首页 > 最新文献

Combustion and Flame最新文献

英文 中文
Thermochemical nonequilibrium effect on hydrogen- and ethylene-fueled supersonic combustion 热化学不平衡对氢和乙烯燃料超音速燃烧的影响
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-05 DOI: 10.1016/j.combustflame.2025.114757
Yu Wang , Wei Yao , Jianwen Liu , Xisheng Luo
<div><div>The thermochemical nonequilibrium effect on hydrogen- and ethylene-fueled supersonic combustion was modeled in the framework of a two-temperature-based Dynamic Zone Flamelet Model (DZFM) with up to 221.21 million cells. The numerical predictions of wall pressure match well with the experimental data for both the cold and reacting cases. Thermal nonequilibrium is first introduced by the inlet compression, then intensified by the jet-excited shock wave and expansion wave, and eventually emerges again in the divergent nozzle after a temporal equilibrium status. Delayed ignition was observed under nonequilibrium for both hydrogen and ethylene combustion. The relative importance of <span><math><msub><mi>T</mi><mi>t</mi></msub></math></span> and <span><math><msub><mi>T</mi><mi>v</mi></msub></math></span> on elementary reactions under different degrees of thermal nonequilibrium (<span><math><mrow><msub><mi>T</mi><mi>v</mi></msub><mo>/</mo><msub><mi>T</mi><mi>t</mi></msub></mrow></math></span>) was analyzed using reaction path flux analysis over the typical temperature range in scramjets. Inverse reaction path directions were observed in the hydrogen ignition process between equilibrium and nonequilibrium. The reaction rate of the chain branching reaction <span><math><mrow><mrow><mi>H</mi><mspace></mspace><mo>+</mo><mspace></mspace></mrow><msub><mi>O</mi><mn>2</mn></msub><mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>O</mi><mspace></mspace><mo>+</mo><mspace></mspace><mtext>OH</mtext></mrow></mrow></math></span> is dominated by <span><math><msub><mi>T</mi><mi>v</mi></msub></math></span> under intense thermal nonequilibrium (<span><math><mrow><msub><mi>T</mi><mi>v</mi></msub><mo>/</mo><msub><mi>T</mi><mi>t</mi></msub><mrow><mo><</mo><mn>0</mn></mrow><mrow><mo>.</mo><mn>5</mn></mrow></mrow></math></span>). Inhibition of <span><math><mrow><mrow><mi>H</mi><mspace></mspace><mo>+</mo><mspace></mspace></mrow><msub><mi>O</mi><mn>2</mn></msub><mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>O</mi><mspace></mspace><mo>+</mo><mspace></mspace><mtext>OH</mtext></mrow></mrow></math></span> results in delayed hydrogen ignition under nonequilibrium. For the ethylene case, the inhibition of the dissociation reactions <span><math><mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>4</mn></msub><mrow><mspace></mspace><mo>=</mo><mspace></mspace></mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mrow><mn>3</mn><mspace></mspace></mrow></msub><mrow><mo>+</mo><mspace></mspace><mi>H</mi></mrow></mrow></math></span> and <span><math><mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>3</mn></msub><mrow><mspace></mspace><mo>=</mo><mspace></mspace></mrow><msub><mi>C</mi><mn>2</mn></msub><mrow><mi>H</mi><mspace></mspace><mo>+</mo><mspace></mspace></mrow><msub><mi>H</mi><mn>2</mn></msub></mrow></math></span> dramatically decreases the concentration of active radicals, leading to delayed ignition under nonequilibrium. The thermochemical noneq
采用基于双温度的动态区域火焰模型(DZFM),模拟了氢燃料和乙烯燃料超声速燃烧的热化学不平衡效应。在冷工况和反应工况下,壁面压力的数值预测与实验数据吻合较好。热平衡首先由进气道压缩引起,然后由射流激波和膨胀波加剧,最后在发散喷管内经过一段时间的平衡状态再次出现。在非平衡状态下,氢和乙烯燃烧均观察到延迟点火现象。利用超燃冲压发动机典型温度范围内的反应路径通量分析,分析了不同热非平衡程度下Tt和Tv对元素反应的相对重要性。在氢点火过程中,在平衡态和非平衡态之间观察到相反的反应路径方向。在强烈的热非平衡(Tv/Tt<0.5)条件下,H+O2=O+OH的链支反应速率以Tv为主。抑制H+O2=O+OH导致非平衡状态下氢点火延迟。对于乙烯,抑制C2H4=C2H3+H和C2H3=C2H+H2的解离反应可显著降低活性自由基的浓度,导致非平衡状态下延迟点火。热化学不平衡效应总体上导致较低的空气捕获率、较低的燃烧效率和较低的净推力。
{"title":"Thermochemical nonequilibrium effect on hydrogen- and ethylene-fueled supersonic combustion","authors":"Yu Wang ,&nbsp;Wei Yao ,&nbsp;Jianwen Liu ,&nbsp;Xisheng Luo","doi":"10.1016/j.combustflame.2025.114757","DOIUrl":"10.1016/j.combustflame.2025.114757","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The thermochemical nonequilibrium effect on hydrogen- and ethylene-fueled supersonic combustion was modeled in the framework of a two-temperature-based Dynamic Zone Flamelet Model (DZFM) with up to 221.21 million cells. The numerical predictions of wall pressure match well with the experimental data for both the cold and reacting cases. Thermal nonequilibrium is first introduced by the inlet compression, then intensified by the jet-excited shock wave and expansion wave, and eventually emerges again in the divergent nozzle after a temporal equilibrium status. Delayed ignition was observed under nonequilibrium for both hydrogen and ethylene combustion. The relative importance of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; on elementary reactions under different degrees of thermal nonequilibrium (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) was analyzed using reaction path flux analysis over the typical temperature range in scramjets. Inverse reaction path directions were observed in the hydrogen ignition process between equilibrium and nonequilibrium. The reaction rate of the chain branching reaction &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;OH&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is dominated by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; under intense thermal nonequilibrium (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;). Inhibition of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;OH&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; results in delayed hydrogen ignition under nonequilibrium. For the ethylene case, the inhibition of the dissociation reactions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; dramatically decreases the concentration of active radicals, leading to delayed ignition under nonequilibrium. The thermochemical noneq","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114757"},"PeriodicalIF":6.2,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145922386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the influence of ambient hydrogen doping on the spray combustion characteristics of polyoxymethylene dimethyl ether 3 (PODE3) towards combustion control of hydrogen pilot-ignition engines 环境氢掺杂对聚氧亚甲基二甲醚3 (PODE3)喷雾燃烧特性的影响对氢气引燃发动机燃烧控制的研究
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-03 DOI: 10.1016/j.combustflame.2025.114762
Huiquan Duan , Huajie Wang , Chongchong Ren , Min Liu , Shuzhan Bai , Guoxiang Li , Ming Jia
The elucidation of the influencing mechanism of ambient hydrogen (H2) doping on high-pressure fuel spray combustion is crucial for the realization of precise combustion control of H2 pilot-ignition engines. Attributed to the superior properties as a fuel alternative, the spray combustion characteristics of polyoxymethylene dimethyl ether 3 (PODE3) were comprehensively investigated under wide H2 doping and fuel supply conditions in this study. The results indicated that the chemical effect of ambient H2 doping dominates the PODE3 spray combustion, and the physical effect is negligible. With the H2 adoption, the competitive relationship between OH+H2=H + H2O and PODE3+OH=PODE3RX1+H2O determines the ignition delay of the PODE3/H2 mixtures. With the increase in H2 addition, the sensitivity coefficient of OH+H2=H + H2O rapidly increases, lengthening the ignition delay of PODE3 spray combustion. Under non-H2 doping conditions, the OH is mainly distributed on the sides, but the C2H2 produced by the oxidation of the high-concentration fuel/air mixture is mainly located at the center, which is oxidized as it arrives at the flame region. The difference in the distribution of the OH and C2H2 limits the C2H2 oxidation. With the H2 addition, the combustion of the fuel with the entrained H2 results in a large amount of OH at the upper region where the C2H2 is primarily produced, which can promote the C2H2 oxidation. For both non-H2 and H2 doping conditions, the ignition delay of the second injection firstly reduces and then remains unchanged with the increased injection interval under the double-injection strategies. This mainly results from the combined effects of the reduction of the H2 concentration at the PODE3 spray path and the decreased local temperature.
阐明环境氢(H2)掺杂对高压燃油喷雾燃烧的影响机理,对于实现H2引燃发动机的精确燃烧控制至关重要。鉴于PODE3作为燃料替代品的优越性能,本研究全面研究了其在宽H2掺杂和燃料供应条件下的喷雾燃烧特性。结果表明,环境H2掺杂对PODE3喷雾燃烧的化学效应起主导作用,物理效应可以忽略不计。采用H2后,OH+H2=H +H2O与PODE3+OH=PODE3RX1+H2O之间的竞争关系决定了PODE3/H2混合物的点火延迟时间。随着H2添加量的增加,OH+H2=H + H2O的敏感系数迅速增大,延长了PODE3喷雾燃烧的着火延迟时间。在非h2掺杂条件下,OH主要分布在两侧,而高浓度燃料/空气混合物氧化产生的C2H2主要位于中心,到达火焰区域时被氧化。OH和C2H2分布的差异限制了C2H2的氧化。随着H2的加入,携带H2的燃料燃烧,在主要生成C2H2的上部区域产生大量OH,促进C2H2的氧化。无论是非H2掺杂还是H2掺杂,在双喷策略下,随着喷射间隔的增加,二次喷射的点火延迟先减小后保持不变。这主要是由于PODE3喷雾路径H2浓度降低和局部温度降低的综合作用。
{"title":"Investigation on the influence of ambient hydrogen doping on the spray combustion characteristics of polyoxymethylene dimethyl ether 3 (PODE3) towards combustion control of hydrogen pilot-ignition engines","authors":"Huiquan Duan ,&nbsp;Huajie Wang ,&nbsp;Chongchong Ren ,&nbsp;Min Liu ,&nbsp;Shuzhan Bai ,&nbsp;Guoxiang Li ,&nbsp;Ming Jia","doi":"10.1016/j.combustflame.2025.114762","DOIUrl":"10.1016/j.combustflame.2025.114762","url":null,"abstract":"<div><div>The elucidation of the influencing mechanism of ambient hydrogen (H2) doping on high-pressure fuel spray combustion is crucial for the realization of precise combustion control of H2 pilot-ignition engines. Attributed to the superior properties as a fuel alternative, the spray combustion characteristics of polyoxymethylene dimethyl ether 3 (PODE3) were comprehensively investigated under wide H2 doping and fuel supply conditions in this study. The results indicated that the chemical effect of ambient H2 doping dominates the PODE3 spray combustion, and the physical effect is negligible. With the H2 adoption, the competitive relationship between OH+H2=<em>H</em> + H2O and PODE3+OH=PODE3RX1+H2O determines the ignition delay of the PODE3/H2 mixtures. With the increase in H2 addition, the sensitivity coefficient of OH+H2=<em>H</em> + H2O rapidly increases, lengthening the ignition delay of PODE3 spray combustion. Under non-H2 doping conditions, the OH is mainly distributed on the sides, but the C2H2 produced by the oxidation of the high-concentration fuel/air mixture is mainly located at the center, which is oxidized as it arrives at the flame region. The difference in the distribution of the OH and C2H2 limits the C2H2 oxidation. With the H2 addition, the combustion of the fuel with the entrained H2 results in a large amount of OH at the upper region where the C2H2 is primarily produced, which can promote the C2H2 oxidation. For both non-H2 and H2 doping conditions, the ignition delay of the second injection firstly reduces and then remains unchanged with the increased injection interval under the double-injection strategies. This mainly results from the combined effects of the reduction of the H2 concentration at the PODE3 spray path and the decreased local temperature.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114762"},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wall impact dynamics of a single burning micron-sized iron particle 单个微米级铁颗粒燃烧时的壁面撞击动力学
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-03 DOI: 10.1016/j.combustflame.2025.114735
Yilan Yang, Longkai Zhang, Haiyang Zhang, Qianqian Li, Xiao Cai, Hu Liu, Jinhua Wang, Zuohua Huang
In this work, the single iron particle combustion platform was modified to be a wall impact test platform, traced the impact behaviors of burning iron particles with a high speed camera and a long focal macro lens. Three fundamental impact modes were identified: liquid-phase adhesion, liquid-phase rebound, and solid-phase rebound. The significant reduction of self-luminous intensity was observed for two liquid-phase modes, which indicated wall heat transfer played a dominant role in the impact process of liquid-phase particles. Furthermore, micro-explosion of burning iron particles were observed during the whole impact process and behaved in three modes: cooling-induced, impact-induced, and cavity formation. This probably caused by the high pressure gases generated by chemical reactions of impurities by discussing three generation mechanisms proposed previously. To understand the impact behavior quantitatively, kinetic analysis of burning iron particle impact was carried out and a model was developed for predicting the maximum dimensionless spreading factor of burning iron droplets. The model performance was improved when adhering and rebounding droplets were considered separately. Finally, a statistical analysis revealed that larger particles have higher adhesion probabilities at the lower height. As the height increased, the adhesion probabilities of all particles decreased significantly, which were more pronounced for larger particles. The empirical model derived in this study can be incorporated into future models for iron particle impact, which is expected to aid the recognition of iron combustion.

Novelty and significance statement

A comprehensive investigation on the impact behavior of burning iron particles was carried out for the first time to the best of authors’ knowledge. A serious of interesting phenomenon were identified during impact, including liquid-phase adhesion, liquid-phase rebound, solid-phase rebound and micro-explosion. Specifically, micro-explosion was found to behave in the modes of cooling-induced, impact-induced, and cavity formation. Essential kinetic mechanism was elucidated for iron droplet impact with predictive models proposed for droplet spreading and adhesion probability. These findings offered critical insights for improving wall surface slagging of iron-fired boiler.
本文将单铁颗粒燃烧平台改造为壁面冲击试验平台,利用高速摄像机和长焦微距镜头跟踪燃烧铁颗粒的冲击行为。确定了三种基本的冲击模式:液相粘附、液相回弹和固相回弹。两种液相模式的自发光强度均显著降低,表明壁面传热在液相粒子撞击过程中起主导作用。在整个冲击过程中观察到燃烧铁颗粒的微爆炸,并表现为冷却诱导、冲击诱导和空腔形成三种模式。这可能是由杂质化学反应产生的高压气体引起的,讨论了前面提出的三种生成机理。为了定量地了解燃烧铁颗粒的冲击行为,对燃烧铁颗粒的冲击进行了动力学分析,并建立了预测燃烧铁滴最大无因次扩散因子的模型。分别考虑黏附液滴和反弹液滴时,模型性能得到了改善。最后,统计分析表明,较大的颗粒在较低的高度具有较高的粘附概率。随着高度的增加,各颗粒的粘附概率均显著降低,且颗粒越大粘附概率越明显。本研究的经验模型可纳入未来的铁颗粒撞击模型,有助于对铁燃烧的认识。新颖性和意义声明:据作者所知,首次对燃烧铁颗粒的冲击行为进行了全面的研究。在撞击过程中发现了一系列有趣的现象,包括液相粘附、液相回弹、固相回弹和微爆炸。具体而言,微爆炸表现为冷却诱导、冲击诱导和空腔形成模式。阐明了铁液滴撞击的基本动力学机理,提出了铁液滴扩散和附着概率的预测模型。这些发现为改善锅炉壁面结渣提供了重要的见解。
{"title":"Wall impact dynamics of a single burning micron-sized iron particle","authors":"Yilan Yang,&nbsp;Longkai Zhang,&nbsp;Haiyang Zhang,&nbsp;Qianqian Li,&nbsp;Xiao Cai,&nbsp;Hu Liu,&nbsp;Jinhua Wang,&nbsp;Zuohua Huang","doi":"10.1016/j.combustflame.2025.114735","DOIUrl":"10.1016/j.combustflame.2025.114735","url":null,"abstract":"<div><div>In this work, the single iron particle combustion platform was modified to be a wall impact test platform, traced the impact behaviors of burning iron particles with a high speed camera and a long focal macro lens. Three fundamental impact modes were identified: liquid-phase adhesion, liquid-phase rebound, and solid-phase rebound. The significant reduction of self-luminous intensity was observed for two liquid-phase modes, which indicated wall heat transfer played a dominant role in the impact process of liquid-phase particles. Furthermore, micro-explosion of burning iron particles were observed during the whole impact process and behaved in three modes: cooling-induced, impact-induced, and cavity formation. This probably caused by the high pressure gases generated by chemical reactions of impurities by discussing three generation mechanisms proposed previously. To understand the impact behavior quantitatively, kinetic analysis of burning iron particle impact was carried out and a model was developed for predicting the maximum dimensionless spreading factor of burning iron droplets. The model performance was improved when adhering and rebounding droplets were considered separately. Finally, a statistical analysis revealed that larger particles have higher adhesion probabilities at the lower height. As the height increased, the adhesion probabilities of all particles decreased significantly, which were more pronounced for larger particles. The empirical model derived in this study can be incorporated into future models for iron particle impact, which is expected to aid the recognition of iron combustion.</div></div><div><h3>Novelty and significance statement</h3><div>A comprehensive investigation on the impact behavior of burning iron particles was carried out for the first time to the best of authors’ knowledge. A serious of interesting phenomenon were identified during impact, including liquid-phase adhesion, liquid-phase rebound, solid-phase rebound and micro-explosion. Specifically, micro-explosion was found to behave in the modes of cooling-induced, impact-induced, and cavity formation. Essential kinetic mechanism was elucidated for iron droplet impact with predictive models proposed for droplet spreading and adhesion probability. These findings offered critical insights for improving wall surface slagging of iron-fired boiler.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114735"},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, oxidation, and combustion of nanoscale magnesium diboride and tetraboride 纳米级二硼化镁和四硼化镁的制备、氧化和燃烧
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-03 DOI: 10.1016/j.combustflame.2025.114759
Andre Molina, Miguel J. Camarena, Evgeny Shafirovich
The difficult ignition and low combustion efficiency of boron particles decrease the performance of boron-loaded, fuel-rich propellants for solid fuel ramjets and ducted rockets. One approach to solving this problem involves the use of magnesium diboride (MgB2), which ignites easier than boron. Magnesium tetraboride (MgB4) offers greater energy density owing to its higher boron content. However, the effect of B/Mg ratio on the ignition and combustion is unknown. Additionally, while nanoscale MgB₂ particles and quasi-2D structures are promising energetic additives, the oxidation and combustion properties of nanoscale MgB₄ have not been explored. To address these knowledge gaps, the present work included synthesis and high-energy ball milling of MgB2 and MgB4 powders, thermogravimetric analysis (TGA) of their oxidation, and combustion experiments with thin layers of the obtained powders. Comparison of two synthesis routes (a solid-state reaction in a tube furnace and combustion synthesis) has shown that the former is the superior method for producing magnesium borides. TGA has revealed that oxidation of both MgB2 and MgB4 results in a high conversion into the oxides (88–91 %), far exceeding the low conversion of boron (62.5 %). MgB4 begins to oxidize rapidly at a much lower temperature (∼900 °C) than MgB2 (∼1200 °C). The burning rates of milled MgB2 and MgB4 are about eight and five times, respectively, faster than that of submicron boron. Magnesium borides exhibit a stable, sustained boron flame, needed for high combustion efficiency, whereas physical Mg/B mixtures undergo Mg-driven "flash" combustion.
硼颗粒点火困难,燃烧效率低,降低了固体燃料冲压发动机和导管火箭用含硼富燃料推进剂的性能。解决这个问题的一种方法是使用二硼化镁(MgB2),它比硼更容易点燃。四硼化镁(MgB4)由于其较高的硼含量而具有较高的能量密度。然而,B/Mg比对着火和燃烧的影响尚不清楚。此外,虽然纳米级MgB 2颗粒和准二维结构是很有前途的高能添加剂,但纳米级MgB 4的氧化和燃烧性能尚未得到研究。为了解决这些知识空白,目前的工作包括MgB2和MgB4粉末的合成和高能球磨,它们的氧化热重分析(TGA),以及所获得的粉末的薄层燃烧实验。比较了管式炉固相反应和燃烧合成两种合成路线,发现管式炉固相反应是制备硼化镁的较优方法。热重分析结果表明,MgB2和MgB4的氧化转化为氧化物的转化率都很高(88 - 91%),远远超过硼的低转化率(62.5%)。MgB4在比MgB2(~ 1200℃)低得多的温度(~ 900℃)下开始迅速氧化。粉碎后的MgB2和MgB4的燃烧速度分别是亚微米硼的8倍和5倍。硼化镁表现出稳定、持续的硼火焰,这是高燃烧效率所必需的,而物理Mg/B混合物则是由Mg驱动的“闪燃”。
{"title":"Fabrication, oxidation, and combustion of nanoscale magnesium diboride and tetraboride","authors":"Andre Molina,&nbsp;Miguel J. Camarena,&nbsp;Evgeny Shafirovich","doi":"10.1016/j.combustflame.2025.114759","DOIUrl":"10.1016/j.combustflame.2025.114759","url":null,"abstract":"<div><div>The difficult ignition and low combustion efficiency of boron particles decrease the performance of boron-loaded, fuel-rich propellants for solid fuel ramjets and ducted rockets. One approach to solving this problem involves the use of magnesium diboride (MgB<sub>2</sub>), which ignites easier than boron. Magnesium tetraboride (MgB<sub>4</sub>) offers greater energy density owing to its higher boron content. However, the effect of B/Mg ratio on the ignition and combustion is unknown. Additionally, while nanoscale MgB₂ particles and quasi-2D structures are promising energetic additives, the oxidation and combustion properties of nanoscale MgB₄ have not been explored. To address these knowledge gaps, the present work included synthesis and high-energy ball milling of MgB<sub>2</sub> and MgB<sub>4</sub> powders, thermogravimetric analysis (TGA) of their oxidation, and combustion experiments with thin layers of the obtained powders. Comparison of two synthesis routes (a solid-state reaction in a tube furnace and combustion synthesis) has shown that the former is the superior method for producing magnesium borides. TGA has revealed that oxidation of both MgB<sub>2</sub> and MgB<sub>4</sub> results in a high conversion into the oxides (88–91 %), far exceeding the low conversion of boron (62.5 %). MgB<sub>4</sub> begins to oxidize rapidly at a much lower temperature (∼900 °C) than MgB<sub>2</sub> (∼1200 °C). The burning rates of milled MgB<sub>2</sub> and MgB<sub>4</sub> are about eight and five times, respectively, faster than that of submicron boron. Magnesium borides exhibit a stable, sustained boron flame, needed for high combustion efficiency, whereas physical Mg/B mixtures undergo Mg-driven \"flash\" combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114759"},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145922385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical studies on cellular and pulsating instabilities in hydrogen flames 氢火焰胞状和脉动不稳定性的数值研究
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-03 DOI: 10.1016/j.combustflame.2025.114763
Mayank Pandey, Krishnakant Agrawal, Anjan Ray
<div><div>Pulsating and cellular flame instabilities have been predicted to develop at different Lewis number ranges due to the variation of disparity between heat and mass diffusion. In this work, pulsating flame instability is demonstrated in freely propagating rich H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/air premixed flames for the first time using two-dimensional simulations with detailed chemistry. The high Ze(Le-1) values required for pulsating instability can be achieved by increasing the operating pressure for such mixtures. The flames were found to be stable at 8 atm and developed into a longitudinal pulsating flame for 12 atm. As pressure increases, the flames with initial longitudinal pulsation transition to transverse waves at pressures of 16 and 20 atm. Before this observation, to systematically understand the independent effects of the Lewis number on cellular instability, the composition of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> mixture is varied while keeping the density ratio and unstretched laminar flame speed constant. Numerical linear stability analyses show that a decrease in Lewis number increases the maximum growth rate, indicating enhanced cellular instability. Flames with low adiabatic temperatures, i.e., a low density ratio and Peclet numbers, are prone to high growth rates. As adiabatic temperatures increase and the flame strengthens, the growth rate decreases. The maximum growth rate increases with the instability parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the ratio of Zeldovich and Peclet numbers (Ze/Pe), both of which are related to thermodiffusive effects. For the non-linear flame propagation, the overall flame propagation speed increases with a reduction in Lewis number and adiabatic flame temperature. The present study parametrically explores ranges of relevant non-dimensional numbers using real mixture compositions and demonstrates the dominance of different modes of intrinsic flame instabilities with physical details.</div><div><strong>Novelty and Significance Statement</strong></div><div>The novelty of this paper lies in demonstrating transverse waves in rich hydrogen/air flames by exploring a large Ze(Le-1) number in a two-dimensional computational model with detailed chemistry and transport for the first time. This paper contributes to understanding pulsating instabilities and their morphological characteristics for a realistic mixture. The Lewis number is systematically varied at a constant density ratio and approximately the same unstretched laminar flame speed by varying the molar ratio of N<sub>2</sub> to O<sub>2</sub> in atmospheric air. This enables the quantification of the independent impact of this critical non-dime
在不同的路易斯数范围内,由于热和质量扩散差的变化,预测了脉动和细胞火焰不稳定性的发展。在这项工作中,脉动火焰不稳定性首次在自由传播的富H2/空气预混火焰中进行了详细的二维模拟。脉动不稳定所需的高Ze(Le-1)值可以通过增加这种混合物的操作压力来实现。火焰在8atm时稳定,在12atm时发展为纵向脉动火焰。随着压力的增加,在压力为16和20 atm时,具有初始纵向脉动的火焰转变为横波。在此观察之前,为了系统地了解Lewis数对细胞不稳定性的独立影响,在保持密度比和未拉伸层流火焰速度不变的情况下,改变H2-O2-N2混合物的组成。数值线性稳定性分析表明,Lewis数的减小使最大生长率增大,表明细胞不稳定性增强。具有低绝热温度的火焰,即低密度比和小波数,往往具有高生长速率。随着绝热温度的升高和火焰的增强,生长速率减小。最大生长速率随不稳定性参数ω2和Zeldovich数与Peclet数之比(Ze/Pe)的增大而增大,二者均与热扩散效应有关。对于非线性火焰传播,火焰的总传播速度随着路易斯数的减小和绝热火焰温度的降低而增大。本研究使用真实混合物成分参数化地探索了相关无量纲数的范围,并通过物理细节证明了不同模式的内在火焰不稳定性的优势。新颖性和意义声明:本文的新颖之处在于首次在具有详细化学和输运的二维计算模型中探索大Ze(Le-1)数,展示了富氢/空气火焰中的横波。本文有助于理解实际混合物的脉动不稳定性及其形态特征。在恒定的密度比和近似相同的未拉伸层流火焰速度下,通过改变大气中N2与O2的摩尔比,系统地改变了刘易斯数。这使得通过数值模拟可以量化这个临界非量纲数对线性和非线性状态下细胞火焰不稳定性的独立影响,这是目前文献中所缺乏的。通过改变绝热火焰温度的Zeldovich数和Peclet数的比值,评价了反应效应和扩散效应对不稳定行为的相对重要性。这项研究具有重要意义,因为它突出了基本参数在预混火焰传播中的相对重要性,以及它们对各种内在火焰不稳定性(包括脉动波和横波)发展的影响。
{"title":"Numerical studies on cellular and pulsating instabilities in hydrogen flames","authors":"Mayank Pandey,&nbsp;Krishnakant Agrawal,&nbsp;Anjan Ray","doi":"10.1016/j.combustflame.2025.114763","DOIUrl":"10.1016/j.combustflame.2025.114763","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Pulsating and cellular flame instabilities have been predicted to develop at different Lewis number ranges due to the variation of disparity between heat and mass diffusion. In this work, pulsating flame instability is demonstrated in freely propagating rich H&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;/air premixed flames for the first time using two-dimensional simulations with detailed chemistry. The high Ze(Le-1) values required for pulsating instability can be achieved by increasing the operating pressure for such mixtures. The flames were found to be stable at 8 atm and developed into a longitudinal pulsating flame for 12 atm. As pressure increases, the flames with initial longitudinal pulsation transition to transverse waves at pressures of 16 and 20 atm. Before this observation, to systematically understand the independent effects of the Lewis number on cellular instability, the composition of the H&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-O&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; mixture is varied while keeping the density ratio and unstretched laminar flame speed constant. Numerical linear stability analyses show that a decrease in Lewis number increases the maximum growth rate, indicating enhanced cellular instability. Flames with low adiabatic temperatures, i.e., a low density ratio and Peclet numbers, are prone to high growth rates. As adiabatic temperatures increase and the flame strengthens, the growth rate decreases. The maximum growth rate increases with the instability parameter &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and the ratio of Zeldovich and Peclet numbers (Ze/Pe), both of which are related to thermodiffusive effects. For the non-linear flame propagation, the overall flame propagation speed increases with a reduction in Lewis number and adiabatic flame temperature. The present study parametrically explores ranges of relevant non-dimensional numbers using real mixture compositions and demonstrates the dominance of different modes of intrinsic flame instabilities with physical details.&lt;/div&gt;&lt;div&gt;&lt;strong&gt;Novelty and Significance Statement&lt;/strong&gt;&lt;/div&gt;&lt;div&gt;The novelty of this paper lies in demonstrating transverse waves in rich hydrogen/air flames by exploring a large Ze(Le-1) number in a two-dimensional computational model with detailed chemistry and transport for the first time. This paper contributes to understanding pulsating instabilities and their morphological characteristics for a realistic mixture. The Lewis number is systematically varied at a constant density ratio and approximately the same unstretched laminar flame speed by varying the molar ratio of N&lt;sub&gt;2&lt;/sub&gt; to O&lt;sub&gt;2&lt;/sub&gt; in atmospheric air. This enables the quantification of the independent impact of this critical non-dime","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114763"},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laminar flame speed of ammonia-oxygen and ammonia-oxygen enriched air mixtures near saturation conditions 饱和条件下氨氧和富氨氧混合气的层流火焰速度
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-02 DOI: 10.1016/j.combustflame.2025.114723
Zifeng Weng , Fernando Veiga-Lopez , Rémy Mével , Gaofeng Wang
As ammonia appears as one of the most promising renewable energy carriers of the future, it is of critical importance to fill the gaps in the understanding of its combustion properties in the perspective of developing real industrial applications. With the objective to contribute to the complete understanding of ammonia combustion properties, this works analyzes the effect on laminar flame speed of modeling ammonia-oxygen and ammonia-enriched air as a mixtures of real gas. Results show quantitative and qualitative discrepancies with ideal gas modeling when increasing the mixtures temperature and pressure along the saturation curve of ammonia. Results indicate that, for near-ambient temperature, real gas effects should be included in the uncertainty calculation for pressure as low as approximately 350 kPa for ammonia-oxygen mixtures and 700 kPa for ammonia-oxygen enriched air mixtures. Given high pressure and temperature conditions, discrepancies up to 29% in the laminar flame speed are obtained. Moreover, the laminar flame speed demonstrates different qualitative evolution when changing the gas models; it decreases/increases when P>1.062MPa and T>275 K for real gas/ideal gas models. The main driver is the inclusion of the real gas equation of state and thermodynamics, while high-pressure transport models and kinetics are less important. Real gas effects should therefore be included in future analyses for the correct assessment of ammonia combustion properties, mostly for high-pressure industrial applications.
Novelty and significance statement
The novelty of this research is to include real gas (RG) modeling to compute ammonia-based mixtures laminar flame speed (LFS). It is significant because (i) ammonia is a promising energy carrier of renewable energy, and (ii) modeling ammonia-based mixtures as a RG induces major changes in LFS predictions along the saturation curve of ammonia. Given high pressure and temperature, RG mixtures yield a LFS up to 29% lower than obtained when considering the ideal gas model. Moreover, the qualitative trends of LFS along the saturation curve diverge between the two models. The main RG effects are shown to be related to the modification of the equation of state and associated thermodynamics. We conclude that RG modeling should be in general included for simulating the combustion of ammonia-based mixtures, which is an outcome of primary importance for the community.
由于氨是未来最有前途的可再生能源载体之一,从开发实际工业应用的角度来看,填补对其燃烧特性理解的空白至关重要。为了更全面地了解氨的燃烧特性,本文分析了模拟氨氧和富氨空气作为真实气体混合物对层流火焰速度的影响。结果表明,当沿氨饱和曲线增加混合温度和压力时,与理想气体模型的定量和定性存在差异。结果表明,在近环境温度下,对于低至约350 kPa的氨氧混合物和700 kPa的富氨氧空气混合物,不确定度计算应包括真实气体效应。在高压和高温条件下,层流火焰速度的差异可达29%。此外,层流火焰速度在不同气体模型下表现出不同的定性演化;实际气体/理想气体模型在P>;1.062MPa和T>;275 K时,其减小/增大。主要驱动力是真实气体状态方程和热力学的加入,而高压输运模型和动力学则不太重要。因此,为了正确评估氨的燃烧特性,在未来的分析中应包括真实的气体效应,主要用于高压工业应用。新颖性和意义声明本研究的新颖之处在于将真实气体(RG)模型纳入氨基混合物层流火焰速度(LFS)的计算中。这是重要的,因为(i)氨是一种很有前途的可再生能源的能量载体,(ii)氨基混合物作为RG建模会导致沿氨饱和曲线的LFS预测发生重大变化。在高压和高温条件下,RG混合物的LFS比理想气体模型低29%。此外,两种模型的LFS沿饱和曲线的定性趋势存在差异。主要的RG效应与状态方程和相关热力学的修正有关。我们的结论是,模拟氨基混合物的燃烧通常应该包括RG建模,这对群落来说是最重要的结果。
{"title":"Laminar flame speed of ammonia-oxygen and ammonia-oxygen enriched air mixtures near saturation conditions","authors":"Zifeng Weng ,&nbsp;Fernando Veiga-Lopez ,&nbsp;Rémy Mével ,&nbsp;Gaofeng Wang","doi":"10.1016/j.combustflame.2025.114723","DOIUrl":"10.1016/j.combustflame.2025.114723","url":null,"abstract":"<div><div>As ammonia appears as one of the most promising renewable energy carriers of the future, it is of critical importance to fill the gaps in the understanding of its combustion properties in the perspective of developing real industrial applications. With the objective to contribute to the complete understanding of ammonia combustion properties, this works analyzes the effect on laminar flame speed of modeling ammonia-oxygen and ammonia-enriched air as a mixtures of real gas. Results show quantitative and qualitative discrepancies with ideal gas modeling when increasing the mixtures temperature and pressure along the saturation curve of ammonia. Results indicate that, for near-ambient temperature, real gas effects should be included in the uncertainty calculation for pressure as low as approximately 350 kPa for ammonia-oxygen mixtures and 700 kPa for ammonia-oxygen enriched air mixtures. Given high pressure and temperature conditions, discrepancies up to 29% in the laminar flame speed are obtained. Moreover, the laminar flame speed demonstrates different qualitative evolution when changing the gas models; it decreases/increases when <span><math><mrow><mi>P</mi><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>062</mn><mspace></mspace><mi>MPa</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>275</mn></mrow></math></span> K for real gas/ideal gas models. The main driver is the inclusion of the real gas equation of state and thermodynamics, while high-pressure transport models and kinetics are less important. Real gas effects should therefore be included in future analyses for the correct assessment of ammonia combustion properties, mostly for high-pressure industrial applications.</div><div><strong>Novelty and significance statement</strong></div><div>The novelty of this research is to include real gas (RG) modeling to compute ammonia-based mixtures laminar flame speed (LFS). It is significant because (i) ammonia is a promising energy carrier of renewable energy, and (ii) modeling ammonia-based mixtures as a RG induces major changes in LFS predictions along the saturation curve of ammonia. Given high pressure and temperature, RG mixtures yield a LFS up to 29% lower than obtained when considering the ideal gas model. Moreover, the qualitative trends of LFS along the saturation curve diverge between the two models. The main RG effects are shown to be related to the modification of the equation of state and associated thermodynamics. We conclude that RG modeling should be in general included for simulating the combustion of ammonia-based mixtures, which is an outcome of primary importance for the community.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114723"},"PeriodicalIF":6.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publication / Copyright Information 出版/版权资料
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-02 DOI: 10.1016/S0010-2180(25)00783-7
{"title":"Publication / Copyright Information","authors":"","doi":"10.1016/S0010-2180(25)00783-7","DOIUrl":"10.1016/S0010-2180(25)00783-7","url":null,"abstract":"","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"284 ","pages":"Article 114748"},"PeriodicalIF":6.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145880401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling turbulent flame enhancement by Nanosecond Repetitively Pulsed discharges using a low-order model 用低阶模型模拟纳秒重复脉冲放电对湍流火焰增强的影响
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-02 DOI: 10.1016/j.combustflame.2025.114761
Stéphane Q.E. Wang, Nasser Darabiha, Benoît Fiorina
Plasma-Assisted Combustion (PAC), using Nanosecond Repetitively Pulsed (NRP) discharges, is a promising technique to stabilize lean premixed flames, which are prone to instabilities and extinction. PAC has been successfully demonstrated in various academic and semi-industrial configurations. It has been proven to be effective in preventing instabilities, improving combustion efficiency, and extending the lean blowout (LBO) limit. To transfer PAC technology toward higher Technology Readiness Levels (TRLs), numerical simulations are required by engineers for combustor design and optimization. Among the strategies available, several multi-D Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of plasma-assisted turbulent combustion have been conducted in the literature by combining phenomenological NRP discharge models with detailed or semi-detailed combustion mechanisms. While these simulations achieve good accuracy, their computational cost remains high because of the large variety of spatial and temporal scales involved in plasma, combustion, and turbulence interactions. The present work aims to develop a low-order model of flame stabilization by NRP discharges, as alternative to full 3-D CFD simulations, for the design and optimization of PAC systems at a low-CPU cost. PAC is modeled by a series of three connected canonical flame elements. First, the volume of gas affected by the plasma discharges is modeled by a Perfectly-Stirred Reactor (PSR), which employs Castela’s phenomenological NRP discharge model. Next, a Plug Flow Reactor (PFR) is employed to track the combustion reactions within the recirculation zone. Finally, a 1-D strain-imposed Premixed Counterflow Flame (PMX-CF) models the impact of these gas fluxes on the flame structure. The reduced-order model is validated against 3-D LES of the Mini-PAC configuration, and a parametric study is performed on some key modeling parameters, namely the dilution and the strain rate.
Novelty and significance statement
This work presents a novel reduced-order modeling framework for flame stabilization by Nanosecond Repetitively Pulsed plasma discharges, as an alternative to 3-D CFD simulations. The model combines classical canonical flame elements with a phenomenological representation of nanosecond plasma discharge physics, providing a unique way to capture key flame stabilization mechanisms without relying on fully resolved, computationally expensive simulations. The developed model supports both fundamental research and engineering applications, enabling broader use of plasma-assisted combustion in future clean and efficient energy and propulsion systems.
利用纳秒重复脉冲(NRP)放电的等离子体辅助燃烧(PAC)是一种很有前途的稳定稀薄预混火焰的技术。PAC已成功地在各种学术和半工业配置中进行了演示。实践证明,它在防止不稳定、提高燃烧效率和延长稀爆(LBO)极限方面是有效的。为了将PAC技术向更高的技术准备水平(trl)转移,工程师需要在燃烧室设计和优化中进行数值模拟。在可用的策略中,文献中已经将现象学NRP放电模型与详细或半详细的燃烧机制相结合,进行了等离子体辅助湍流燃烧的多维直接数值模拟(DNS)和大涡模拟(LES)。虽然这些模拟达到了很高的精度,但由于等离子体、燃烧和湍流相互作用涉及的空间和时间尺度的多样性,它们的计算成本仍然很高。目前的工作旨在通过NRP放电开发低阶火焰稳定模型,作为全三维CFD模拟的替代方案,用于低cpu成本PAC系统的设计和优化。PAC是由一系列三个相连的规范火焰元素来建模的。首先,利用完全搅拌反应器(PSR)模拟等离子体放电对气体体积的影响,该反应器采用Castela的现象学NRP放电模型。接下来,采用塞流反应器(PFR)跟踪再循环区内的燃烧反应。最后,利用一维应变预混合逆流火焰(PMX-CF)模拟了这些气体通量对火焰结构的影响。针对Mini-PAC构型的三维LES验证了降阶模型,并对模型的关键参数稀释和应变速率进行了参数化研究。本工作提出了一种新的纳秒重复脉冲等离子体放电火焰稳定的降阶建模框架,作为3-D CFD模拟的替代方案。该模型结合了经典的规范火焰元素与纳秒等离子体放电物理的现象学表示,提供了一种独特的方法来捕捉关键的火焰稳定机制,而不依赖于完全解决,计算昂贵的模拟。开发的模型支持基础研究和工程应用,使等离子辅助燃烧在未来清洁高效的能源和推进系统中得到更广泛的应用。
{"title":"Modeling turbulent flame enhancement by Nanosecond Repetitively Pulsed discharges using a low-order model","authors":"Stéphane Q.E. Wang,&nbsp;Nasser Darabiha,&nbsp;Benoît Fiorina","doi":"10.1016/j.combustflame.2025.114761","DOIUrl":"10.1016/j.combustflame.2025.114761","url":null,"abstract":"<div><div>Plasma-Assisted Combustion (PAC), using Nanosecond Repetitively Pulsed (NRP) discharges, is a promising technique to stabilize lean premixed flames, which are prone to instabilities and extinction. PAC has been successfully demonstrated in various academic and semi-industrial configurations. It has been proven to be effective in preventing instabilities, improving combustion efficiency, and extending the lean blowout (LBO) limit. To transfer PAC technology toward higher Technology Readiness Levels (TRLs), numerical simulations are required by engineers for combustor design and optimization. Among the strategies available, several multi-D Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of plasma-assisted turbulent combustion have been conducted in the literature by combining phenomenological NRP discharge models with detailed or semi-detailed combustion mechanisms. While these simulations achieve good accuracy, their computational cost remains high because of the large variety of spatial and temporal scales involved in plasma, combustion, and turbulence interactions. The present work aims to develop a low-order model of flame stabilization by NRP discharges, as alternative to full 3-D CFD simulations, for the design and optimization of PAC systems at a low-CPU cost. PAC is modeled by a series of three connected canonical flame elements. First, the volume of gas affected by the plasma discharges is modeled by a Perfectly-Stirred Reactor (PSR), which employs Castela’s phenomenological NRP discharge model. Next, a Plug Flow Reactor (PFR) is employed to track the combustion reactions within the recirculation zone. Finally, a 1-D strain-imposed Premixed Counterflow Flame (PMX-CF) models the impact of these gas fluxes on the flame structure. The reduced-order model is validated against 3-D LES of the Mini-PAC configuration, and a parametric study is performed on some key modeling parameters, namely the dilution and the strain rate.</div><div><strong>Novelty and significance statement</strong></div><div>This work presents a novel reduced-order modeling framework for flame stabilization by Nanosecond Repetitively Pulsed plasma discharges, as an alternative to 3-D CFD simulations. The model combines classical canonical flame elements with a phenomenological representation of nanosecond plasma discharge physics, providing a unique way to capture key flame stabilization mechanisms without relying on fully resolved, computationally expensive simulations. The developed model supports both fundamental research and engineering applications, enabling broader use of plasma-assisted combustion in future clean and efficient energy and propulsion systems.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114761"},"PeriodicalIF":6.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation kinetics and pyrotechnic cloud combustion of transition metal- enhanced boron particles 过渡金属增强硼颗粒的氧化动力学和烟火云燃烧
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2026-01-02 DOI: 10.1016/j.combustflame.2025.114729
Samina Sarwar, Mirko Schoenitz, Kerri-lee A. Chintersingh
In an effort to enhance ignition and combustion of boron as a solid fuel ingredient, elemental boron was mechanically milled with 5 wt % of a metal additive (Ni, Co, Fe, Cu, Bi, Zr, or Hf). Oxidation at low heating rates, under thermal analysis conditions, showed a lower oxidation onset temperature for all milled materials, particularly for B-Bi and B-Co, at the expense of a lower overall degree of oxidation at higher temperatures. Kinetic modeling of the oxidation onset, at the stage where no significant amount of oxide had accumulated at the boron surface, was used to calculate particle burn times at combustion temperatures. Comparison with published burn times allowed prediction of combustion temperatures. For pure boron and B-Fe, the predicted combustion temperatures matched expected values, although for all other materials the predictions were too low. This work also evaluates the ignition and combustion behavior of selected boron-transition metal additive composites when used in a pyrotechnic mixture with potassium nitrate, KNO3 in air. When mixed with KNO3 as an oxidizer, and ignited by a CO2 laser, all milled powders showed a shorter ignition delay compared with pure boron. Combustion temperatures of the milled powders were just below the boron melting point compared with elemental boron, which was found to burn above the boron melting point. Similarly, significant B-O gas phase products were observed spectroscopically for pure boron, but not for the milled composites. Captured combustion products were consistent with gas phase condensation for pure boron, while larger molten droplets and crystalline formations dominated for the milled composites. The combined results demonstrate that the studied metal additives cause boron to combust in the condensed phase, with temperatures and burn times that can be tailored by the choice of additives.
为了增强作为固体燃料成分的硼的点火和燃烧,将元素硼与5wt %的金属添加剂(Ni, Co, Fe, Cu, Bi, Zr或Hf)机械研磨。在热分析条件下,低升温速率下的氧化表明,所有研磨材料的氧化起始温度都较低,特别是B-Bi和B-Co,但代价是在较高温度下的总体氧化程度较低。在没有大量氧化物积聚在硼表面的阶段,氧化开始的动力学建模用于计算燃烧温度下颗粒的燃烧时间。与公布的燃烧时间进行比较,可以预测燃烧温度。对于纯硼和B-Fe,预测的燃烧温度符合预期值,尽管对所有其他材料的预测都太低了。本工作还评估了选择的硼过渡金属添加剂复合材料在硝酸钾,KNO3的烟火混合物中使用时的点火和燃烧行为。当与KNO3作为氧化剂混合,用CO2激光点燃时,所有磨粉都比纯硼具有更短的点火延迟。与元素硼相比,研磨粉末的燃烧温度刚好低于硼的熔点,而元素硼的燃烧温度高于硼的熔点。同样,在光谱上观察到纯硼的明显的B-O气相产物,但在研磨复合材料中没有。捕获的燃烧产物与纯硼的气相冷凝一致,而更大的熔融液滴和结晶形成主导了研磨复合材料。综合结果表明,所研究的金属添加剂使硼在凝聚相中燃烧,其温度和燃烧时间可以通过添加剂的选择来定制。
{"title":"Oxidation kinetics and pyrotechnic cloud combustion of transition metal- enhanced boron particles","authors":"Samina Sarwar,&nbsp;Mirko Schoenitz,&nbsp;Kerri-lee A. Chintersingh","doi":"10.1016/j.combustflame.2025.114729","DOIUrl":"10.1016/j.combustflame.2025.114729","url":null,"abstract":"<div><div>In an effort to enhance ignition and combustion of boron as a solid fuel ingredient, elemental boron was mechanically milled with 5 wt % of a metal additive (Ni, Co, Fe, Cu, Bi, Zr, or Hf). Oxidation at low heating rates, under thermal analysis conditions, showed a lower oxidation onset temperature for all milled materials, particularly for B-Bi and B-Co, at the expense of a lower overall degree of oxidation at higher temperatures. Kinetic modeling of the oxidation onset, at the stage where no significant amount of oxide had accumulated at the boron surface, was used to calculate particle burn times at combustion temperatures. Comparison with published burn times allowed prediction of combustion temperatures. For pure boron and B-Fe, the predicted combustion temperatures matched expected values, although for all other materials the predictions were too low. This work also evaluates the ignition and combustion behavior of selected boron-transition metal additive composites when used in a pyrotechnic mixture with potassium nitrate, KNO<sub>3</sub> in air. When mixed with KNO<sub>3</sub> as an oxidizer, and ignited by a CO<sub>2</sub> laser, all milled powders showed a shorter ignition delay compared with pure boron. Combustion temperatures of the milled powders were just below the boron melting point compared with elemental boron, which was found to burn above the boron melting point. Similarly, significant B-O gas phase products were observed spectroscopically for pure boron, but not for the milled composites. Captured combustion products were consistent with gas phase condensation for pure boron, while larger molten droplets and crystalline formations dominated for the milled composites. The combined results demonstrate that the studied metal additives cause boron to combust in the condensed phase, with temperatures and burn times that can be tailored by the choice of additives.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114729"},"PeriodicalIF":6.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-swirl effects on spray flames for compact jet-stabilised combustion systems 小型射流稳定燃烧系统中喷雾火焰的低旋流效应
IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-12-31 DOI: 10.1016/j.combustflame.2025.114740
Yeonse Kang, Fabian Hampp
<div><div>High-momentum jet-stabilised combustors promise fuel flexibility with low non-CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions, yet compact integration with liquid fuels remains challenging. This study quantifies how low-swirl (<span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>≤</mo></mrow></math></span> 0.3) air perturbations stabilise a pressure-swirl spray and the ensuing turbulent jet flame using seven additively manufactured swirlers. Spray atomization is characterised by shadowgraphy and phase-Doppler interferometry; combustion is analysed via time-resolved OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> chemiluminescence and NO<span><math><msub><mrow></mrow><mrow><mi>X</mi></mrow></msub></math></span> emissions. Introducing low swirl seeds small-scale turbulence and suppresses coherent structures near the central injector, yielding thinner liquid brushes, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>32</mn></mrow></msub><mo><</mo></mrow></math></span> 10<!--> <span><math><mi>μ</mi></math></span>m, and <span><math><mo>∼</mo></math></span>50% more stable radial fuel placement relative to the no-swirl baseline. The resulting fuel distribution becomes more homogeneous in space and time, producing shorter, more symmetric flames (length reduced by up to <span><math><mo>∼</mo></math></span>65%) with diminished heat-release fluctuations. Proper orthogonal decomposition and spectra indicate a progression from jet-stabilised to mixed-mode and swirl-influenced regimes with no dominant resonant peak. A local fuel-loading metric links stabilisation to fuel placement at the nozzle edge, connecting spray organisation to flame symmetry and intermittency, relevant to the formation of non-CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. While the axially compact flame incurs moderately elevated NO<span><math><msub><mrow></mrow><mrow><mi>X</mi></mrow></msub></math></span> (10–30<!--> <!-->ppm at comparable load) in the present geometry, these increases are operationally manageable and can, for example in prefilming configurations, be translated into net emission benefits via symmetry-driven mixing improvements, outlining a clear optimisation pathway. Thus, embedding flow modulators such as low-swirlers can advance compact, liquid-fuel combustors for micro gas turbines and future hybrid aero-engine concepts.</div><div><strong>Novelty and Significance</strong></div><div>The current work investigates the implementation of additively manufactured low-swirl nozzles in a liquid-fuelled, high-momentum jet-stabilised combustor. Seven swirler configurations with vane angles <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mo>±</mo><mn>15</mn><mo>,</mo><mo>±</mo><mn>30</mn><mo>,</mo><mo>±</mo><mn>45</mn></mrow></mat
高动量射流稳定燃烧器保证了低非二氧化碳排放的燃料灵活性,但与液体燃料的紧凑集成仍然具有挑战性。本研究量化了低旋流(SN≤0.3)空气扰动如何稳定压力旋流喷雾和随后的湍流射流火焰,使用七个增材制造的旋流器。喷雾雾化采用阴影成像和相位多普勒干涉法进行表征;燃烧分析通过时间分辨OH *化学发光和NOX排放。引入低涡流会产生小规模湍流,并抑制中心喷油器附近的相干结构,产生更薄的液体刷,直径32 μm,相对于无涡流基线,径向燃料放置稳定性提高约50%。由此产生的燃料分布在空间和时间上变得更加均匀,产生更短、更对称的火焰(长度减少多达65%),热释放波动减少。适当的正交分解和光谱表明了从射流稳定到混合模式和旋涡影响的进程,没有主导共振峰。局部燃料装载度量将稳定性与喷嘴边缘的燃料放置联系起来,将喷雾组织与火焰对称和间歇性联系起来,与非二氧化碳排放的形成有关。虽然在目前的几何结构中,轴向紧凑火焰会导致NOX适度升高(在相当负载下为10 - 30ppm),但这些增加在操作上是可控的,并且可以通过对称驱动的混合改进转化为净排放效益,勾勒出明确的优化途径。因此,嵌入流调制器,如低旋流器,可以推进微型燃气轮机和未来混合动力航空发动机概念的紧凑液体燃料燃烧器。新颖性和意义当前的研究工作是在液体燃料、高动量射流稳定燃烧室中实现增材制造的低涡流喷嘴。7种旋流器配置,叶片角度|αv|=0,±15,±30,±45°(总SN≤0.30)集成到一个内部压力旋流喷射器中。引入可控的周向气流会产生小规模湍流,并在近喷油器区域抑制相干尾迹结构;这集中和稳定的液体片,改善雾化和燃料分散在整个操作范围。从数量上说,重组后的初级破裂产生d32<; 10 μm,径向燃料放置稳定性提高~ 50%,火焰缩短高达64%,而光谱没有显示主导共振峰。一个实用的设计窗口出现了:SN≥0.15(即|αv|≥30°)时实现了有效抑制,而SN,g>;0.28时出现了收益递减和内再循环的开始。当地的燃料装载度量进一步将喷射组织与火焰的对称性和间歇性联系起来。因此,该概念使紧凑,坚固的燃烧器;在目前的非预膜几何结构中观察到的氮氧化物的适度增加(10 - 30ppm)在操作上是可控的,并且可以在预膜操作中转化为净排放效益。
{"title":"Low-swirl effects on spray flames for compact jet-stabilised combustion systems","authors":"Yeonse Kang,&nbsp;Fabian Hampp","doi":"10.1016/j.combustflame.2025.114740","DOIUrl":"10.1016/j.combustflame.2025.114740","url":null,"abstract":"&lt;div&gt;&lt;div&gt;High-momentum jet-stabilised combustors promise fuel flexibility with low non-CO&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; emissions, yet compact integration with liquid fuels remains challenging. This study quantifies how low-swirl (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; 0.3) air perturbations stabilise a pressure-swirl spray and the ensuing turbulent jet flame using seven additively manufactured swirlers. Spray atomization is characterised by shadowgraphy and phase-Doppler interferometry; combustion is analysed via time-resolved OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; chemiluminescence and NO&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; emissions. Introducing low swirl seeds small-scale turbulence and suppresses coherent structures near the central injector, yielding thinner liquid brushes, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;32&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; 10&lt;!--&gt; &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;m, and &lt;span&gt;&lt;math&gt;&lt;mo&gt;∼&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;50% more stable radial fuel placement relative to the no-swirl baseline. The resulting fuel distribution becomes more homogeneous in space and time, producing shorter, more symmetric flames (length reduced by up to &lt;span&gt;&lt;math&gt;&lt;mo&gt;∼&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;65%) with diminished heat-release fluctuations. Proper orthogonal decomposition and spectra indicate a progression from jet-stabilised to mixed-mode and swirl-influenced regimes with no dominant resonant peak. A local fuel-loading metric links stabilisation to fuel placement at the nozzle edge, connecting spray organisation to flame symmetry and intermittency, relevant to the formation of non-CO&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; emissions. While the axially compact flame incurs moderately elevated NO&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (10–30&lt;!--&gt; &lt;!--&gt;ppm at comparable load) in the present geometry, these increases are operationally manageable and can, for example in prefilming configurations, be translated into net emission benefits via symmetry-driven mixing improvements, outlining a clear optimisation pathway. Thus, embedding flow modulators such as low-swirlers can advance compact, liquid-fuel combustors for micro gas turbines and future hybrid aero-engine concepts.&lt;/div&gt;&lt;div&gt;&lt;strong&gt;Novelty and Significance&lt;/strong&gt;&lt;/div&gt;&lt;div&gt;The current work investigates the implementation of additively manufactured low-swirl nozzles in a liquid-fuelled, high-momentum jet-stabilised combustor. Seven swirler configurations with vane angles &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;30&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;45&lt;/mn&gt;&lt;/mrow&gt;&lt;/mat","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"285 ","pages":"Article 114740"},"PeriodicalIF":6.2,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combustion and Flame
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1