (600 ∼ 1350 K), pressure (5 ∼ 20 atm), equivalence ratios (0.5 ∼ 1.0), and dilution gases (N2 and Ar). Additionally, combustion experiments in a pure oxygen environment are performed, contributing valuable data to existing research. To enhance the precision of the chemical reaction kinetics model of n-dodecane, this study integrates updated rate coefficients obtained from the latest theoretical calculations for specific reaction classes. The improved rate rule provides a more accurate reference for the construction of the chemical reaction kinetics model of long straight alkane. The resulting improved model excels in accurately predicting both the first-stage ignition delay time and the total ignition delay time under a wide range of operational conditions. Additionally, the model performance is rigorously evaluated through a comprehensive assessment against a diverse array of datasets gathered from various literature references. The results show that, in contrast to the previously proposed model, this enhanced model provides highly reliable predictions over a broad range of parameters.

正十二烷通常被用作研究喷气燃料和柴油燃料燃烧特性的替代物。加强对其燃烧行为的理解和开发用于模拟燃烧的精确化学动力学模型对发动机开发至关重要。本研究重点详细探讨了正十二烷在低温条件下的氧化动力学,并提供了有关第一阶段点火延迟时间的新数据集。研究了一系列实验条件,包括温度(600 ∼ 1350 K)、压力(5 ∼ 20 atm)、当量比(0.5 ∼ 1.0)和稀释气体(N2 和 Ar)。此外,还进行了纯氧环境下的燃烧实验,为现有研究提供了宝贵数据。为了提高正十二烷化学反应动力学模型的精确度,本研究整合了根据最新理论计算获得的特定反应类别的最新速率系数。改进后的速率规则为构建长直烷烃化学反应动力学模型提供了更精确的参考。改进后的模型能够在各种操作条件下准确预测第一阶段点火延迟时间和总点火延迟时间。此外,还根据从各种文献参考资料中收集的各种数据集进行了全面评估,对模型性能进行了严格评价。结果表明,与之前提出的模型相比,该增强型模型可在广泛的参数范围内提供高度可靠的预测。
{"title":"Exploring the first-stage ignition and model optimization in the comprehensive study of n-dodecane oxidation","authors":"Congjie Hong ,&nbsp;Yilong Ao ,&nbsp;Yuyang Zhang ,&nbsp;Wuchuan Sun ,&nbsp;Zemin Tian ,&nbsp;Yingwen Yan ,&nbsp;Zuohua Huang ,&nbsp;Yingjia Zhang","doi":"10.1016/j.combustflame.2024.113489","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113489","url":null,"abstract":"<div><p><em>n</em>-Dodecane is commonly employed as a surrogate for investigating the combustion characteristics of jet and diesel fuels. Enhancing comprehension of its combustion behavior and developing accurate chemical kinetics models for simulating combustion is of paramount importance in engine development. <em>This study</em> focuses on a detailed exploration of <em>n</em>-dodecane oxidation kinetics under low-temperature conditions and presents a novel dataset concerning the first-stage ignition delay time. A broad spectrum of experimental conditions is investigated, encompassing a range of temperature (600 ∼ 1350 K), pressure (5 ∼ 20 atm), equivalence ratios (0.5 ∼ 1.0), and dilution gases (N<sub>2</sub> and Ar). Additionally, combustion experiments in a pure oxygen environment are performed, contributing valuable data to existing research. To enhance the precision of the chemical reaction kinetics model of <em>n</em>-dodecane, <em>this study</em> integrates updated rate coefficients obtained from the latest theoretical calculations for specific reaction classes. The improved rate rule provides a more accurate reference for the construction of the chemical reaction kinetics model of long straight alkane. The resulting improved model excels in accurately predicting both the first-stage ignition delay time and the total ignition delay time under a wide range of operational conditions. Additionally, the model performance is rigorously evaluated through a comprehensive assessment against a diverse array of datasets gathered from various literature references. The results show that, in contrast to the previously proposed model, this enhanced model provides highly reliable predictions over a broad range of parameters.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental characterization of the cell cycle for multicellular detonations 多细胞爆炸的细胞周期实验特征
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-11 DOI: 10.1016/j.combustflame.2024.113553
Mhedine Alicherif, Samir B. Rojas Chavez, Karl P. Chatelain, Thibault F. Guiberti, Deanna A. Lacoste

The detonation front’s unstable structure leads to an unsteady and three-dimensional (3D) phenomenon that renders the study of the cell cycle challenging. Traditionally, fundamental studies are carried out in narrow channels where the detonation behavior is very peculiar (quasi two-dimensional with velocity deficit). In this study, we propose a fully experimental approach to study the cell cycle in the case of multicellular detonations. The cell cycle is characterized through three techniques: systematic and statistical analysis of soot foil, planar laser-induced fluorescence on nitric oxide, and Rayleigh scattering. These techniques provide measurements for cell size, local induction length, and local shock speed, respectively. The work is carried out in the 2H2-O2-3.76Ar and the 2H2-O2-3.76N2 mixtures at 293 K, and 20 kPa and 25 kPa, respectively. These conditions ensure that the cell pattern is considered being between regular and weakly irregular, thus, a shot-to-shot reconstruction of the cell cycle is possible. The cell widths follow a normal distribution, from which a quantitative parameter (2σ/λ) is proposed to assess the cell regularity, experimentally. The evolution of the speed and the local induction length are reconstructed along the cell cycle. The results agree with the available data for narrow channels and constitute the first of their kind for 3D detonation (i.e., multicellular in the transverse dimension). Two methods are proposed to analyze the local induction length δi and compare it to the available literature (experimental and numerical studies). The technique can be applied to mixtures where the mean cell width is a meaningful parameter from highly regular to irregular mixtures.

Novelty and Significance statement

For the first time, combined soot-foils, NO-PLIF, and Rayleigh scattering measurements were used to reconstruct and characterize the cellular cycle of multicellular detonations using a 2H2-O2-3.76Ar and 2H2-O2-3.76N2 mixtures at 293 K, and 20 kPa and 25 kPa, respecti

起爆前沿的不稳定结构导致了一种不稳定的三维(3D)现象,使细胞周期研究面临挑战。传统上,基础研究都是在狭窄的通道中进行的,而通道中的起爆行为非常特殊(准二维,速度不足)。在本研究中,我们提出了一种在多细胞爆炸情况下研究细胞周期的完全实验方法。细胞周期通过三种技术来描述:烟尘箔的系统和统计分析、一氧化氮的平面激光诱导荧光以及瑞利散射。这些技术可分别测量细胞大小、局部感应长度和局部冲击速度。工作在 2H2-O2-3.76Ar 和 2H2-O2-3.76N2 混合物中进行,温度分别为 293 K、20 kPa 和 25 kPa。这些条件确保了细胞形态被视为介于规则和弱不规则之间,因此可以对细胞周期进行逐次重建。细胞宽度遵循正态分布,由此提出了一个定量参数(2σ/λ),用于在实验中评估细胞的规则性。沿细胞周期重建了速度和局部诱导长度的演变。结果与窄通道的现有数据一致,并首次构成了三维引爆(即横向维度上的多细胞)。提出了两种方法来分析局部感应长度δi,并将其与现有文献(实验和数值研究)进行比较。该技术可应用于平均细胞宽度是一个有意义参数的混合物,从高度规则到不规则的混合物。新颖性和意义声明首次使用烟尘-箔、NO-PLIF 和瑞利散射测量,在 293 K 和 20 kPa 及 25 kPa 下,分别使用 2H2-O2-3.76Ar 和 2H2-O2-3.76N2 混合物重建和描述多细胞爆轰的细胞周期。这是首次在多细胞构型中综合测量局部感应长度和局部前沿速度,在多细胞构型中,截面上的细胞数量较多,即与钻机的所有尺寸相比,细胞宽度 (λ) 较小。本研究提供了两种提取实验 Δi 的方法,实验 Δi 可以与 ZND 理论进行比较。到目前为止,这种测量方法还无法在多细胞条件下实现。Δi的测量结果表明,这种实验Δi和λ之间的完全实验相关性首次可以获得。这些新结果对于定量验证用于爆炸预测模拟的化学动力学方案非常重要。
{"title":"Experimental characterization of the cell cycle for multicellular detonations","authors":"Mhedine Alicherif,&nbsp;Samir B. Rojas Chavez,&nbsp;Karl P. Chatelain,&nbsp;Thibault F. Guiberti,&nbsp;Deanna A. Lacoste","doi":"10.1016/j.combustflame.2024.113553","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113553","url":null,"abstract":"<div><p>The detonation front’s unstable structure leads to an unsteady and three-dimensional (3D) phenomenon that renders the study of the cell cycle challenging. Traditionally, fundamental studies are carried out in narrow channels where the detonation behavior is very peculiar (quasi two-dimensional with velocity deficit). In this study, we propose a fully experimental approach to study the cell cycle in the case of multicellular detonations. The cell cycle is characterized through three techniques: systematic and statistical analysis of soot foil, planar laser-induced fluorescence on nitric oxide, and Rayleigh scattering. These techniques provide measurements for cell size, local induction length, and local shock speed, respectively. The work is carried out in the 2<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-3.76Ar and the 2<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-3.76N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> mixtures at 293 K, and 20 kPa and 25 kPa, respectively. These conditions ensure that the cell pattern is considered being between regular and weakly irregular, thus, a shot-to-shot reconstruction of the cell cycle is possible. The cell widths follow a normal distribution, from which a quantitative parameter (2<span><math><mi>σ</mi></math></span>/<span><math><mi>λ</mi></math></span>) is proposed to assess the cell regularity, experimentally. The evolution of the speed and the local induction length are reconstructed along the cell cycle. The results agree with the available data for narrow channels and constitute the first of their kind for 3D detonation (i.e., multicellular in the transverse dimension). Two methods are proposed to analyze the local induction length <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and compare it to the available literature (experimental and numerical studies). The technique can be applied to mixtures where the mean cell width is a meaningful parameter from highly regular to irregular mixtures.</p><p><strong>Novelty and Significance statement</strong></p><p>For the first time, combined soot-foils, NO-PLIF, and Rayleigh scattering measurements were used to reconstruct and characterize the cellular cycle of multicellular detonations using a 2<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-3.76Ar and 2<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-3.76N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> mixtures at 293 K, and 20 kPa and 25 kPa, respecti","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of heat diffusion and turbulence on detonation development of hydrogen/air mixtures under engine-relevant conditions 热扩散和湍流对发动机相关条件下氢气/空气混合物爆燃发展的影响
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-11 DOI: 10.1016/j.combustflame.2024.113554
Jiabo Zhang , Minh Bau Luong , Hong G. Im

The effects of heat diffusion and turbulence on the detonation propensity of a stoichiometric hydrogen/air mixture under representative low- and high-temperature conditions in internal combustion engines are investigated using two- and three-dimensional direct numerical simulations (DNS) with detailed chemistry. Parametric studies are performed by varying the root-mean-square temperature fluctuation, T, the most energetic length scale of the temperature and velocity fluctuation, lT and le, and the turbulent velocity fluctuation, u. Two non-dimensional parameters, namely the resonance parameter ξ and the reactivity parameter ɛ, are employed to identify ignition modes. The results reveal that the gradient of the temperature field experiences a rapid dissipation prior to the main ignition due to the pronounced effect of heat diffusion, leading to a decrease of the mean ξ¯ and an increase of the mean ɛ¯, especially at lower initial temperature having a long ignition delay time. Due to the decreased ξ¯ and the increased ɛ¯, these cases have a weaker detonation propensity — their ignition mode shifts from deflagration to detonation transition (DDT) to spontaneous auto-ignition. Moreover, turbulence with faster mixing time scales, characterized by the ratio of ignition delay time to eddy-turnover time, τig/τt, and larger length scales of le/lT enhances the effect of heat dissipation, which in turn effectively decreases the temperature gradient level, and thus the detonation propensity. These effects of heat diffusion and turbulence on the ignition mode are well-characterized by the newly proposed turbulent Damköhler number, Dat, considering the turbulence intensity characterized by both τig/τt

利用二维和三维直接数值模拟(DNS)和详细的化学模拟,研究了内燃机中具有代表性的低温和高温条件下热扩散和湍流对化学计量氢气/空气混合物引爆倾向的影响。参数研究是通过改变均方根温度波动 T′、温度和速度波动的最大能量长度尺度 lT 和 le 以及湍流速度波动 u′来进行的。利用两个非维度参数,即共振参数ξ和反应性参数ɛ,来确定点火模式。结果表明,由于热扩散效应明显,温度场梯度在主点火前迅速消散,导致平均ξ¯减小,平均ɛ¯增大,尤其是在初始温度较低,点火延迟时间较长的情况下。由于ξ¯减小和ɛ¯增大,这些情况的起爆倾向较弱--其点火模式从爆燃到起爆过渡(DDT)转变为自发自燃。此外,混合时间尺度较快的湍流(以点火延迟时间与涡旋翻转时间之比τig/τt为特征)和长度尺度较大的le/lT会增强散热效果,从而有效降低温度梯度水平,进而降低引爆倾向。考虑到τig/τt和le/lT所表征的湍流强度,新提出的湍流达姆克勒数Dat很好地描述了热扩散和湍流对点火模式的这些影响,它与ξ¯、ξ¯t/ξ¯的瞬态演化有很好的相关性。此外,通过使用瞬态ξ¯t-ɛ¯t起爆机制图,可以很好地预测热扩散和湍流对氢气/空气混合物起爆倾向的影响。对于初始ξ¯≳ξ¯l较低的情况,湍流有效地降低了ξ¯t,通过将燃烧模式从发展中的起爆机制转向自发点火机制,缓解了起爆的发生。相反,对于初始ξ¯≳ξ¯u较高的情况,湍流导致的ξ¯t的降低促进了DDT的发生,并最终增强了爆轰倾向。新颖性和意义声明--利用二维和三维DNS系统分析了发动机相关条件下热扩散和湍流对H2/空气混合物爆轰倾向的影响。- 通过采用考虑未燃烧混合物瞬态热化学状态的瞬态起爆半岛ξ¯t - ɛ¯t,实现了对 H2/air 混合物起爆倾向的精确预测。新提出的预测标准有效地描述了 ξ¯的瞬态演变,同时考虑了热扩散和湍流效应。
{"title":"Effects of heat diffusion and turbulence on detonation development of hydrogen/air mixtures under engine-relevant conditions","authors":"Jiabo Zhang ,&nbsp;Minh Bau Luong ,&nbsp;Hong G. Im","doi":"10.1016/j.combustflame.2024.113554","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113554","url":null,"abstract":"<div><p>The effects of heat diffusion and turbulence on the detonation propensity of a stoichiometric hydrogen/air mixture under representative low- and high-temperature conditions in internal combustion engines are investigated using two- and three-dimensional direct numerical simulations (DNS) with detailed chemistry. Parametric studies are performed by varying the root-mean-square temperature fluctuation, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, the most energetic length scale of the temperature and velocity fluctuation, <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, and the turbulent velocity fluctuation, <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Two non-dimensional parameters, namely the <em>resonance paramete</em>r <span><math><mi>ξ</mi></math></span> and the <em>reactivity parameter</em> <span><math><mi>ɛ</mi></math></span>, are employed to identify ignition modes. The results reveal that the gradient of the temperature field experiences a rapid dissipation prior to the main ignition due to the pronounced effect of heat diffusion, leading to a decrease of the mean <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span> and an increase of the mean <span><math><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></math></span>, especially at lower initial temperature having a long ignition delay time. Due to the decreased <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span> and the increased <span><math><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></math></span>, these cases have a weaker detonation propensity — their ignition mode shifts from deflagration to detonation transition (DDT) to spontaneous auto-ignition. Moreover, turbulence with faster mixing time scales, characterized by the ratio of ignition delay time to eddy-turnover time, <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi><mi>g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span>, and larger length scales of <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></math></span> enhances the effect of heat dissipation, which in turn effectively decreases the temperature gradient level, and thus the detonation propensity. These effects of heat diffusion and turbulence on the ignition mode are well-characterized by the newly proposed turbulent Damköhler number, Da<span><math><msub><mrow></mrow><mrow><mi>t</mi></mrow></msub></math></span>, considering the turbulence intensity characterized by both <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi><mi>g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></m","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publication / Copyright Information 出版/版权信息
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-11 DOI: 10.1016/S0010-2180(24)00257-8
{"title":"Publication / Copyright Information","authors":"","doi":"10.1016/S0010-2180(24)00257-8","DOIUrl":"https://doi.org/10.1016/S0010-2180(24)00257-8","url":null,"abstract":"","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024002578/pdfft?md5=b5867fedfb3cf8604c0bebbcbdeaa6b8&pid=1-s2.0-S0010218024002578-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock tube and kinetic modeling study on high-temperature ignition of ammonia blended with methyl hexanoate 氨与己酸甲酯混合高温点火的冲击管和动力学模型研究
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-10 DOI: 10.1016/j.combustflame.2024.113555
Chong Li , Yangyang Luo , Haixin Deng , Zihao Zhou , Hongbo Ning , Yanlei Shang , Sheng-Nian Luo

Ammonia (NH3) is a promising carbon-free and alternative fuel, but its applications are hindered by high auto-ignition temperature and low burning velocity. A common approach to overcome such drawbacks is to blend NH3 with a high-reactivity fuel. In this study, a heated shock tube is employed to measure ignition delay time of NH3 blended with methyl hexanoate (MHX). The experiments are conducted at 6 atm, equivalence ratios of 0.5–2.0, temperatures of 1168–2115 K, and MHX blending ratios of 0, 20%, 50%, 70%, and 100%. Ignition delay time of the binary mixtures decreases monotonically with the addition of MHX. Compared with pure NH3, the reactivity of the binary mixtures increases significantly with the addition of only 20% MHX, leading to a 10 times faster ignition delay time at around 1500 K and 6 atm. The reactivity of the fuel-lean and stoichiometric ratio mixtures is similar, and higher than the fuel-rich mixtures. The promotion effect of ignition delay time decreases with increasing blending ratio and pressure, and decreasing temperature. The influence of equivalence ratio on the promotion effect of ignition delay time is less significant than that of blending ratio, temperature and pressure. A detailed NH3/MHX kinetic model is developed by updating the interaction reactions between MHX and NH2/NO2/NO radicals, and the NH3 and MHX sub-mechanism. The present kinetic model can reproduce satisfactorily the ignition delay time of pure MHX and NH3, and the NH3/MHX mixtures in the whole experimental conditions explored here. The kinetic analyses reveal that the interaction reactions between MHX and NH2 radical have a significant impact on the ignition of the binary mixtures. Moreover, the important intermediate N2H2 is more prone to forming N2H3 rather than NNH in the presence of MHX, different from the production of NNH in pure NH

氨气(NH3)是一种前景广阔的无碳替代燃料,但其应用却受到自燃温度高和燃烧速度低的阻碍。克服这些缺点的常用方法是将 NH3 与高活性燃料混合。本研究采用加热冲击管测量 NH3 与己酸甲酯(MHX)混合后的点火延迟时间。实验在 6 个大气压、当量比为 0.5-2.0、温度为 1168-2115 K 以及 MHX 混合比为 0、20%、50%、70% 和 100%的条件下进行。二元混合物的点火延迟时间随着 MHX 的加入而单调减少。与纯 NH3 相比,仅添加 20% 的 MHX,二元混合物的反应性就会显著增加,从而导致在 1500 K 和 6 atm 左右的点火延迟时间快 10 倍。燃料贫乏和化学计量比混合物的反应性相似,但高于燃料丰富的混合物。点火延迟时间的促进作用随着混合比和压力的增加以及温度的降低而减小。当量比对点火延迟时间的促进作用的影响不如掺混比、温度和压力的影响显著。通过更新 MHX 与 NH2/NO2/NO 自由基之间的相互作用反应以及 NH3 和 MHX 子机制,建立了详细的 NH3/MHX 动力学模型。本动力学模型能在整个实验条件下令人满意地再现纯 MHX 和 NH3 以及 NH3/MHX 混合物的点火延迟时间。动力学分析表明,MHX 和 NH2 自由基之间的相互作用反应对二元混合物的点火有重要影响。此外,重要的中间产物 N2H2 在 MHX 的存在下更容易生成 N2H3 而不是 NNH,这与纯 NH3 燃烧中生成 NNH 的情况不同。H 原子抽取反应 NH3, H + NH3 = NH2 + H2,在加入 MHX 后可反向进行,从而产生更活跃的 H 自由基,促进点火。新颖性及意义声明:纯氨(NH3)作为燃料的实际利用仍面临一些挑战,而双燃料燃烧策略是一种有效的方法,它涉及将低活性 NH3 与高活性燃料混合。这项研究测量了己酸甲酯(MHX)和 NH3/MHX 混合物的新点火延迟时间。通过更新 MHX 和 NH2/NO2/NO 自由基之间的相互作用反应以及 NH3 和 MHX 子机制,还建立了一个新的详细的 NH3/MHX 动力学模型。动力学分析表明,MHX 和 NH2 自由基之间的相互作用反应对二元混合物的点火有重大影响,重要的中间产物 N2H2 在 MHX 的存在下更有可能形成 N2H3 而不是 NNH。据我们所知,这是首次研究添加甲酯 MHX 对 NH3 点火行为的影响。
{"title":"Shock tube and kinetic modeling study on high-temperature ignition of ammonia blended with methyl hexanoate","authors":"Chong Li ,&nbsp;Yangyang Luo ,&nbsp;Haixin Deng ,&nbsp;Zihao Zhou ,&nbsp;Hongbo Ning ,&nbsp;Yanlei Shang ,&nbsp;Sheng-Nian Luo","doi":"10.1016/j.combustflame.2024.113555","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113555","url":null,"abstract":"<div><p>Ammonia (NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) is a promising carbon-free and alternative fuel, but its applications are hindered by high auto-ignition temperature and low burning velocity. A common approach to overcome such drawbacks is to blend NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> with a high-reactivity fuel. In this study, a heated shock tube is employed to measure ignition delay time of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> blended with methyl hexanoate (MHX). The experiments are conducted at 6 atm, equivalence ratios of 0.5–2.0, temperatures of 1168–2115 K, and MHX blending ratios of 0, 20%, 50%, 70%, and 100%. Ignition delay time of the binary mixtures decreases monotonically with the addition of MHX. Compared with pure NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, the reactivity of the binary mixtures increases significantly with the addition of only 20% MHX, leading to a 10 times faster ignition delay time at around 1500 K and 6 atm. The reactivity of the fuel-lean and stoichiometric ratio mixtures is similar, and higher than the fuel-rich mixtures. The promotion effect of ignition delay time decreases with increasing blending ratio and pressure, and decreasing temperature. The influence of equivalence ratio on the promotion effect of ignition delay time is less significant than that of blending ratio, temperature and pressure. A detailed NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX kinetic model is developed by updating the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO radicals, and the NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and MHX sub-mechanism. The present kinetic model can reproduce satisfactorily the ignition delay time of pure MHX and NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and the NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX mixtures in the whole experimental conditions explored here. The kinetic analyses reveal that the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radical have a significant impact on the ignition of the binary mixtures. Moreover, the important intermediate N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is more prone to forming N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> rather than NNH in the presence of MHX, different from the production of NNH in pure NH<span><math><msub><m","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental measurements of n-heptane flame speeds behind reflected shock waves with variable extents of pre-flame auto-ignition chemistry 正庚烷火焰速度在反射冲击波后的实验测量,火焰前自燃化学反应程度可变
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-08 DOI: 10.1016/j.combustflame.2024.113539
Lingzhi Zheng, Miguel Figueroa-Labastida, Jesse W. Streicher, Alison M. Ferris, Ronald K. Hanson

The flame speeds of premixed stoichiometric n-heptane/21% O2-79% Ar (so-called “airgon”) flames with different extents of pre-flame auto-ignition chemistry were experimentally investigated using an extended test-time, side-wall-imaging shock tube. n-Heptane/airgon mixtures were impulsively heated by reflected shock waves to a temperature of 703 ± 8 K and pressure of 1.55 ± 0.05 atm, exhibiting first-stage auto-ignition at 20.1 ± 0.6 ms. Flames were spark-ignited using a laser from 0.45 ms to 39 ms after reflected-shock heating, thus probing the augmentation of flame speeds with variable extents of pre-flame auto-ignition chemistry. The fixed-initial-temperature experiments displayed multiple distinctive flame speed regimes across first-stage auto-ignition. A burned-gas flame speed (Sb0) increase of 6% was first observed with spark-ignition at 7 ms after reflected-shock heating. At spark-ignition timing very close to the first-stage auto-ignition, Sb0 displayed a sharp 24% rise, which then gradually declined to 10% above the reference value where pre-flame chemistry is negligible. Experiments were additionally performed at 1.55 ± 0.05 atm using two fixed spark-ignition timings (0.45 ms and 25 ms after reflected-shock heating) for initial temperatures between 641 K and 771 K. In the experiments with variable initial temperatures, a non-monotonic Sb0 dependence on initial temperature was observed for the 25-ms experiments, which showed a maximum Sb0 increase of 14% relative to the 0.45-ms experiments. To provide modeling comparisons, the thermochemical time history of the reacting gas was first simulated; the species profiles and the temperature at a given residence time were then used to obtain the flame speed from 1D steady-state simulations. The multi-regime flame speed behavior was not observed in fixed-initial-temperature simulations, which predicted a single rise in flame speed only near the first-stage auto-ignition time. The simulations with variable initial temperatures qualitatively recovered the non-monotonic flame speed trend, but generally showed underprediction of flame speeds relative to experimental results. These new experiments provide insight into the effect of pre-flame chemistry on flame propagation and offer targets for improving flame modeling, potentially aiding the development of next-generation engine concepts.

使用延长测试时间的侧壁成像冲击管,实验研究了具有不同程度火焰前自燃化学反应的预混合共沸正庚烷/21% O2-79% Ar(即所谓的 "airgon")火焰的火焰速度。正庚烷/airgon 混合物被反射冲击波脉冲加热到温度为 703 ± 8 K 和压力为 1.55 ± 0.05 atm,在 20.1 ± 0.6 ms 时显示出第一阶段自燃。在反射冲击波加热后的 0.45 毫秒至 39 毫秒期间,使用激光对火焰进行火花点燃,从而探测了火焰自燃前化学反应的不同程度对火焰速度的影响。固定初始温度实验显示了第一阶段自燃过程中多种截然不同的火焰速度。在反射冲击加热后 ∼ 7 毫秒时,首次观察到火花点火时燃烧气体的火焰速度(Sb0)增加了 6%。在火花点火时间非常接近第一阶段自动点火时,Sb0 急剧上升 24%,然后逐渐下降到比火焰前化学反应可忽略的参考值高出 10%。在初始温度为 641 K 和 771 K 之间的 1.55 ± 0.05 atm 条件下,使用两种固定的火花点火时间(反射冲击加热后 0.45 毫秒和 25 毫秒)进行了额外的实验。在初始温度可变的实验中,25 毫秒的实验观察到 Sb0 与初始温度的非单调依赖关系,与 0.45 毫秒的实验相比,Sb0 的最大增幅为 14%。为了提供模型比较,首先模拟了反应气体的热化学时间历程;然后利用给定停留时间下的物种剖面和温度从一维稳态模拟中获得火焰速度。在固定初始温度模拟中没有观察到多时态焰速行为,因为固定初始温度模拟预测的焰速只在第一阶段自燃时间附近单一上升。初始温度可变的模拟结果定性地恢复了非单调的火焰速度趋势,但与实验结果相比,对火焰速度的预测普遍偏低。这些新实验深入揭示了火焰前化学反应对火焰传播的影响,为改进火焰建模提供了目标,可能有助于下一代发动机概念的开发。
{"title":"Experimental measurements of n-heptane flame speeds behind reflected shock waves with variable extents of pre-flame auto-ignition chemistry","authors":"Lingzhi Zheng,&nbsp;Miguel Figueroa-Labastida,&nbsp;Jesse W. Streicher,&nbsp;Alison M. Ferris,&nbsp;Ronald K. Hanson","doi":"10.1016/j.combustflame.2024.113539","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113539","url":null,"abstract":"<div><p>The flame speeds of premixed stoichiometric <em>n</em>-heptane/21% O<sub>2</sub>-79% Ar (so-called “airgon”) flames with different extents of pre-flame auto-ignition chemistry were experimentally investigated using an extended test-time, side-wall-imaging shock tube. <em>n</em>-Heptane/airgon mixtures were impulsively heated by reflected shock waves to a temperature of 703 ± 8 K and pressure of 1.55 ± 0.05 atm, exhibiting first-stage auto-ignition at 20.1 ± 0.6 ms. Flames were spark-ignited using a laser from 0.45 ms to 39 ms after reflected-shock heating, thus probing the augmentation of flame speeds with variable extents of pre-flame auto-ignition chemistry. The fixed-initial-temperature experiments displayed multiple distinctive flame speed regimes across first-stage auto-ignition. A burned-gas flame speed (<span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>) increase of 6% was first observed with spark-ignition at <span><math><mo>∼</mo></math></span>7 ms after reflected-shock heating. At spark-ignition timing very close to the first-stage auto-ignition, <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> displayed a sharp 24% rise, which then gradually declined to <span><math><mo>∼</mo></math></span>10% above the reference value where pre-flame chemistry is negligible. Experiments were additionally performed at 1.55 ± 0.05 atm using two fixed spark-ignition timings (0.45 ms and 25 ms after reflected-shock heating) for initial temperatures between 641 K and 771 K. In the experiments with variable initial temperatures, a non-monotonic <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> dependence on initial temperature was observed for the 25-ms experiments, which showed a maximum <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> increase of 14% relative to the 0.45-ms experiments. To provide modeling comparisons, the thermochemical time history of the reacting gas was first simulated; the species profiles and the temperature at a given residence time were then used to obtain the flame speed from 1D steady-state simulations. The multi-regime flame speed behavior was not observed in fixed-initial-temperature simulations, which predicted a single rise in flame speed only near the first-stage auto-ignition time. The simulations with variable initial temperatures qualitatively recovered the non-monotonic flame speed trend, but generally showed underprediction of flame speeds relative to experimental results. These new experiments provide insight into the effect of pre-flame chemistry on flame propagation and offer targets for improving flame modeling, potentially aiding the development of next-generation engine concepts.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The extinction limits and the radical index of non-premixed counterflow flames of methane/ammonia/nitrogen versus high-temperature air 甲烷/氨气/氮气与高温空气非预混逆流火焰的消光极限和自由基指数
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-08 DOI: 10.1016/j.combustflame.2024.113540
Yuki Murakami, Takuya Tezuka, Hisashi Nakamura

The extinction limits of non-premixed counterflow flames of methane (CH4)/ammonia (NH3)/nitrogen (N2) versus high-temperature air (TAir = 700 K and 1000 K) were investigated both experimentally and numerically. Extinction stretch rates of non-premixed counterflow flames of CH4/NH3 mixtures decreased greatly as the ammonia mixing ratio increased. Recent chemical kinetic models could well predict measured extinction limits of non-premixed counterflow flames of CH4/NH3 mixtures, especially for TAir = 1000 K. Chemical kinetic analyses indicated that the nature of NH3 consuming active radicals but not regenerating them through its oxidation is the primary reason for the drastic decreases in extinction stretch rates of non-premixed counterflow flames of CH4/NH3 mixtures. Furthermore, the combined metric of the transport weighted enthalpy (TWE) and the radical index (RI) is introduced for non-premixed counterflow flames of CH4/NH3 mixtures. The OH-radical index (RIOH), previously used in the combined metric for extinction limits of non-premixed counterflow flames of large hydrocarbons, expresses linear relationships with extinction limits for both TAir conditions. According to further investigations on heat releases from individual reactions, the contribution to heat releases from a reaction involving O radicals, i.e., CH3 + O ⇄ CH2O + H, becomes large in addition to reactions involving OH radicals, i.e., CO + OH ⇄ CO2 + H and H2 + OH ⇄ H + H2O. Based on the analyses, a new radical index based on the combination of OH and O radicals (RIOH&O) is proposed. The RIOH&O better expresses the linear relationship between extinction limits and the combined metric of RIOH&O and TWE.

通过实验和数值计算研究了甲烷(CH4)/氨(NH3)/氮(N2)与高温空气(TAir = 700 K 和 1000 K)非预混逆流火焰的消光极限。随着氨气混合比的增加,CH4/NH3 混合物的非预混合逆流火焰的熄灭伸展率大大降低。最新的化学动力学模型可以很好地预测 CH4/NH3 混合物非预混合逆流火焰的消光极限,特别是在 TAir = 1000 K 的情况下。化学动力学分析表明,NH3 消耗活性自由基而不是通过其氧化作用再生活性自由基的性质是 CH4/NH3 混合物非预混合逆流火焰消光伸展率急剧下降的主要原因。此外,还针对 CH4/NH3 混合物的非预混合逆流火焰引入了传输加权焓(TWE)和自由基指数(RI)的组合指标。之前用于大碳氢化合物非预混逆流火焰消光极限的组合指标中的羟基-自由基指数(RIOH)与 TAir 两种条件下的消光极限均呈线性关系。根据对单个反应释放热量的进一步研究,除了涉及 OH 自由基的反应(即 CO + OH ⇄ CO2 + H 和 H2 + OH ⇄ H + H2O)外,涉及 O 自由基的反应(即 CH3 + O ⇄ CH2O + H)对释放热量的贡献也变得很大。根据分析结果,提出了一种基于 OH 和 O 自由基组合的新自由基指数(RIOH&O)。RIOH&O 更好地表达了消光极限与 RIOH&O 和 TWE 组合指标之间的线性关系。
{"title":"The extinction limits and the radical index of non-premixed counterflow flames of methane/ammonia/nitrogen versus high-temperature air","authors":"Yuki Murakami,&nbsp;Takuya Tezuka,&nbsp;Hisashi Nakamura","doi":"10.1016/j.combustflame.2024.113540","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113540","url":null,"abstract":"<div><p>The extinction limits of non-premixed counterflow flames of methane (CH<sub>4</sub>)/ammonia (NH<sub>3</sub>)/nitrogen (N<sub>2</sub>) versus high-temperature air (<em>T</em><sub>Air</sub> = 700 K and 1000 K) were investigated both experimentally and numerically. Extinction stretch rates of non-premixed counterflow flames of CH<sub>4</sub>/NH<sub>3</sub> mixtures decreased greatly as the ammonia mixing ratio increased. Recent chemical kinetic models could well predict measured extinction limits of non-premixed counterflow flames of CH<sub>4</sub>/NH<sub>3</sub> mixtures, especially for <em>T</em><sub>Air</sub> = 1000 K. Chemical kinetic analyses indicated that the nature of NH<sub>3</sub> consuming active radicals but not regenerating them through its oxidation is the primary reason for the drastic decreases in extinction stretch rates of non-premixed counterflow flames of CH<sub>4</sub>/NH<sub>3</sub> mixtures. Furthermore, the combined metric of the transport weighted enthalpy (<em>TWE</em>) and the radical index (<em>RI</em>) is introduced for non-premixed counterflow flames of CH<sub>4</sub>/NH<sub>3</sub> mixtures. The OH-radical index (<em>RI</em><sub>OH</sub>), previously used in the combined metric for extinction limits of non-premixed counterflow flames of large hydrocarbons, expresses linear relationships with extinction limits for both <em>T</em><sub>Air</sub> conditions. According to further investigations on heat releases from individual reactions, the contribution to heat releases from a reaction involving O radicals, i.e., CH<sub>3</sub> + O ⇄ CH<sub>2</sub>O + H, becomes large in addition to reactions involving OH radicals, i.e., CO + OH ⇄ CO<sub>2</sub> + H and H<sub>2</sub> + OH ⇄ H + H<sub>2</sub>O. Based on the analyses, a new radical index based on the combination of OH and O radicals (<em>RI</em><sub>OH&amp;O</sub>) is proposed. The <em>RI</em><sub>OH&amp;O</sub> better expresses the linear relationship between extinction limits and the combined metric of <em>RI</em><sub>OH&amp;O</sub> and <em>TWE</em>.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024002499/pdfft?md5=30f6fc89999ac63b449dd015a6b0b595&pid=1-s2.0-S0010218024002499-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and kinetic studies on autoignition characteristics of ammonia/methyl 3-hexenoate mixture 氨/3-己烯酸甲酯混合物自燃特性的实验和动力学研究
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-08 DOI: 10.1016/j.combustflame.2024.113530
Chong Li , Yangyang Luo , Yanlei Shang , Hongbo Ning , S.N. Luo

Biodiesel is a renewable and promising alternative to diesel with similar physicochemical properties. To explore the feasibility of biodiesel in improving the combustion performance of ammonia (NH3), this work investigates the autoignition characteristics of NH3 blended with a medium-size unsaturated biodiesel surrogate (trans-methyl-3-hexenoate, MHX3D), using a heated shock tube. The experiments are conducted at 1108–2097 K with different pressures (2.9–6.2 atm), equivalence ratios (0.5–2.0), and MHX3D blending ratios (0–100%). Ignition delay times of NH3/MHX3D mixtures decrease with increasing pressure and MHX3D blending ratio and decreasing equivalence ratio. A small addition of MHX3D dramatically reduces the ignition delay time and ignition temperature of NH3, and this promotion effect is slightly more significant than that of its saturated structure. Using the advanced kinetic theory, the rate constants of the important cross-coupling reactions between MHX3D and NH2 radicals are accurately determined, where the dual-level multi-structural torsional (MS-T) method is applied to characterize the MS-T anharmonicity. Based on our calculations and literature data, a detailed combustion model is proposed to reveal the combustion mechanism of NH3/MHX3D mixtures. The kinetic analyses demonstrate that the degeneration of MHX3D in the initial stage yields the reactive radicals that perturb the system to accelerate the consumption of NH3 by H-abstraction reactions. The cross-coupling reactions between NH2 radicals and C-containing species and the related subsequent reactions of produced cross-coupling intermediates are crucial in controlling the ignition process of NH3/MHX3D mixtures.

Novelty and Significance statement: This work investigates the autoignition characteristics of NH3 blended with a medium-size unsaturated biodiesel surrogate, trans-methyl-3-hexenoate (MHX3D), under a wide range of experimental conditions. The rate constants of important cross-coupling reactions between MHX3D and NH2 radical are calculated using the canonical variational transition-state theory and the small-curvature tunnelin

生物柴油是一种可再生的、有前途的柴油替代品,具有类似的物理化学特性。为了探索生物柴油改善氨(NH3)燃烧性能的可行性,本研究利用加热冲击管研究了 NH3 与中等大小的不饱和生物柴油替代物(反式-甲基-3-己烯酸酯,MHX3D)混合后的自燃特性。实验在 1108-2097 K 条件下进行,采用了不同的压力(2.9-6.2 atm)、当量比(0.5-2.0)和 MHX3D 混合比(0-100%)。NH3/MHX3D 混合物的点火延迟时间随着压力和 MHX3D 混合比的增加以及等效比的降低而缩短。少量添加 MHX3D 可显著降低 NH3 的点火延迟时间和点火温度,这种促进作用比其饱和结构的促进作用更显著。利用先进的动力学理论,精确测定了 MHX3D 与 NH2 自由基之间重要交叉偶联反应的速率常数,其中应用了双级多结构扭转(MS-T)方法来表征 MS-T 非谐波性。根据我们的计算和文献数据,提出了一个详细的燃烧模型,以揭示 NH3/MHX3D 混合物的燃烧机理。动力学分析表明,MHX3D 在初始阶段的退化产生了活性自由基,这些自由基扰动了系统,通过 H-萃取反应加速了 NH3 的消耗。NH2 自由基和含 C 物种之间的交叉耦合反应以及产生的交叉耦合中间产物的相关后续反应是控制 NH3/MHX3D 混合物点火过程的关键:本研究探讨了在多种实验条件下,NH3 与中等粒径的不饱和生物柴油替代物--反式-3-己烯酸甲酯(MHX3D)混合后的自燃特性。在双水平多结构扭转方法的帮助下,利用典型变异过渡态理论和小曲率隧道校正计算了 MHX3D 与 NH2 自由基之间重要交叉耦合反应的速率常数。根据我们的计算和文献数据,提出了一个详细的燃烧动力学模型,以揭示 NH3/MHX3D 混合物的燃烧机理。动力学分析表明,由于 MHX3D 的高反应活性,其在初始阶段的变质会产生活性自由基,这些自由基会扰动系统,通过 H-萃取反应加速 NH3 的消耗。NH2 自由基与含 C 物种之间的交叉耦合反应以及产生的交叉耦合中间产物的相关后续反应是控制 NH3/MHX3D 混合物点火过程的关键。
{"title":"Experimental and kinetic studies on autoignition characteristics of ammonia/methyl 3-hexenoate mixture","authors":"Chong Li ,&nbsp;Yangyang Luo ,&nbsp;Yanlei Shang ,&nbsp;Hongbo Ning ,&nbsp;S.N. Luo","doi":"10.1016/j.combustflame.2024.113530","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113530","url":null,"abstract":"<div><p>Biodiesel is a renewable and promising alternative to diesel with similar physicochemical properties. To explore the feasibility of biodiesel in improving the combustion performance of ammonia (NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>), this work investigates the autoignition characteristics of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> blended with a medium-size unsaturated biodiesel surrogate (<em>trans</em>-methyl-3-hexenoate, MHX3D), using a heated shock tube. The experiments are conducted at 1108–2097 K with different pressures (2.9–6.2 atm), equivalence ratios (0.5–2.0), and MHX3D blending ratios (0–100%). Ignition delay times of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX3D mixtures decrease with increasing pressure and MHX3D blending ratio and decreasing equivalence ratio. A small addition of MHX3D dramatically reduces the ignition delay time and ignition temperature of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and this promotion effect is slightly more significant than that of its saturated structure. Using the advanced kinetic theory, the rate constants of the important cross-coupling reactions between MHX3D and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radicals are accurately determined, where the dual-level multi-structural torsional (MS-T) method is applied to characterize the MS-T anharmonicity. Based on our calculations and literature data, a detailed combustion model is proposed to reveal the combustion mechanism of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX3D mixtures. The kinetic analyses demonstrate that the degeneration of MHX3D in the initial stage yields the reactive radicals that perturb the system to accelerate the consumption of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> by H-abstraction reactions. The cross-coupling reactions between NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radicals and C-containing species and the related subsequent reactions of produced cross-coupling intermediates are crucial in controlling the ignition process of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX3D mixtures.</p><p><strong>Novelty and Significance statement:</strong> This work investigates the autoignition characteristics of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> blended with a medium-size unsaturated biodiesel surrogate, <em>trans</em>-methyl-3-hexenoate (MHX3D), under a wide range of experimental conditions. The rate constants of important cross-coupling reactions between MHX3D and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radical are calculated using the canonical variational transition-state theory and the small-curvature tunnelin","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-pressure oxidation of hydrogen diluted in N2 with added H2O or CO2 at 100 atm in a supercritical-pressure jet-stirred reactor 在 100 atm 的超临界压力喷射搅拌反应器中,在 N2 中稀释的氢气与添加的 H2O 或 CO2 发生高压氧化反应
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-08 DOI: 10.1016/j.combustflame.2024.113543
Hao Zhao , Chao Yan , Guohui Song , Ziyu Wang , Ahren W. Jasper , Stephen J. Klippenstein , Yiguang Ju

The oxidation of H2 diluted in N2 with and without 10 % H2O or 20 % CO2 additions are studied at fuel-lean conditions at 100 atm and 500–1000 K in a supercritical-pressure jet-stirred reactor. The mole fractions of H2 and O2 are quantified by using micro-gas chromatography (µ-GC). Experiment shows that H2 oxidation is inhibited at lower temperatures (850–950 K) while it is promoted at higher temperatures (950–1050 K) with 10 % H2O additions or 20 % CO2 additions. In addition, the effect of H2O is more significant than that of CO2. Five models are employed in simulations of the observables. Unfortunately, all of these models fail to capture the effect of H2O and CO2 additions on H2 oxidation. Pathway and sensitivity analyses of H2 show that the reactions of H + O2 + (M) = HO2 + (M) and H2O2 + (M) = 2OH + (M) dominate the radical production (HO2 and OH) and H2 oxidation at 100 atm. A further perturbation of pre-exponential coefficients and collisional factors of these reactions indicates that collisional factors of H2O and CO2 have small effect under the experimental conditions, while a smaller reaction rate for H2O2 + (M) = 2OH + (M) may explain the inhibiting effect of H2O and CO2 additions at lower temperatures. Real-fluid corrections on intermolecular interactions and mixing rules should be further investigated to explain the effect of H2O and CO2 additions.

在超临界压力喷射搅拌反应器中,在 100 atm 和 500-1000 K 的燃料稀释条件下,研究了添加或不添加 10 % H2O 或 20 % CO2 的 N2 中稀释的 H2 的氧化过程。采用微气相色谱法(µ-GC)对 H2 和 O2 的摩尔分数进行了量化。实验表明,在较低温度(850-950 K)下,H2 的氧化作用会受到抑制,而在较高温度(950-1050 K)下,添加 10% 的 H2O 或 20% 的 CO2 会促进 H2 的氧化作用。此外,H2O 的影响比 CO2 的影响更为显著。在模拟观测数据时采用了五个模型。遗憾的是,所有这些模型都未能捕捉到添加 H2O 和 CO2 对 H2 氧化的影响。对 H2 的途径和敏感性分析表明,在 100 atm 时,H+O2+(M)=HO2+(M)和 H2O2+(M)=2OH+(M)反应在自由基生成(HO2 和 OH)和 H2 氧化中占主导地位。对这些反应的预指数系数和碰撞因子的进一步扰动表明,在实验条件下,H2O 和 CO2 的碰撞因子影响较小,而 H2O2 + (M) = 2OH + (M) 的反应速率较小,这可能解释了在较低温度下 H2O 和 CO2 的添加具有抑制作用。应进一步研究分子间相互作用和混合规则的实际流体修正,以解释 H2O 和 CO2 添加的影响。
{"title":"High-pressure oxidation of hydrogen diluted in N2 with added H2O or CO2 at 100 atm in a supercritical-pressure jet-stirred reactor","authors":"Hao Zhao ,&nbsp;Chao Yan ,&nbsp;Guohui Song ,&nbsp;Ziyu Wang ,&nbsp;Ahren W. Jasper ,&nbsp;Stephen J. Klippenstein ,&nbsp;Yiguang Ju","doi":"10.1016/j.combustflame.2024.113543","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113543","url":null,"abstract":"<div><p>The oxidation of H<sub>2</sub> diluted in N<sub>2</sub> with and without 10 % H<sub>2</sub>O or 20 % CO<sub>2</sub> additions are studied at fuel-lean conditions at 100 atm and 500–1000 K in a supercritical-pressure jet-stirred reactor. The mole fractions of H<sub>2</sub> and O<sub>2</sub> are quantified by using micro-gas chromatography (µ-GC). Experiment shows that H<sub>2</sub> oxidation is inhibited at lower temperatures (850–950 K) while it is promoted at higher temperatures (950–1050 K) with 10 % H<sub>2</sub>O additions or 20 % CO<sub>2</sub> additions. In addition, the effect of H<sub>2</sub>O is more significant than that of CO<sub>2</sub>. Five models are employed in simulations of the observables. Unfortunately, all of these models fail to capture the effect of H<sub>2</sub>O and CO<sub>2</sub> additions on H<sub>2</sub> oxidation. Pathway and sensitivity analyses of H<sub>2</sub> show that the reactions of H + O<sub>2</sub> + (M) = HO<sub>2</sub> + (M) and H<sub>2</sub>O<sub>2</sub> + (M) = 2OH + (M) dominate the radical production (HO<sub>2</sub> and OH) and H<sub>2</sub> oxidation at 100 atm. A further perturbation of pre-exponential coefficients and collisional factors of these reactions indicates that collisional factors of H<sub>2</sub>O and CO<sub>2</sub> have small effect under the experimental conditions, while a smaller reaction rate for H<sub>2</sub>O<sub>2</sub> + (M) = 2OH + (M) may explain the inhibiting effect of H<sub>2</sub>O and CO<sub>2</sub> additions at lower temperatures. Real-fluid corrections on intermolecular interactions and mixing rules should be further investigated to explain the effect of H<sub>2</sub>O and CO<sub>2</sub> additions.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and chemistry of stretched ammonia/hydrogen weak flames at elevated pressures 高压下绵延的氨/氢弱火焰的存在和化学性质
IF 4.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-06-08 DOI: 10.1016/j.combustflame.2024.113528
Shumeng Xie , Huangwei Zhang

Recently, a two-stage ignition phenomenon of NH3/H2 mixtures was experimentally observed in a rapid compression machine, which is closely linked to the concept of flame bifurcations and cool flames. One interesting question may arise: do similar flame bifurcations exist in NH3/H2 mixtures? To answer this, this study employs the premixed counterflow configuration and examines the potential bifurcations of the NH3/H2/air flame with one-dimensional simulations. For the first time, a novel weak combustion mode of NH3/H2 mixtures is observed and termed as the weak flame in the following. Unlike the conventional hot flame, the weak flame exhibits significantly lower flame temperatures (1300–1500 K) and a mere 1 % of the heat release rate (∼109 J/m3/s) associated with hot flames. Within the weak flame, H2 is entirely oxidized to H2O, whereas only a portion of NH3 is partially oxidized, resulting in the formation of H2O, N2, N2O, and NO. Further reaction path analyses reveal that the NH3 (+OH) → NH2 (+NO2) → H2NO (+NH2, +HO2, +O2, +NO2) → HNO (+O2) → NO (+HO2) → NO2 → N2O pathway is the primary oxidation route of ammonia in the weak flame. Furthermore, the effects of pressure, hydrogen content, and equivalence ratio are systematically assessed to explore the operation conditions of the ammonia/hydrogen weak flame. The study reveals that the weak flame is promoted at elevated pressures, and exists with a moderate hydrogen addition, i.e., xH2 = 0.02–0.4. A regime diagram is further proposed to summarize the combined influences of hydrogen molar fraction and equivalence ratio. In the end, the impacts of chemical mechanisms are tested and the dominant ammonia oxidization path in the weak flame persists for models capable of predicting weak flames.

最近,在一台快速压缩机上实验观察到了 NH3/H2 混合物的两级点火现象,这与火焰分岔和冷焰的概念密切相关。可能会出现一个有趣的问题:NH3/H2 混合物中是否也存在类似的火焰分岔现象?为了回答这个问题,本研究采用了预混逆流构型,并通过一维模拟研究了 NH3/H2/air 火焰的潜在分岔。研究首次观察到 NH3/H2 混合物的新型弱燃烧模式,并将其称为弱火焰。与传统的热火焰不同,弱火焰的火焰温度明显较低(1300-1500 K),热释放率(∼109 J/m3/s)仅为热火焰的 1%。在弱火焰中,H2 全部被氧化成 H2O,而只有部分 NH3 被部分氧化,形成 H2O、N2、N2O 和 NO。进一步的反应路径分析显示,NH3(+OH)→NH2(+NO2)→H2NO(+NH2、+HO2、+O2、+NO2)→HNO(+O2)→NO(+HO2)→NO2→N2O 路径是弱焰中氨的主要氧化路径。此外,还系统地评估了压力、氢含量和等效比的影响,以探索氨/氢弱火焰的运行条件。研究结果表明,弱焰在压力较高时得到促进,并在氢气添加量适中(即 xH2 = 0.02-0.4)的条件下存在。研究进一步提出了一种制度图,以总结氢摩尔分数和当量比的综合影响。最后,测试了化学机制的影响,对于能够预测弱火焰的模型来说,弱火焰中的主要氨氧化途径仍然存在。
{"title":"Existence and chemistry of stretched ammonia/hydrogen weak flames at elevated pressures","authors":"Shumeng Xie ,&nbsp;Huangwei Zhang","doi":"10.1016/j.combustflame.2024.113528","DOIUrl":"https://doi.org/10.1016/j.combustflame.2024.113528","url":null,"abstract":"<div><p>Recently, a two-stage ignition phenomenon of NH<sub>3</sub>/H<sub>2</sub> mixtures was experimentally observed in a rapid compression machine, which is closely linked to the concept of flame bifurcations and cool flames. One interesting question may arise: do similar flame bifurcations exist in NH<sub>3</sub>/H<sub>2</sub> mixtures? To answer this, this study employs the premixed counterflow configuration and examines the potential bifurcations of the NH<sub>3</sub>/H<sub>2</sub>/air flame with one-dimensional simulations. For the first time, a novel weak combustion mode of NH<sub>3</sub>/H<sub>2</sub> mixtures is observed and termed as the weak flame in the following. Unlike the conventional hot flame, the weak flame exhibits significantly lower flame temperatures (1300–1500 K) and a mere 1 % of the heat release rate (∼10<sup>9</sup> J/m<sup>3</sup>/s) associated with hot flames. Within the weak flame, H<sub>2</sub> is entirely oxidized to H<sub>2</sub>O, whereas only a portion of NH<sub>3</sub> is partially oxidized, resulting in the formation of H<sub>2</sub>O, N<sub>2</sub>, N<sub>2</sub>O, and NO. Further reaction path analyses reveal that the NH<sub>3</sub> (+OH) → NH<sub>2</sub> (+NO<sub>2</sub>) → H<sub>2</sub>NO (+NH<sub>2</sub>, +HO<sub>2</sub>, +O<sub>2</sub>, +NO<sub>2</sub>) → HNO (+O<sub>2</sub>) → NO (+HO<sub>2</sub>) → NO<sub>2</sub> → N<sub>2</sub>O pathway is the primary oxidation route of ammonia in the weak flame. Furthermore, the effects of pressure, hydrogen content, and equivalence ratio are systematically assessed to explore the operation conditions of the ammonia/hydrogen weak flame. The study reveals that the weak flame is promoted at elevated pressures, and exists with a moderate hydrogen addition, i.e., <span><math><msub><mi>x</mi><mrow><mi>H</mi><mn>2</mn></mrow></msub></math></span> = 0.02–0.4. A regime diagram is further proposed to summarize the combined influences of hydrogen molar fraction and equivalence ratio. In the end, the impacts of chemical mechanisms are tested and the dominant ammonia oxidization path in the weak flame persists for models capable of predicting weak flames.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combustion and Flame
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1