Pub Date : 2024-11-04DOI: 10.1016/j.combustflame.2024.113810
Peter Glarborg , Eva Fabricius-Bjerre , Tor K. Joensen , Hamid Hashemi , Stephen J. Klippenstein
The reaction of NO with H is the key step in consumption of nitrous oxide in thermal processes. The major product channel is N + OH, while NH + NO constitute minor products. In addition, a pathway involving HNNO, initiated by NO + H (+M) HNNO (+M) (R3, R4), has been inferred from experiment and theory by Burke and coworkers. At longer reaction times, the reaction may reach partial equilibration, and in addition to k and k the importance of this channel depends on the thermodynamic properties of HNNO and its consumption reactions, mainly HNNO + H. In the present work, we re-examined the thermochemistry of HNNO and calculated rate constants and branching fractions for the HNNO + H reaction. Experiments on the NO–H system were conducted in a high-pressure flow reactor at 100 atm as a function of temperature (600-925 K) and stoichiometry and explained in terms of an updated chemical kinetic model. The results support the importance of the HNNO pathway, which results in inhibition of NO consumption and formation of NH. In addition, selected literature results on the NO–H system are re-examined and the implications for the other product channels of NO + H, in particular NH + NO, are discussed.
Novelty and significance statement
This study provides the first detailed kinetic analysis of the NO/H system at high pressure and intermediate temperatures, based on flow reactor results and high-level theoretical calculations. The experimental conditions augment the importance of a reaction pathway involving HNNO as intermediate. Inclusion in the model of a subset for HNNO, including present calculations for HNNO + H, is crucial for capturing the observed behavior.
{"title":"An experimental, theoretical and kinetic modeling study of the N2O-H2 system: Implications for N2O + H","authors":"Peter Glarborg , Eva Fabricius-Bjerre , Tor K. Joensen , Hamid Hashemi , Stephen J. Klippenstein","doi":"10.1016/j.combustflame.2024.113810","DOIUrl":"10.1016/j.combustflame.2024.113810","url":null,"abstract":"<div><div>The reaction of N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O with H is the key step in consumption of nitrous oxide in thermal processes. The major product channel is N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> + OH, while NH + NO constitute minor products. In addition, a pathway involving HNNO, initiated by N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O + H (+M) <span><math><mo>⇄</mo></math></span> HNNO (+M) (R3, R4), has been inferred from experiment and theory by Burke and coworkers. At longer reaction times, the reaction may reach partial equilibration, and in addition to k<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and k<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> the importance of this channel depends on the thermodynamic properties of HNNO and its consumption reactions, mainly HNNO + H. In the present work, we re-examined the thermochemistry of HNNO and calculated rate constants and branching fractions for the HNNO + H reaction. Experiments on the N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O–H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> system were conducted in a high-pressure flow reactor at 100 atm as a function of temperature (600-925 K) and stoichiometry and explained in terms of an updated chemical kinetic model. The results support the importance of the HNNO pathway, which results in inhibition of N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O consumption and formation of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. In addition, selected literature results on the N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O–H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> system are re-examined and the implications for the other product channels of N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O + H, in particular NH + NO, are discussed.</div><div><strong>Novelty and significance statement</strong></div><div>This study provides the first detailed kinetic analysis of the N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> system at high pressure and intermediate temperatures, based on flow reactor results and high-level theoretical calculations. The experimental conditions augment the importance of a reaction pathway involving HNNO as intermediate. Inclusion in the model of a subset for HNNO, including present calculations for HNNO + H, is crucial for capturing the observed behavior.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113810"},"PeriodicalIF":5.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.combustflame.2024.113809
Qi Zhan, Yangyang Ban, Fan Zhang, Yiqiang Pei, Yanzhao An
Nanosecond non-equilibrium plasma-assisted combustion technology emerges as a reliable novel approach to enhance the flame propagation speed of NH3. In this study, we developed a zero-dimensional + one-dimensional (0-D+1-D) non-equilibrium plasma-assisted combustion model to investigate the impact of nanosecond pulse discharge on the freely propagating flame speed of NH3/Air mixture. The results reveal that due to the plasma discharge, abundant intermediate species (N2H4, N2H3, NO, H2O2) are formed at the inlet and are subsequently transported downstream, facilitating flame propagation. As a result, the speed of the 1-D freely propagating flame increases, and the flame front is closer to the inlet compared to the non-plasma condition. The transport effect of H2 is also evident, with high concentrations of H2 from the inlet providing the basis for reactions at the flame front that promote combustion. Furthermore, after the initial mixture flows into the flame front, a slight increase in heat release is observed, but this increase occurs within a very limited distance. Notably, in the case of plasma, a stronger heat release is evident at the flame front. Moreover, with plasma, the peaks of OH, H, O, NH2, and HO2 are higher and earlier than those of the non-plasma case due to the transport and kinetic effects of plasma. Pathway flux analyses reflect significant changes in the production and consumption paths of the three components OH, H, and O, which are most important for consuming NH3 due to plasma addition. The higher OH mass fraction promotes the chain reactions that consume NH3, effectively enhancing the flame propagation speed.
Novelty and significance statement
This study introduces a novel 0-D+1-D nanosecond non-equilibrium plasma-assisted combustion model to examine the impact of nanosecond pulse discharge on NH3/Air flame propagation. It uniquely analyzes the interaction between species at the inlet and flame front, highlighting the transport effects of plasma-generated intermediates (N2H4, N2H3, NO, H2O2, H2) that enhance flame speed, with a detailed pathway analysis of key species (O, OH, H).
{"title":"Numerical simulation of flame propagation characteristics of NH3/Air flames assisted by non-equilibrium plasma discharge","authors":"Qi Zhan, Yangyang Ban, Fan Zhang, Yiqiang Pei, Yanzhao An","doi":"10.1016/j.combustflame.2024.113809","DOIUrl":"10.1016/j.combustflame.2024.113809","url":null,"abstract":"<div><div>Nanosecond non-equilibrium plasma-assisted combustion technology emerges as a reliable novel approach to enhance the flame propagation speed of NH<sub>3</sub>. In this study, we developed a zero-dimensional + one-dimensional (0-D+1-D) non-equilibrium plasma-assisted combustion model to investigate the impact of nanosecond pulse discharge on the freely propagating flame speed of NH<sub>3</sub>/Air mixture. The results reveal that due to the plasma discharge, abundant intermediate species (N<sub>2</sub>H<sub>4</sub>, N<sub>2</sub>H<sub>3</sub>, NO, H<sub>2</sub>O<sub>2</sub>) are formed at the inlet and are subsequently transported downstream, facilitating flame propagation. As a result, the speed of the 1-D freely propagating flame increases, and the flame front is closer to the inlet compared to the non-plasma condition. The transport effect of H<sub>2</sub> is also evident, with high concentrations of H<sub>2</sub> from the inlet providing the basis for reactions at the flame front that promote combustion. Furthermore, after the initial mixture flows into the flame front, a slight increase in heat release is observed, but this increase occurs within a very limited distance. Notably, in the case of plasma, a stronger heat release is evident at the flame front. Moreover, with plasma, the peaks of OH, H, O, NH<sub>2</sub>, and HO<sub>2</sub> are higher and earlier than those of the non-plasma case due to the transport and kinetic effects of plasma. Pathway flux analyses reflect significant changes in the production and consumption paths of the three components OH, H, and O, which are most important for consuming NH<sub>3</sub> due to plasma addition. The higher OH mass fraction promotes the chain reactions that consume NH<sub>3</sub>, effectively enhancing the flame propagation speed.</div></div><div><h3>Novelty and significance statement</h3><div>This study introduces a novel 0-D+1-D nanosecond non-equilibrium plasma-assisted combustion model to examine the impact of nanosecond pulse discharge on NH<sub>3</sub>/Air flame propagation. It uniquely analyzes the interaction between species at the inlet and flame front, highlighting the transport effects of plasma-generated intermediates (N<sub>2</sub>H<sub>4</sub>, N<sub>2</sub>H<sub>3</sub>, NO, H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>) that enhance flame speed, with a detailed pathway analysis of key species (O, OH, H).</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113809"},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.combustflame.2024.113832
Jie Sun , Pengfei Yang , Zheng Chen
Due to their high thermal cycle efficiency and compact combustor, oblique detonation engines hold great promise for hypersonic propulsion. Previous numerical simulations of oblique detonation waves have predominantly solved the Euler equations, disregarding the influence of viscosity and boundary layers. This work aims to study how the interaction between the oblique detonation wave and the boundary layer influences the detonation wave structures in confined spaces. Two-dimensional numerical simulations considering detailed chemistry are performed in a stoichiometric H2/air mixture. The results indicate that the wedge-induced oblique detonation wave generates a strong adverse pressure gradient upon impacting the upper wall, leading to boundary layer separation. The separation zone subsequently induces an oblique shock wave near the upper wall, and an increase in separation angle will cause the transition from an oblique shock wave to an oblique detonation wave. The formation of the separation zone reduces the actual flow area and may even lead to flow choking; its obstructive effect is similar to that of the Mach stem in inviscid flow. To establish a connection between the viscous recirculation zone and the inviscid Mach stem, we introduce a dimensionless parameter, η, based on the inviscid assumption. It is defined as the ratio of the inviscid Mach stem height to the channel entrance height. This parameter can be used to identify three wave systems in a viscous flow field: separation shock-dominated wave systems, separation detonation-dominated wave systems, and unstable Mach stem-dominated wave systems. Among these, the appearance of detonation Mach stems leads to flow choking, and the shock-detonation wave system continually moves upstream, ultimately causing the failure of the oblique detonation combustion. The findings of this study provide new insights into the investigation of the influence of viscosity on the flow structure of oblique detonation waves.
{"title":"Dynamic interaction patterns of oblique detonation waves with boundary layers in hypersonic reactive flows","authors":"Jie Sun , Pengfei Yang , Zheng Chen","doi":"10.1016/j.combustflame.2024.113832","DOIUrl":"10.1016/j.combustflame.2024.113832","url":null,"abstract":"<div><div>Due to their high thermal cycle efficiency and compact combustor, oblique detonation engines hold great promise for hypersonic propulsion. Previous numerical simulations of oblique detonation waves have predominantly solved the Euler equations, disregarding the influence of viscosity and boundary layers. This work aims to study how the interaction between the oblique detonation wave and the boundary layer influences the detonation wave structures in confined spaces. Two-dimensional numerical simulations considering detailed chemistry are performed in a stoichiometric H<sub>2</sub>/air mixture. The results indicate that the wedge-induced oblique detonation wave generates a strong adverse pressure gradient upon impacting the upper wall, leading to boundary layer separation. The separation zone subsequently induces an oblique shock wave near the upper wall, and an increase in separation angle will cause the transition from an oblique shock wave to an oblique detonation wave. The formation of the separation zone reduces the actual flow area and may even lead to flow choking; its obstructive effect is similar to that of the Mach stem in inviscid flow. To establish a connection between the viscous recirculation zone and the inviscid Mach stem, we introduce a dimensionless parameter, <em>η</em>, based on the inviscid assumption. It is defined as the ratio of the inviscid Mach stem height to the channel entrance height. This parameter can be used to identify three wave systems in a viscous flow field: separation shock-dominated wave systems, separation detonation-dominated wave systems, and unstable Mach stem-dominated wave systems. Among these, the appearance of detonation Mach stems leads to flow choking, and the shock-detonation wave system continually moves upstream, ultimately causing the failure of the oblique detonation combustion. The findings of this study provide new insights into the investigation of the influence of viscosity on the flow structure of oblique detonation waves.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113832"},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.combustflame.2024.113827
Hui Liu , Fang Wang , Huanhuan Gao , Yukun Chen , Xueqin Liao , Jianzhong Liu
Energy performance is always the primary focus of solid propulsion technology development. This paper investigated the characteristics of the energy release, decomposition, and combustion of two typical propellants (NEPE propellants and HTPB propellants) using NASA-CEA calculations, thermal analysis, and an electric wire ignition combustion system. The decomposition temperature of NG, BTTN, GAP, and CL-20 in NEPE propellants were low. The decomposition products were abundant and the decomposition exotherm was large. It had a strong inhibitory effect on LTD of AP and a strong promotional effect on HTD of AP, resulting in the combination of HTD and LTD of AP into a single peak. The flame brightness of two propellants was obviously improved with pressure increasing, as was the flame expansion area, burning rate, and combustion intensity. The ignition delay time ti decreased and the burning rate r increased. Compared to HTPB propellants, NEPE propellants had brighter flames, larger flame expansion area, more intense combustion, smaller ti, and smaller r under the same pressure. The pressure exponent n of NEPE propellants (0.43) was larger than that of HTPB propellants (0.39). The rate of the chemical reactions and the rate of diffusion and mixing had a greater impact on the burning rate of NEPE propellants.
能量性能始终是固体推进技术发展的首要关注点。本文利用 NASA-CEA 计算、热分析和电线点火燃烧系统研究了两种典型推进剂(NEPE 推进剂和 HTPB 推进剂)的能量释放、分解和燃烧特性。NEPE 推进剂中 NG、BTTN、GAP 和 CL-20 的分解温度较低。分解产物丰富,分解放热大。对 AP 的 LTD 有很强的抑制作用,对 AP 的 HTD 有很强的促进作用,导致 AP 的 HTD 和 LTD 合并为一个峰。随着压力的增加,两种推进剂的火焰亮度明显提高,火焰膨胀面积、燃烧速率和燃烧强度也明显提高。点火延迟时间 ti 减小,燃烧速率 r 增加。与 HTPB 推进剂相比,在相同压力下,NEPE 推进剂的火焰亮度更高、火焰膨胀面积更大、燃烧更剧烈、ti 更小、r 更小。NEPE 推进剂的压力指数 n(0.43)大于 HTPB 推进剂的压力指数 n(0.39)。化学反应速率以及扩散和混合速率对 NEPE 推进剂燃烧速率的影响更大。
{"title":"Comparative study on the characteristics of energy release, decomposition, and combustion between NEPE propellants and HTPB propellants","authors":"Hui Liu , Fang Wang , Huanhuan Gao , Yukun Chen , Xueqin Liao , Jianzhong Liu","doi":"10.1016/j.combustflame.2024.113827","DOIUrl":"10.1016/j.combustflame.2024.113827","url":null,"abstract":"<div><div>Energy performance is always the primary focus of solid propulsion technology development. This paper investigated the characteristics of the energy release, decomposition, and combustion of two typical propellants (NEPE propellants and HTPB propellants) using NASA-CEA calculations, thermal analysis, and an electric wire ignition combustion system. The decomposition temperature of NG, BTTN, GAP, and CL-20 in NEPE propellants were low. The decomposition products were abundant and the decomposition exotherm was large. It had a strong inhibitory effect on LTD of AP and a strong promotional effect on HTD of AP, resulting in the combination of HTD and LTD of AP into a single peak. The flame brightness of two propellants was obviously improved with pressure increasing, as was the flame expansion area, burning rate, and combustion intensity. The ignition delay time <em>t</em><sub>i</sub> decreased and the burning rate <em>r</em> increased. Compared to HTPB propellants, NEPE propellants had brighter flames, larger flame expansion area, more intense combustion, smaller <em>t</em><sub>i,</sub> and smaller <em>r</em> under the same pressure. The pressure exponent n of NEPE propellants (0.43) was larger than that of HTPB propellants (0.39). The rate of the chemical reactions and the rate of diffusion and mixing had a greater impact on the burning rate of NEPE propellants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113827"},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.combustflame.2024.113812
Jie Chen , Qi Chen , Nan Liu , Shanshan Ruan , Xianwu Jiang , Lidong Zhang
The chain-initial reactions of small-molecule alkane (CnH2n+2(n ≤ 4)) oxidation participated by electronically excited oxygen O2(a1Δg) are crucial for understanding the role of O2(a1Δg) in plasma-assisted combustion and fuel reforming. Accordingly, in the present work, the energy barriers for the reactions O2(X3Σg/a1Δg) + alkane (n ≤ 4) → products were investigated by using high-precision quantum calculations. Rate constants for each reaction channel within the temperature range of 300–1500 K were predicted based on transition state theory (TST), supplementing plasma kinetics parameters. The energy barriers and rate constants for methane and ethane oxidation dehydrogenation reactions showed good agreement with literature data, validating the accuracy of the computational method employed in this work. The calculations revealed that the dehydrogenation sites have vital impacts on the reaction system. The energy barriers of the reaction channels involved in O2(a1Δg) were reduced at different dehydrogenation sites. Specifically, the change rate of each reaction energy barrier at primary, secondary and tertiary site was about 40 %, 65 % and 65 %, respectively. The reactions involving O2(a1Δg) significantly increased the reaction rate coefficient, especially for single hydrogen abstraction at the secondary and tertiary sites. The effect of O2(a1Δg) on ignition promotion and its regularity were further studied through kinetic simulations. The results suggested that adding O2(a1Δg) reduces the ignition delay time (IDT) of small molecular alkanes by approximately one order of magnitude, attributed to variations in energy barrier and branching ratios of different reaction channels. Notably, the H-atom abstraction reaction on primary site showed the largest sensitivity in IDT at 800 K, particularly for propane and isobutane, with IDT change rates of 98.0 % and 96.3 %, respectively. This study provided reasonable rate coefficients for kinetic modeling of plasma-assisted alkane ignition.
{"title":"Theoretical kinetics study of hydrogen abstraction reactions of O2(X3Σg/a1Δg) + CnH2n+2 (n ≤ 4)","authors":"Jie Chen , Qi Chen , Nan Liu , Shanshan Ruan , Xianwu Jiang , Lidong Zhang","doi":"10.1016/j.combustflame.2024.113812","DOIUrl":"10.1016/j.combustflame.2024.113812","url":null,"abstract":"<div><div>The chain-initial reactions of small-molecule alkane (C<sub>n</sub>H<sub>2n+2</sub>(n ≤ 4)) oxidation participated by electronically excited oxygen O<sub>2</sub>(a<sup>1</sup>Δg) are crucial for understanding the role of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) in plasma-assisted combustion and fuel reforming. Accordingly, in the present work, the energy barriers for the reactions O<sub>2</sub>(X<sup>3</sup>Σ<sub>g</sub>/a<sup>1</sup>Δg) + alkane (n ≤ 4) → products were investigated by using high-precision quantum calculations. Rate constants for each reaction channel within the temperature range of 300–1500 K were predicted based on transition state theory (TST), supplementing plasma kinetics parameters. The energy barriers and rate constants for methane and ethane oxidation dehydrogenation reactions showed good agreement with literature data, validating the accuracy of the computational method employed in this work. The calculations revealed that the dehydrogenation sites have vital impacts on the reaction system. The energy barriers of the reaction channels involved in O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) were reduced at different dehydrogenation sites. Specifically, the change rate of each reaction energy barrier at primary, secondary and tertiary site was about 40 %, 65 % and 65 %, respectively. The reactions involving O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) significantly increased the reaction rate coefficient, especially for single hydrogen abstraction at the secondary and tertiary sites. The effect of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) on ignition promotion and its regularity were further studied through kinetic simulations. The results suggested that adding O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) reduces the ignition delay time (IDT) of small molecular alkanes by approximately one order of magnitude, attributed to variations in energy barrier and branching ratios of different reaction channels. Notably, the H-atom abstraction reaction on primary site showed the largest sensitivity in IDT at 800 K, particularly for propane and isobutane, with IDT change rates of 98.0 % and 96.3 %, respectively. This study provided reasonable rate coefficients for kinetic modeling of plasma-assisted alkane ignition.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113812"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.combustflame.2024.113793
Raphael J. Dijoud , Nicholas Laws , Carmen Guerra-Garcia
<div><div>Nanosecond pulsed plasmas have been demonstrated, both experimentally and numerically, to be beneficial for ignition, mainly through gas heating (at different timescales) and radical seeding. However, most studies focus on specific gas conditions, and little work has been done to understand how plasma performance is affected by fuel and oxygen content, at different gas temperatures and deposited energies. This is relevant to map the performance envelope of plasma-assisted combustion across different regimes, spanning from fuel-lean to fuel-rich operation, as well as oxygen-rich to oxygen-vitiated conditions, of interest to different industries. This work presents a computational effort to address a large parametric exploration of combustion environments and map out the actuation authority of plasmas under different conditions. The work uses a zero-dimensional plasma-combustion kinetics solver developed in-house to study the ignition of <span><math><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> mixtures with plasma assistance. A main contribution of the study is the detailed tracking of the energy, from the electrical input all the way to the thermal and kinetic effects that result in combustion enhancement. This extends prior works that focus on the first step of the energy transfer: from the electrical input to the electron-impact processes. Independent of the composition, four pathways stand out: (i) vibrational-translational relaxation, (ii) fast gas heating, (iii) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> dissociation, and (iv) <span><math><msub><mrow><mi>CH</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> dissociation. Results show that the activated energy pathways are highly dependent on gas state, composition, and pulse shape, and can explain the observed range in performance regarding ignition enhancement. The approach can be used to calculate the fractional energy deposition into the main pathways for any mixture or composition, including new fuels, and can be a valuable tool to construct phenomenological models of the plasma across combustion environments.</div><div><strong>Novelty and significance statement</strong></div><div>This work maps the performance of plasma-assisted ignition over a broader range of combustion environments than prior works. Whereas most works focus on fuel/air mixtures, this work quantifies the impact of fuel content and oxygen dilution on plasma actuation. This is relevant to determine the possibilities of using plasma ignition across industries. The novelty of the model presented is the accurate tracking of the energy deposited by the plasma and the identification of the chemical pathways activated by the plasma. Although it is recognized as critical in the description of
{"title":"Mapping the performance envelope and energy pathways of plasma-assisted ignition across combustion environments","authors":"Raphael J. Dijoud , Nicholas Laws , Carmen Guerra-Garcia","doi":"10.1016/j.combustflame.2024.113793","DOIUrl":"10.1016/j.combustflame.2024.113793","url":null,"abstract":"<div><div>Nanosecond pulsed plasmas have been demonstrated, both experimentally and numerically, to be beneficial for ignition, mainly through gas heating (at different timescales) and radical seeding. However, most studies focus on specific gas conditions, and little work has been done to understand how plasma performance is affected by fuel and oxygen content, at different gas temperatures and deposited energies. This is relevant to map the performance envelope of plasma-assisted combustion across different regimes, spanning from fuel-lean to fuel-rich operation, as well as oxygen-rich to oxygen-vitiated conditions, of interest to different industries. This work presents a computational effort to address a large parametric exploration of combustion environments and map out the actuation authority of plasmas under different conditions. The work uses a zero-dimensional plasma-combustion kinetics solver developed in-house to study the ignition of <span><math><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> mixtures with plasma assistance. A main contribution of the study is the detailed tracking of the energy, from the electrical input all the way to the thermal and kinetic effects that result in combustion enhancement. This extends prior works that focus on the first step of the energy transfer: from the electrical input to the electron-impact processes. Independent of the composition, four pathways stand out: (i) vibrational-translational relaxation, (ii) fast gas heating, (iii) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> dissociation, and (iv) <span><math><msub><mrow><mi>CH</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> dissociation. Results show that the activated energy pathways are highly dependent on gas state, composition, and pulse shape, and can explain the observed range in performance regarding ignition enhancement. The approach can be used to calculate the fractional energy deposition into the main pathways for any mixture or composition, including new fuels, and can be a valuable tool to construct phenomenological models of the plasma across combustion environments.</div><div><strong>Novelty and significance statement</strong></div><div>This work maps the performance of plasma-assisted ignition over a broader range of combustion environments than prior works. Whereas most works focus on fuel/air mixtures, this work quantifies the impact of fuel content and oxygen dilution on plasma actuation. This is relevant to determine the possibilities of using plasma ignition across industries. The novelty of the model presented is the accurate tracking of the energy deposited by the plasma and the identification of the chemical pathways activated by the plasma. Although it is recognized as critical in the description of ","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113793"},"PeriodicalIF":5.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.combustflame.2024.113813
Yuting Ye , Jianbing Cai , Wenbin Tang , Yiwei Li , Dongxian Li , Xu Li , Meng Xu , Changhua Zhang , Jijun Zou , Chuanfeng Yue , Jingbo Wang
Quadricyclane, with high density and net heat value, can provide more energy to extend the flight distance and enhance the payload capacity of aircraft. The autoignition characteristics of quadricyclane have been investigated behind reflected shock waves in this study. With argon as the diluent gas, experiments are conducted at pressures of 2, 4, and 10 atm, equivalence ratios of 0.5, 1.0, and 2.0, fuel concentrations of 0.2% and 0.4%, and temperatures ranging from 1276 to 1773 K. The results indicate that the ignition delay time decreases with increasing pressure and fuel concentration, and increases with increasing equivalence ratio, showing a strong positive dependence with the equivalence ratio. Regression analysis of the experimental data has yielded quantitative relationships. To clarify the combustion process, a high-temperature kinetic model based on the NUIGMech1.1 mechanism has been developed, and the validation demonstrates that the model can accurately describe the autoignition characteristics of quadricyclane. Sensitivity and reaction pathways analyses have been conducted, the results reveal that quadricyclane primarily undergoes ring-opening isomerization to produce 2,5-norbornadiene at high temperature. Furthermore, to demonstrate the effect of the strained structure on fuel ignition, the ignition delay times of quadricyclane/air mixture are measured within a temperature range from 952 to 1113 K, pressure of 10 atm, and equivalence ratio of 1.0. When compared with the ignition delay times of JP-10 and Jet A, quadricyclane exhibits the shortest ignition delay time due to its exothermic ring-opening reaction occurring at the initial stage.
{"title":"An experimental and kinetic study of quadricyclane autoignition at high temperatures","authors":"Yuting Ye , Jianbing Cai , Wenbin Tang , Yiwei Li , Dongxian Li , Xu Li , Meng Xu , Changhua Zhang , Jijun Zou , Chuanfeng Yue , Jingbo Wang","doi":"10.1016/j.combustflame.2024.113813","DOIUrl":"10.1016/j.combustflame.2024.113813","url":null,"abstract":"<div><div>Quadricyclane, with high density and net heat value, can provide more energy to extend the flight distance and enhance the payload capacity of aircraft. The autoignition characteristics of quadricyclane have been investigated behind reflected shock waves in this study. With argon as the diluent gas, experiments are conducted at pressures of 2, 4, and 10 atm, equivalence ratios of 0.5, 1.0, and 2.0, fuel concentrations of 0.2% and 0.4%, and temperatures ranging from 1276 to 1773 K. The results indicate that the ignition delay time decreases with increasing pressure and fuel concentration, and increases with increasing equivalence ratio, showing a strong positive dependence with the equivalence ratio. Regression analysis of the experimental data has yielded quantitative relationships. To clarify the combustion process, a high-temperature kinetic model based on the NUIGMech1.1 mechanism has been developed, and the validation demonstrates that the model can accurately describe the autoignition characteristics of quadricyclane. Sensitivity and reaction pathways analyses have been conducted, the results reveal that quadricyclane primarily undergoes ring-opening isomerization to produce 2,5-norbornadiene at high temperature. Furthermore, to demonstrate the effect of the strained structure on fuel ignition, the ignition delay times of quadricyclane/air mixture are measured within a temperature range from 952 to 1113 K, pressure of 10 atm, and equivalence ratio of 1.0. When compared with the ignition delay times of JP-10 and Jet A, quadricyclane exhibits the shortest ignition delay time due to its exothermic ring-opening reaction occurring at the initial stage.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113813"},"PeriodicalIF":5.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.combustflame.2024.113814
Meng Zhou , Minhyeok Lee , Yiguang Ju , Yuji Suzuki
The low-temperature oxidation of dimethyl ether (DME) was investigated in premixed wall-stabilized cool flames at two equivalence ratios (ϕ) of 0.2 and 0.5. Using a time-of-flight mass spectrometry (TOF-MS) coupled with gas chromatography (GC), the spatial distributions of major intermediate species, including DME, CH2O (formaldehyde), CO, CO2, and CH3OCHO (methyl formate), were quantified under well-controlled boundary conditions. Moreover, the temporal evolutions of multiple intermediate species in the wall-stabilized cool flame ignition process were measured via TOF-MS, while the wall temperature was gradually ramped up from 550 K to 730 K. Several kinetic models were examined herein to assess the estimated low-temperature reactivity of DME by comparing the one-dimensional axisymmetric simulation results with the experimental data. Wall-stabilized cool flame structures at equivalence ratios ϕ of 0.2 and 0.5 were quantitatively examined with the major intermediate species. It is found that the kinetic models reasonably predict the onset of the reaction zone near the wall. Among these models, Kurimoto et al.’s model gives better predictions for the distributions of CH2O and CO, which are characteristic species of cool flames. In addition, time-resolved measurements of the unsteady cool flames identified the negative temperature coefficient (NTC) turnover points for different species across various temperature regions. It is also found that the Kurimoto et al. model still indicates a slightly higher reactivity of DME in the low-temperature range, resulting in earlier DME consumption and a shift of NTC window to lower temperatures at ϕ = 0.2.
{"title":"Spatial distribution and temporal evolution of wall-stabilized DME/O2 premixed cool flames","authors":"Meng Zhou , Minhyeok Lee , Yiguang Ju , Yuji Suzuki","doi":"10.1016/j.combustflame.2024.113814","DOIUrl":"10.1016/j.combustflame.2024.113814","url":null,"abstract":"<div><div>The low-temperature oxidation of dimethyl ether (DME) was investigated in premixed wall-stabilized cool flames at two equivalence ratios (<em>ϕ</em>) of 0.2 and 0.5. Using a time-of-flight mass spectrometry (TOF-MS) coupled with gas chromatography (GC), the spatial distributions of major intermediate species, including DME, CH<sub>2</sub>O (formaldehyde), CO, CO<sub>2</sub>, and CH<sub>3</sub>OCHO (methyl formate), were quantified under well-controlled boundary conditions. Moreover, the temporal evolutions of multiple intermediate species in the wall-stabilized cool flame ignition process were measured via TOF-MS, while the wall temperature was gradually ramped up from 550 K to 730 K. Several kinetic models were examined herein to assess the estimated low-temperature reactivity of DME by comparing the one-dimensional axisymmetric simulation results with the experimental data. Wall-stabilized cool flame structures at equivalence ratios <em>ϕ</em> of 0.2 and 0.5 were quantitatively examined with the major intermediate species. It is found that the kinetic models reasonably predict the onset of the reaction zone near the wall. Among these models, Kurimoto et al.’s model gives better predictions for the distributions of CH<sub>2</sub>O and CO, which are characteristic species of cool flames. In addition, time-resolved measurements of the unsteady cool flames identified the negative temperature coefficient (NTC) turnover points for different species across various temperature regions. It is also found that the Kurimoto et al. model still indicates a slightly higher reactivity of DME in the low-temperature range, resulting in earlier DME consumption and a shift of NTC window to lower temperatures at <em>ϕ</em> = 0.2.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113814"},"PeriodicalIF":5.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.combustflame.2024.113799
Sang Min Lee, Nam Il Kim
Hydrogen combustion is receiving significant interest as a carbon-free energy resource. However, the distinctive combustion characteristics of hydrogen have yet to be explored sufficiently. This study experimentally investigated the effects of hydrogen blending with methane and propane using a narrow-gap disk burner (NGDB). Three representative flame characteristics were considered: the quenching distance, the flame propagation velocity, and the number of cellular structures. It was confirmed that the quenching Peclet number and the number of cellular structures were significantly affected by the addition of hydrogen, primarily due to the Lewis number. However, defining the Lewis number was somewhat ambiguous, especially for multi-component fuel mixtures. Although various effective Lewis numbers have been suggested, their reliability must be adequately assessed. Six representative Lewis numbers were evaluated based on previous studies, and their correlations with flame characteristics were discussed. Conclusively, the previous Lewis numbers were only partly acceptable and had some exceptions. Therefore, a revised effective Lewis number for the hydrogen-blended flames was suggested, using the maximum laminar burning velocity as a new criterion for determining the deficient species, which showed improved correlations with representative flame propagation characteristics.
{"title":"Premixed flame behaviors of H2/CH4/C3H8 mixtures in a narrow-gap disk burner and effective Lewis numbers","authors":"Sang Min Lee, Nam Il Kim","doi":"10.1016/j.combustflame.2024.113799","DOIUrl":"10.1016/j.combustflame.2024.113799","url":null,"abstract":"<div><div>Hydrogen combustion is receiving significant interest as a carbon-free energy resource. However, the distinctive combustion characteristics of hydrogen have yet to be explored sufficiently. This study experimentally investigated the effects of hydrogen blending with methane and propane using a narrow-gap disk burner (NGDB). Three representative flame characteristics were considered: the quenching distance, the flame propagation velocity, and the number of cellular structures. It was confirmed that the quenching Peclet number and the number of cellular structures were significantly affected by the addition of hydrogen, primarily due to the Lewis number. However, defining the Lewis number was somewhat ambiguous, especially for multi-component fuel mixtures. Although various effective Lewis numbers have been suggested, their reliability must be adequately assessed. Six representative Lewis numbers were evaluated based on previous studies, and their correlations with flame characteristics were discussed. Conclusively, the previous Lewis numbers were only partly acceptable and had some exceptions. Therefore, a revised effective Lewis number for the hydrogen-blended flames was suggested, using the maximum laminar burning velocity as a new criterion for determining the deficient species, which showed improved correlations with representative flame propagation characteristics.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113799"},"PeriodicalIF":5.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.combustflame.2024.113806
Meirong Zeng , Jigang Gao , Yuwen Deng , Peiqi Liu , Zhongyue Zhou , Jiuzhong Yang , Wenhao Yuan , Fei Qi
The oxidation chemistry of single component has been widely explored, which motivates us to investigate the oxidation chemistry of blended fuels. Here, n-dodecane, ethylcyclohexane and n-butylbenzene have been selected as fuel components for representing n-alkane, cyclic alkane and aromatic, respectively. The oxidation experiments of blended n-dodecane, ethylcyclohexane and n-butylbenzene fuels were performed in an atmospheric jet stirred reactor, temperatures ranging from 450 to 850 K, equivalence ratios of 0.5 and 1.0. The synchrotron vacuum ultraviolet radiation photoionization mass spectrometry was applied to measure the featured intermediates, such as hydroperoxides and highly oxygenated molecules (HOMs) with characteristic functional groups. Subsequently, a kinetic model for the blended fuels was developed and validated, which was used to reveal the crucial coupled oxidation chemistry that drives the global oxidation reactivity and products distribution. It is revealed that the active chain initiators, such as OH radicals, produced by the oxidation reactions of n-dodecane and ethylcyclohexane, significantly enhance the oxidation reactivity of n-butylbenzene. Furthermore, the hydroperoxides and ketohydroperoxides, acting as key experimental evidence for the existence of first O2 addition and second O2 addition, contribute to the formation of active chain initiators, such as OH radicals. This work extends the existing conceptual reaction schemes proposed for the oxidation of single fuel towards the coupled oxidation chemistry of blended fuels. This, in turn, improves our understanding towards the complicated oxidation chemistry of real fuels.
{"title":"Revealing the oxidation kinetics of n-dodecane, ethylcyclohexane and n-butylbenzene blended fuels","authors":"Meirong Zeng , Jigang Gao , Yuwen Deng , Peiqi Liu , Zhongyue Zhou , Jiuzhong Yang , Wenhao Yuan , Fei Qi","doi":"10.1016/j.combustflame.2024.113806","DOIUrl":"10.1016/j.combustflame.2024.113806","url":null,"abstract":"<div><div>The oxidation chemistry of single component has been widely explored, which motivates us to investigate the oxidation chemistry of blended fuels. Here, <em>n</em>-dodecane, ethylcyclohexane and <em>n</em>-butylbenzene have been selected as fuel components for representing <em>n</em>-alkane, cyclic alkane and aromatic, respectively. The oxidation experiments of blended <em>n</em>-dodecane, ethylcyclohexane and <em>n</em>-butylbenzene fuels were performed in an atmospheric jet stirred reactor, temperatures ranging from 450 to 850 K, equivalence ratios of 0.5 and 1.0. The synchrotron vacuum ultraviolet radiation photoionization mass spectrometry was applied to measure the featured intermediates, such as hydroperoxides and highly oxygenated molecules (HOMs) with characteristic functional groups. Subsequently, a kinetic model for the blended fuels was developed and validated, which was used to reveal the crucial coupled oxidation chemistry that drives the global oxidation reactivity and products distribution. It is revealed that the active chain initiators, such as OH radicals, produced by the oxidation reactions of <em>n</em>-dodecane and ethylcyclohexane, significantly enhance the oxidation reactivity of <em>n</em>-butylbenzene. Furthermore, the hydroperoxides and ketohydroperoxides, acting as key experimental evidence for the existence of first O<sub>2</sub> addition and second O<sub>2</sub> addition, contribute to the formation of active chain initiators, such as OH radicals. This work extends the existing conceptual reaction schemes proposed for the oxidation of single fuel towards the coupled oxidation chemistry of blended fuels. This, in turn, improves our understanding towards the complicated oxidation chemistry of real fuels.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113806"},"PeriodicalIF":5.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}