首页 > 最新文献

Combustion and Flame最新文献

英文 中文
Physiochemical View of Fuel Jet Impingement and Ignition Upon Contact with a Cylindrical Hot Surface 燃料射流与圆柱形热表面接触时的撞击和点火的物理化学观点
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-05 DOI: 10.1016/j.combustflame.2024.113784
Sayop Kim , Tonghun Lee , Kenneth S. Kim , Chol-Bum M. Kweon , Je Ir Ryu
This study delves into ignition and flame dynamics involving a cylindrical hot surface impact. Previous studies have focused on the flat-wall hot surface interacting with fuel spray, leaving gaps in understanding the effects of cylindrical hot surfaces on fuel-air mixing and ignition. Using high-fidelity large-eddy simulations (LES), this study investigates how fluid elements, upon contacting an electronically activated glow plug structure, exhibit mixing and thermochemical properties. The analysis examines how this type of structure enhances fuel-air mixing and subsequently influences the thermochemistry behavior in conjunction with the fuel-specific combustion behavior. The study includes scenarios with free spray and non-thermal deposit cases to assess their mixing impact, alongside testing five different electric voltage inputs to study the thermally assisted ignition process. Results demonstrate that the cylindrical structure hinders flow, reducing its inertia and increasing flow residence time. Moreover, a significant Coandă effect due to the circular wall structure is identified, potentially serving as a mechanism for enhancing flame-holding. Furthermore, varying the input voltage notably affects ignition timing, revealing a non-monotonic ignition delay pattern with lower voltages. Detailed analysis highlights the critical role of negative temperature coefficient (NTC)-driven low-temperature chemistry (LTC) in the ignition process.
本研究深入探讨了涉及圆柱形热表面撞击的点火和火焰动力学。以往的研究主要集中在平壁热表面与燃料喷射的相互作用上,对圆柱形热表面对燃料-空气混合和点火的影响的理解存在空白。本研究利用高保真大涡流模拟(LES),研究了流体元素在接触电子激活的辉光塞结构时如何表现出混合和热化学性质。分析研究了这种结构如何增强燃料与空气的混合,进而影响热化学行为和特定燃料的燃烧行为。研究包括自由喷雾和非热沉积情况,以评估它们对混合的影响,同时还测试了五种不同的电压输入,以研究热辅助点火过程。结果表明,圆柱形结构会阻碍流动,减少其惯性并增加流动停留时间。此外,圆壁结构还产生了明显的 Coandă 效应,这可能是增强火焰保持力的一种机制。此外,改变输入电压对点火时间有显著影响,揭示了低电压下的非单调点火延迟模式。详细分析强调了负温度系数(NTC)驱动的低温化学(LTC)在点火过程中的关键作用。
{"title":"Physiochemical View of Fuel Jet Impingement and Ignition Upon Contact with a Cylindrical Hot Surface","authors":"Sayop Kim ,&nbsp;Tonghun Lee ,&nbsp;Kenneth S. Kim ,&nbsp;Chol-Bum M. Kweon ,&nbsp;Je Ir Ryu","doi":"10.1016/j.combustflame.2024.113784","DOIUrl":"10.1016/j.combustflame.2024.113784","url":null,"abstract":"<div><div>This study delves into ignition and flame dynamics involving a cylindrical hot surface impact. Previous studies have focused on the flat-wall hot surface interacting with fuel spray, leaving gaps in understanding the effects of cylindrical hot surfaces on fuel-air mixing and ignition. Using high-fidelity large-eddy simulations (LES), this study investigates how fluid elements, upon contacting an electronically activated glow plug structure, exhibit mixing and thermochemical properties. The analysis examines how this type of structure enhances fuel-air mixing and subsequently influences the thermochemistry behavior in conjunction with the fuel-specific combustion behavior. The study includes scenarios with free spray and non-thermal deposit cases to assess their mixing impact, alongside testing five different electric voltage inputs to study the thermally assisted ignition process. Results demonstrate that the cylindrical structure hinders flow, reducing its inertia and increasing flow residence time. Moreover, a significant Coandă effect due to the circular wall structure is identified, potentially serving as a mechanism for enhancing flame-holding. Furthermore, varying the input voltage notably affects ignition timing, revealing a non-monotonic ignition delay pattern with lower voltages. Detailed analysis highlights the critical role of negative temperature coefficient (NTC)-driven low-temperature chemistry (LTC) in the ignition process.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113784"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid fuel cloud detonation and droplet lifetime 液体燃料云爆炸和液滴寿命
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-04 DOI: 10.1016/j.combustflame.2024.113786
Taylor Brown, Rachel Hytovick, Anthony Morales, Joshua Berson, Sheikh Salauddin, Khaoula Chougag, Kareem Ahmed
The structures and mechanisms of aerosolized liquid-fuel cloud detonations are studied in a detonation facility using simultaneous high-speed optical diagnostics. The characteristic length scale of the droplet lifetime in liquid fuel detonations is not well predicted by established breakup and evaporation models, whereas it captured by calculations of the evaporation time of the droplet cloud.

Novelty and significance statement

Detonation research has mostly focused on gaseous fuels with limited investigations of purely liquid fueled detonations. This research explores the characteristic length scales of aerosolized liquid fuel droplets’ lifetime showing it does not scale with established breakup and evaporation models. It scales well with the evaporation time of child droplet clouds, highlighting the significance.
利用同步高速光学诊断技术,在爆炸设施中研究了气溶胶液体燃料云爆炸的结构和机理。已有的破裂和蒸发模型不能很好地预测液体燃料爆轰中液滴寿命的特征长度尺度,而液滴云蒸发时间的计算却能捕捉到这一特征长度尺度。这项研究探索了气溶胶液体燃料液滴寿命的特征长度尺度,结果表明它与既定的破裂和蒸发模型不一致。它与子液滴云的蒸发时间具有良好的比例关系,突出了其重要性。
{"title":"Liquid fuel cloud detonation and droplet lifetime","authors":"Taylor Brown,&nbsp;Rachel Hytovick,&nbsp;Anthony Morales,&nbsp;Joshua Berson,&nbsp;Sheikh Salauddin,&nbsp;Khaoula Chougag,&nbsp;Kareem Ahmed","doi":"10.1016/j.combustflame.2024.113786","DOIUrl":"10.1016/j.combustflame.2024.113786","url":null,"abstract":"<div><div>The structures and mechanisms of aerosolized liquid-fuel cloud detonations are studied in a detonation facility using simultaneous high-speed optical diagnostics. The characteristic length scale of the droplet lifetime in liquid fuel detonations is not well predicted by established breakup and evaporation models, whereas it captured by calculations of the evaporation time of the droplet cloud.</div></div><div><h3>Novelty and significance statement</h3><div>Detonation research has mostly focused on gaseous fuels with limited investigations of purely liquid fueled detonations. This research explores the characteristic length scales of aerosolized liquid fuel droplets’ lifetime showing it does not scale with established breakup and evaporation models. It scales well with the evaporation time of child droplet clouds, highlighting the significance.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113786"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct numerical simulations of turbulent premixed cool flames: Global and local flame dynamics analysis 湍流预混冷焰的直接数值模拟:全局和局部火焰动力学分析
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-04 DOI: 10.1016/j.combustflame.2024.113759
Yiqing Wang , Chao Xu , Cheng Chi , Zheng Chen
<div><div>The cool flame dynamics, especially in turbulent flows, is of great interest for both practical application and fundamental research. In this study, a series of direct numerical simulations of turbulent premixed <em>n</em>-C<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>H<sub>16</sub>/O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> cool flames are performed, with the focus on the influence of turbulence intensity (<span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> is the laminar flame speed) on the flame structure as well as the global and local cool flame dynamics. It is found that the cool flame front is considerably wrinkled by turbulence at high <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, leading to significantly thickened turbulent cool flame brush and largely altered local reactivity compared with the reference laminar flame. However, the turbulent flame structure in the temperature space is found to be insensitive to <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>. Besides, with increasing <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, the normalized turbulent cool flame speed (<span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>) is monotonically increased, attributed to substantial augmentation on the flame surface area (<span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>), while the stretching factor (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) remains almost constant and is smaller than 1. The underlying mechanisms for such variations are revealed through local flame dynamics analysis. Specifically, the local flame displacement speed <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is found to be strongly negatively correlated with flame curvature; meanwhile, such negative correlation and the probability distribution function (PDF) of flame curvature are barely influenced by <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></ms
冷火焰动力学,尤其是湍流中的冷火焰动力学,在实际应用和基础研究中都具有重要意义。本研究对 n-C7H16/O2/O3/N2 冷火焰进行了一系列直接数值模拟,重点研究了湍流强度(u′/SL,其中 SL 为层流火焰速度)对火焰结构以及全局和局部冷火焰动力学的影响。研究发现,与参考层流火焰相比,u′/SL 较高时,冷却火焰前沿受湍流影响较大,导致湍流冷却火焰刷明显变粗,局部反应性发生很大变化。然而,温度空间中的湍流火焰结构对 u′/SL 并不敏感。此外,随着 u′/SL 的增加,归一化湍流冷焰速度(ST/SL)单调增加,这归因于火焰表面积(AT/AL)的大幅增加,而拉伸因子(I0)几乎保持不变且小于 1。具体来说,局部火焰位移速度 Sd 与火焰曲率呈强负相关;同时,这种负相关和火焰曲率的概率分布函数 (PDF) 几乎不受 u′/SL 的影响,从而导致 I0 对 u′/SL 的依赖性很弱。与此相反,切向应变率的 PDF 范围更广,并且随着 u′/SL 的增大而向正方向移动,这表明切向应变率的增强是湍流预混合冷却火焰表面积增大的主要原因。最后,研究发现等效比对上述结论的影响并不显著,这表明虽然湍流预混冷焰的局部反应性因差分扩散而发生了改变,但由此产生的火焰-伸长相互作用对等效比并不敏感。这项研究提出了一些有别于热火焰的独特冷火焰动力学,有助于提高对湍流冷火焰的理解和建模。新颖性和意义声明这项工作的新颖性在于首次对孤立的湍流预混合冷火焰进行了全局和局部火焰动力学综合分析。研究发现,随着湍流强度的增加,由于火焰表面积的大幅增加,归一化湍流冷却火焰速度单调增加,而拉伸因子几乎保持不变。通过局部火焰动力学分析,揭示了这些趋势的内在机制。此外,还发现等效比对冷却火焰动力学的影响并不明显。研究结果表明,湍流预混冷焰具有一些与路易斯数大于 1 的湍流热焰相似的特征,但更重要的是,它也呈现出一些有别于热焰的独特特征。因此,这项研究有助于更好地理解冷火焰动力学。
{"title":"Direct numerical simulations of turbulent premixed cool flames: Global and local flame dynamics analysis","authors":"Yiqing Wang ,&nbsp;Chao Xu ,&nbsp;Cheng Chi ,&nbsp;Zheng Chen","doi":"10.1016/j.combustflame.2024.113759","DOIUrl":"10.1016/j.combustflame.2024.113759","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The cool flame dynamics, especially in turbulent flows, is of great interest for both practical application and fundamental research. In this study, a series of direct numerical simulations of turbulent premixed &lt;em&gt;n&lt;/em&gt;-C&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;H&lt;sub&gt;16&lt;/sub&gt;/O&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;/O&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;/N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; cool flames are performed, with the focus on the influence of turbulence intensity (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the laminar flame speed) on the flame structure as well as the global and local cool flame dynamics. It is found that the cool flame front is considerably wrinkled by turbulence at high &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, leading to significantly thickened turbulent cool flame brush and largely altered local reactivity compared with the reference laminar flame. However, the turbulent flame structure in the temperature space is found to be insensitive to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Besides, with increasing &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the normalized turbulent cool flame speed (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) is monotonically increased, attributed to substantial augmentation on the flame surface area (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), while the stretching factor (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) remains almost constant and is smaller than 1. The underlying mechanisms for such variations are revealed through local flame dynamics analysis. Specifically, the local flame displacement speed &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is found to be strongly negatively correlated with flame curvature; meanwhile, such negative correlation and the probability distribution function (PDF) of flame curvature are barely influenced by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/ms","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113759"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The universal gaseous detonation dynamics 通用气体爆轰动力学
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-04 DOI: 10.1016/j.combustflame.2024.113757
Qiang Xiao , Qibin Zhang , Ashwin Chinnayya
The present communication proposes a new scaling approach to unify the dynamics of gaseous detonations subject to wall losses in both the narrow channels and small tubes, by compiling the published experimental data of detonations in 23 different mixtures with a very large range of cellular instabilities. A kinetic induction length Δi,loss can be determined from the detonation velocity deficit and detailed chemistry. In order to take into account the sensitivity of the latter length to post-shock temperature fluctuations (through the reduced activation energy θ), which is a partial and indirect marker of the cellular structure, and to bring out energetics (through the Chapman–Jouguet detonation Mach number MCJ), an effective kinetic length of Δi,loss(MCJ4/θ3) was built and has been shown to collapse the different detonation dynamics of various gaseous mixtures, subjected to wall losses, into a single universal curve for detonation velocity deficits.
Novelty and Significance: Scaling analysis of large sets of published data of gaseous detonation experiments in narrow channels and small tubes has been made for 23 different mixtures with varied cellular instabilities and activation energies. The universal dynamics of gaseous detonations subject to wall losses in different mixtures has been achieved, for the first time, by adopting an effective kinetic length by taking into account the effect of both the activation energy and the energetics.
本论文通过汇编已发表的 23 种不同混合物的爆轰实验数据,提出了一种新的缩放方法,以统一受窄通道和小管道壁面损失影响的气体爆轰动力学。可以根据爆速损失和详细的化学成分确定动力学感应长度 Δi,损失。为了考虑后一长度对爆震后温度波动的敏感性(通过降低的活化能θ)(这是细胞结构的部分和间接标记),同时也为了突出能量(通过查普曼-朱盖特爆震马赫数MCJ)、建立了Δi,loss(MCJ4/θ3)的有效动力学长度,并已证明可将各种气体混合物在壁面损失作用下的不同爆轰动力学特性折叠成单一的爆轰速度损失通用曲线。新颖性和意义:对已公布的窄通道和小管道中气体爆轰实验的大量数据进行了缩放分析,这些数据适用于 23 种具有不同细胞不稳定性和活化能的不同混合物。通过采用有效动能长度,同时考虑活化能和能量学的影响,首次实现了不同混合物中受壁面损失影响的气体爆轰的通用动力学。
{"title":"The universal gaseous detonation dynamics","authors":"Qiang Xiao ,&nbsp;Qibin Zhang ,&nbsp;Ashwin Chinnayya","doi":"10.1016/j.combustflame.2024.113757","DOIUrl":"10.1016/j.combustflame.2024.113757","url":null,"abstract":"<div><div>The present communication proposes a new scaling approach to unify the dynamics of gaseous detonations subject to wall losses in both the narrow channels and small tubes, by compiling the published experimental data of detonations in 23 different mixtures with a very large range of cellular instabilities. A kinetic induction length <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub></math></span> can be determined from the detonation velocity deficit and detailed chemistry. In order to take into account the sensitivity of the latter length to post-shock temperature fluctuations (through the reduced activation energy <span><math><mi>θ</mi></math></span>), which is a partial and indirect marker of the cellular structure, and to bring out energetics (through the Chapman–Jouguet detonation Mach number <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow></msub></math></span>), an effective kinetic length of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mo>/</mo><msup><mrow><mi>θ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> was built and has been shown to collapse the different detonation dynamics of various gaseous mixtures, subjected to wall losses, into a single universal curve for detonation velocity deficits.</div><div><strong>Novelty and Significance:</strong> Scaling analysis of large sets of published data of gaseous detonation experiments in narrow channels and small tubes has been made for 23 different mixtures with varied cellular instabilities and activation energies. The universal dynamics of gaseous detonations subject to wall losses in different mixtures has been achieved, for the first time, by adopting an effective kinetic length by taking into account the effect of both the activation energy and the energetics.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113757"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the oxidation characteristic of a hydro-processed bio-jet fuel: Experimental and modeling study 研究水处理生物喷气燃料的氧化特性:实验和模型研究
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-03 DOI: 10.1016/j.combustflame.2024.113778
Yilun Liang , Xuantong Liu , Mo Yang , Xin Hui , Juan Wang
A rapid transition from conventional jet fuels to sustainable aviation fuels (SAFs) is imperative in order to reduce carbon emissions. Hydro-processed esters and fatty acids synthetic paraffinic kerosene (HEFA-SPK), as a type of SAF, exhibits broad applications. In this study, a new HEFA-SPK named ZH-HEFA was investigated. The fuel comprises 14% n-alkanes, 85% iso-alkanes and only 1% cycloalkanes by weight, with the majority of alkanes ranging from C9 to C17. Oxidation experiments of the fuel were conducted using an atmospheric pressure flow reactor at temperatures ranging from 550 K to 1075 K under three equivalence ratios (0.5, 1.0 and 1.5). Species mole fraction profiles were measured by an on-line gas chromatographic (GC). For comparison purposes, an experiment was also performed on RP-3, a conventional jet fuel commonly used in China, under the equivalence of 0.5. Compared to RP-3, ZH-HEFA exhibited significantly stronger low temperature reactivity and higher combustion conversion rates while demonstrating considerably lower yields of aromatics at high temperatures. The kinetic simulation of ZH-HEFA was achieved by proposing two surrogates and their corresponding kinetic models. Surrogate S-1 consisted solely of n-dodecane, while S-2 comprised 35% n-dodecane and 65% 2,6,10-trimethyl dodecane by weight. Both surrogate models were validated by the experimental data. S-1 exhibited a closer resemblance to the global oxidation characteristics of ZH-HEFA, whereas S-2 demonstrated improved accuracy in predicting the formation of small hydrocarbon intermediates during the fuel oxidation. Rate of production analysis revealed that the branched alkane component in S-2 possessed more pathways and greater capability than S-1 in generating C3 intermediates, which are important for the generation of aromatics. Furthermore, both models displayed good predictive performance for the auto-ignition properties of HEFA-SPK fuels.-
为了减少碳排放,从传统喷气燃料快速过渡到可持续航空燃料(SAF)势在必行。加氢处理酯和脂肪酸合成石蜡煤油(HEFA-SPK)作为一种 SAF,具有广泛的应用前景。本研究对一种名为 ZH-HEFA 的新型 HEFA-SPK 进行了研究。按重量计,这种燃料由 14% 的正烷烃、85% 的异构烷烃和仅 1% 的环烷烃组成,其中大部分烷烃的范围在 C9 到 C17 之间。燃料的氧化实验是在常压流动反应器中进行的,温度范围从 550 K 到 1075 K,有三种当量比(0.5、1.0 和 1.5)。通过在线气相色谱仪(GC)测量了物质的分子分数曲线。为了进行比较,还对中国常用的传统航空燃料 RP-3 进行了等效比为 0.5 的实验。与 RP-3 相比,ZH-HEFA 表现出更强的低温反应性和更高的燃烧转化率,而在高温下芳烃的产率却大大降低。ZH-HEFA 的动力学模拟是通过提出两种替代物及其相应的动力学模型来实现的。代用品 S-1 完全由正十二烷组成,而 S-2 则由 35% 的正十二烷和 65% 的 2,6,10- 三甲基十二烷组成。实验数据验证了这两种代用模型。S-1 与 ZH-HEFA 的整体氧化特性更为相似,而 S-2 则在预测燃料氧化过程中形成的小碳氢化合物中间产物方面表现出更高的准确性。生成速率分析表明,S-2 中的支链烷烃成分在生成 C3 中间体方面比 S-1 拥有更多的途径和更强的能力,而 C3 中间体对于芳烃的生成非常重要。此外,这两种模型对 HEFA-SPK 燃料的自燃特性都显示出良好的预测性能。
{"title":"Investigating the oxidation characteristic of a hydro-processed bio-jet fuel: Experimental and modeling study","authors":"Yilun Liang ,&nbsp;Xuantong Liu ,&nbsp;Mo Yang ,&nbsp;Xin Hui ,&nbsp;Juan Wang","doi":"10.1016/j.combustflame.2024.113778","DOIUrl":"10.1016/j.combustflame.2024.113778","url":null,"abstract":"<div><div>A rapid transition from conventional jet fuels to sustainable aviation fuels (SAFs) is imperative in order to reduce carbon emissions. Hydro-processed esters and fatty acids synthetic paraffinic kerosene (HEFA-SPK), as a type of SAF, exhibits broad applications. In this study, a new HEFA-SPK named ZH-HEFA was investigated. The fuel comprises 14% n-alkanes, 85% iso-alkanes and only 1% cycloalkanes by weight, with the majority of alkanes ranging from C<sub>9</sub> to C<sub>17</sub>. Oxidation experiments of the fuel were conducted using an atmospheric pressure flow reactor at temperatures ranging from 550 K to 1075 K under three equivalence ratios (0.5, 1.0 and 1.5). Species mole fraction profiles were measured by an on-line gas chromatographic (GC). For comparison purposes, an experiment was also performed on RP-3, a conventional jet fuel commonly used in China, under the equivalence of 0.5. Compared to RP-3, ZH-HEFA exhibited significantly stronger low temperature reactivity and higher combustion conversion rates while demonstrating considerably lower yields of aromatics at high temperatures. The kinetic simulation of ZH-HEFA was achieved by proposing two surrogates and their corresponding kinetic models. Surrogate S-1 consisted solely of n-dodecane, while S-2 comprised 35% n-dodecane and 65% 2,6,10-trimethyl dodecane by weight. Both surrogate models were validated by the experimental data. S-1 exhibited a closer resemblance to the global oxidation characteristics of ZH-HEFA, whereas S-2 demonstrated improved accuracy in predicting the formation of small hydrocarbon intermediates during the fuel oxidation. Rate of production analysis revealed that the branched alkane component in S-2 possessed more pathways and greater capability than S-1 in generating C<sub>3</sub> intermediates, which are important for the generation of aromatics. Furthermore, both models displayed good predictive performance for the auto-ignition properties of HEFA-SPK fuels.-</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113778"},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ReaxFF molecular dynamics study of N-containing PAHs formation in the pyrolysis of C2H4/NH3 mixtures C2H4/NH3 混合物热解过程中含氮多环芳烃形成的 ReaxFF 分子动力学研究
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-03 DOI: 10.1016/j.combustflame.2024.113774
Kai Zhang , Yishu Xu , Ronghao Yu , Hui Wu , Xiaowei Liu , Xiaobei Cheng
The reactive force field molecular dynamics (ReaxFF MD) simulations are performed to depict the whole process including fuel pyrolysis, the formation and growth of PAHs/NPAHs and soot formation in the pyrolysis of C2H4 and C2H4/NH3 mixtures. NH3 doping increases the concentration of H radicals through the decomposition of NH3. These H radicals then promote the consumption of C2H4 by participating in H-abstraction reactions. The formation of C-N species (mainly HCN, H2CN, C2N, CH3CN, NCCN, and HC3N) removes the C atoms participating in the formation of PAHs and soot, thus inhibiting the formation of soot. And such inhibitory effect is strengthened with increasing temperature due to the promoted formation of C-N species. Most importantly, the structure, formation and evolution paths of N-containing PAHs (NPAHs) are identified based on the experimental and simulation results for the first time, revealing that N atoms in the NPAHs are almost always present in the carbon chains attached to the aromatic rings while barely enter the rings to form heterocyclic structure. The simulations further reveal that when the temperature is less than 2500 K, the first N-containing aromatic ring is formed through the reaction of phenyl with small C-N species (such as HCN and CN radicals), followed by the increase of new rings primarily via the HACA mechanism. At temperatures greater than 2500 K, the formation and growth of NPAHs are dominated by the continuous attachment of N-containing carbon chains and cyclic polycondensation-cyclization reactions. The identification of new C-N species especially NPAHs would help improve the kinetic mechanisms for ammonia blending combustion.
反应力场分子动力学(ReaxFF MD)模拟描述了 C2H4 和 C2H4/NH3 混合物热解的整个过程,包括燃料热解、多环芳烃/NPAHs 的形成和增长以及烟尘的形成。掺入 NH3 会通过分解 NH3 增加 H 自由基的浓度。然后,这些 H 自由基通过参与 H-萃取反应促进 C2H4 的消耗。C-N 物种(主要是 HCN、H2CN、C2N、CH3CN、NCCN 和 HC3N)的形成会清除参与多环芳烃和烟尘形成的 C 原子,从而抑制烟尘的形成。由于促进了 C-N 物种的形成,这种抑制作用会随着温度的升高而加强。最重要的是,根据实验和模拟结果首次确定了含 N 多环芳烃(NPAHs)的结构、形成和演化路径,揭示了 NPAHs 中的 N 原子几乎总是存在于附着在芳香环上的碳链中,而几乎不进入环中形成杂环结构。模拟进一步发现,当温度小于 2500 K 时,第一个含 N 的芳香环是通过苯基与小的 C-N 物种(如 HCN 和 CN 自由基)反应形成的,随后主要通过 HACA 机理增加新环。在温度高于 2500 K 时,NPAH 的形成和增长主要是通过含 N 碳链的连续附着和循环缩聚-环化反应进行的。识别新的 C-N 物种,尤其是 NPAHs,将有助于改进氨混合燃烧的动力学机制。
{"title":"ReaxFF molecular dynamics study of N-containing PAHs formation in the pyrolysis of C2H4/NH3 mixtures","authors":"Kai Zhang ,&nbsp;Yishu Xu ,&nbsp;Ronghao Yu ,&nbsp;Hui Wu ,&nbsp;Xiaowei Liu ,&nbsp;Xiaobei Cheng","doi":"10.1016/j.combustflame.2024.113774","DOIUrl":"10.1016/j.combustflame.2024.113774","url":null,"abstract":"<div><div>The reactive force field molecular dynamics (ReaxFF MD) simulations are performed to depict the whole process including fuel pyrolysis, the formation and growth of PAHs/NPAHs and soot formation in the pyrolysis of C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>4</sub>/NH<sub>3</sub> mixtures. NH<sub>3</sub> doping increases the concentration of H radicals through the decomposition of NH<sub>3</sub>. These H radicals then promote the consumption of C<sub>2</sub>H<sub>4</sub> by participating in H-abstraction reactions. The formation of C-N species (mainly HCN, H<sub>2</sub>CN, C<sub>2</sub>N, CH<sub>3</sub>CN, NCCN, and HC<sub>3</sub>N) removes the C atoms participating in the formation of PAHs and soot, thus inhibiting the formation of soot. And such inhibitory effect is strengthened with increasing temperature due to the promoted formation of C-N species. Most importantly, the structure, formation and evolution paths of N-containing PAHs (NPAHs) are identified based on the experimental and simulation results for the first time, revealing that N atoms in the NPAHs are almost always present in the carbon chains attached to the aromatic rings while barely enter the rings to form heterocyclic structure. The simulations further reveal that when the temperature is less than 2500 K, the first N-containing aromatic ring is formed through the reaction of phenyl with small C-N species (such as HCN and CN radicals), followed by the increase of new rings primarily via the HACA mechanism. At temperatures greater than 2500 K, the formation and growth of NPAHs are dominated by the continuous attachment of N-containing carbon chains and cyclic polycondensation-cyclization reactions. The identification of new C-N species especially NPAHs would help improve the kinetic mechanisms for ammonia blending combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113774"},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of chemiluminescence of methane–air flame stabilized on a flat porous burner 平面多孔燃烧器上稳定的甲烷-空气火焰的化学发光研究
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-01 DOI: 10.1016/j.combustflame.2024.113755
Anastasia Moroshkina, Evgeniy Sereshchenko, Vladimir Mislavskii, Vladimir Gubernov, Sergey Minaev
<div><div>In this work, the spatial distribution and spectral characteristics of the chemiluminescence of chemically excited species, OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and CH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>, are experimentally and numerically studied by using a stationary premixed methane–air flame stabilized on the surface of a flat porous burner for various equivalence ratio and normal pressure. Numerical simulations are carried out using detailed reaction mechanisms, and the experimental study includes high-resolution spatial and spectral optical measurements. Despite the data reported in the literature, it is found that (i) the rotational degrees of freedom of OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and CH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> are not in thermal equilibrium with the surrounding gas and therefore cannot be used to measure flame temperature; (ii) there is no direct correlation between the heat release rate and the distribution of OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and CH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>; (iii) the detailed reaction mechanisms not only quantitatively, and also qualitatively differ in description of the OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and CH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> concentrations. Since the chemically excited species are well localized in a direction normal to the flame surface, they are demonstrated to be a very accurate markers of flame location. The shape of the combustion front can be reconstructed and resolved up to the accuracy of tens of microns, which is very important for estimation of blow-off critical parameters and measurement of the laminar burning velocity.</div><div><strong>Novelty and significance statement</strong></div><div>Currently, there is a growing interest in the development of sensors for combustion control systems, including active control and suppression of instabilities, in combustion chambers of various devices and engines based on chemiluminescence of excited reaction species. The possibility of non-invasive determination of parameters such as flame temperature, stoichiometry, heat release rate location, etc. using this technique is discussed. We have found that most of these parameters cannot be estimated either due to fundamental limitations or insufficient knowledge of the reaction kinetics involved in the production of these species. Nevertheless, since OH* and CH* are well localized in the direction normal to the flame surface, they can be used as very accurate markers of flame shape and position, allowing us to reconstruct the flame surface to within tens of microns resolution, which is very important for estimating blow-off critical parame
在这项研究中,我们利用稳定在平面多孔燃烧器表面的静止预混合甲烷-空气火焰,在不同当量比和常压条件下,对化学激发物种 OH∗ 和 CH∗ 的化学发光的空间分布和光谱特征进行了实验和数值研究。数值模拟采用了详细的反应机制,实验研究包括高分辨率空间和光谱光学测量。尽管有文献报道了相关数据,但研究发现:(i) OH∗ 和 CH∗ 的旋转自由度与周围气体不处于热平衡状态,因此不能用于测量火焰温度;(ii) 热释放率与 OH∗ 和 CH∗ 的分布之间没有直接的相关性;(iii) 详细的反应机制不仅在定量上,而且在定性上对 OH∗ 和 CH∗ 浓度的描述也不尽相同。由于化学激发物种在火焰表面的法线方向上有很好的定位,因此它们被证明是火焰位置的一个非常准确的标记。燃烧前沿的形状可以重建和解析,精确度可达数十微米,这对于估算吹脱临界参数和测量层流燃烧速度非常重要。新颖性和重要性声明目前,人们对基于化学激发反应物的燃烧控制系统传感器的开发越来越感兴趣,包括各种设备和发动机燃烧室中的主动控制和不稳定性抑制。我们讨论了利用这种技术非侵入式确定火焰温度、化学计量、热释放率位置等参数的可能性。我们发现,由于基本限制或对产生这些物种的反应动力学了解不足,大多数参数都无法估算。尽管如此,由于 OH* 和 CH* 在火焰表面的法线方向上有很好的定位,因此它们可以作为火焰形状和位置的非常精确的标记,使我们能够以数十微米的分辨率重建火焰表面,这对于估算吹脱临界参数和测量层流燃烧速度非常重要。
{"title":"Study of chemiluminescence of methane–air flame stabilized on a flat porous burner","authors":"Anastasia Moroshkina,&nbsp;Evgeniy Sereshchenko,&nbsp;Vladimir Mislavskii,&nbsp;Vladimir Gubernov,&nbsp;Sergey Minaev","doi":"10.1016/j.combustflame.2024.113755","DOIUrl":"10.1016/j.combustflame.2024.113755","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this work, the spatial distribution and spectral characteristics of the chemiluminescence of chemically excited species, OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and CH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, are experimentally and numerically studied by using a stationary premixed methane–air flame stabilized on the surface of a flat porous burner for various equivalence ratio and normal pressure. Numerical simulations are carried out using detailed reaction mechanisms, and the experimental study includes high-resolution spatial and spectral optical measurements. Despite the data reported in the literature, it is found that (i) the rotational degrees of freedom of OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and CH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; are not in thermal equilibrium with the surrounding gas and therefore cannot be used to measure flame temperature; (ii) there is no direct correlation between the heat release rate and the distribution of OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and CH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;; (iii) the detailed reaction mechanisms not only quantitatively, and also qualitatively differ in description of the OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and CH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; concentrations. Since the chemically excited species are well localized in a direction normal to the flame surface, they are demonstrated to be a very accurate markers of flame location. The shape of the combustion front can be reconstructed and resolved up to the accuracy of tens of microns, which is very important for estimation of blow-off critical parameters and measurement of the laminar burning velocity.&lt;/div&gt;&lt;div&gt;&lt;strong&gt;Novelty and significance statement&lt;/strong&gt;&lt;/div&gt;&lt;div&gt;Currently, there is a growing interest in the development of sensors for combustion control systems, including active control and suppression of instabilities, in combustion chambers of various devices and engines based on chemiluminescence of excited reaction species. The possibility of non-invasive determination of parameters such as flame temperature, stoichiometry, heat release rate location, etc. using this technique is discussed. We have found that most of these parameters cannot be estimated either due to fundamental limitations or insufficient knowledge of the reaction kinetics involved in the production of these species. Nevertheless, since OH* and CH* are well localized in the direction normal to the flame surface, they can be used as very accurate markers of flame shape and position, allowing us to reconstruct the flame surface to within tens of microns resolution, which is very important for estimating blow-off critical parame","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113755"},"PeriodicalIF":5.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realization of a standing normal detonation for hypersonic propulsion 实现用于高超音速推进的常态起爆
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-01 DOI: 10.1016/j.combustflame.2024.113780
Adam Kotler , Anthony Morales , Sheikh Salauddin , Daniel Rosato , Mason Thornton , Hardeo M. Chin , Zachary White , Kareem Ahmed
A standing normal detonation mode of combustion consisting of a normal shock coupled with heat release is realized in an experimental high-speed reacting-flow facility. The normal detonation is stabilized using a 2D ramp where the high-enthalpy freestream Mach number and reactant composition is equivalently matched to the Chapman-Jouguet (CJ) consumption speed of the detonation, at M/MCJ = 1.06. High resolution optical measurements of OH* chemiluminescence and density gradients from schlieren clearly show the close-coupling between the normal shock and the heat release of the standing detonation. A ZND analysis have been conducted using the boundary conditions where the induction length is found to closely matches the experimentally measured induction length. The agreement between the induction length scales and the freestream Mach number to detonation CJ Mach number confirm the realization of a standing detonation mode of combustion.
在实验性高速反应流设备中实现了由正常冲击和热释放组成的常态爆燃模式。正常爆燃通过二维斜坡来稳定,其中高焓自由流马赫数和反应物成分与爆燃的查普曼-朱盖特(CJ)消耗速度(M∞/MCJ = 1.06)等效匹配。OH* 化学发光的高分辨率光学测量和来自裂片的密度梯度清楚地表明了正常冲击与立爆热量释放之间的密切联系。利用边界条件进行了 ZND 分析,发现感应长度与实验测量的感应长度非常接近。感应长度尺度与自由流马赫数到起爆 CJ 马赫数之间的一致性证实了驻留起爆燃烧模式的实现。
{"title":"Realization of a standing normal detonation for hypersonic propulsion","authors":"Adam Kotler ,&nbsp;Anthony Morales ,&nbsp;Sheikh Salauddin ,&nbsp;Daniel Rosato ,&nbsp;Mason Thornton ,&nbsp;Hardeo M. Chin ,&nbsp;Zachary White ,&nbsp;Kareem Ahmed","doi":"10.1016/j.combustflame.2024.113780","DOIUrl":"10.1016/j.combustflame.2024.113780","url":null,"abstract":"<div><div>A standing normal detonation mode of combustion consisting of a normal shock coupled with heat release is realized in an experimental high-speed reacting-flow facility. The normal detonation is stabilized using a 2D ramp where the high-enthalpy freestream Mach number and reactant composition is equivalently matched to the Chapman-Jouguet (CJ) consumption speed of the detonation, at <em>M<sub>∞</sub>/M<sub>CJ</sub></em> = 1.06. High resolution optical measurements of OH* chemiluminescence and density gradients from schlieren clearly show the close-coupling between the normal shock and the heat release of the standing detonation. A ZND analysis have been conducted using the boundary conditions where the induction length is found to closely matches the experimentally measured induction length. The agreement between the induction length scales and the freestream Mach number to detonation CJ Mach number confirm the realization of a standing detonation mode of combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113780"},"PeriodicalIF":5.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publication / Copyright Information 出版/版权信息
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-01 DOI: 10.1016/S0010-2180(24)00473-5
{"title":"Publication / Copyright Information","authors":"","doi":"10.1016/S0010-2180(24)00473-5","DOIUrl":"10.1016/S0010-2180(24)00473-5","url":null,"abstract":"","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"269 ","pages":"Article 113764"},"PeriodicalIF":5.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions 用于建立表格式 TS 模型的理论动力学数据自动生成 - 第 1 部分:1,3-H 移位反应的应用
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-09-30 DOI: 10.1016/j.combustflame.2024.113731
F.C. Destro, R. Fournet, R. Bounaceur, V. Warth, P.A. Glaude, B. Sirjean
Estimation of kinetic parameters is a key aspect of chemical combustion modeling and several approaches were developed to approximate unknown data. In this work, a code in Python was developed to build tables of transition state (TS) models automatically for intramolecular H-shift reactions in alkyl radicals. The code generates the kinetic rules for all the possible combinations of methyl-substituted reactions based on the structures of the minimal, non-substituted, reactant, TS, and product. The code is able to create and differentiate multiple transition state configurations, considering the axial and equatorial positions for the cyclic substituents and including all the possible pathways for the reactions, which is shown to be an important feature in performing accurate automatic kinetic calculations. Each structure is automatically submitted to geometry optimization and electronic energy calculations, as well as the relaxed scans of the torsional modes identified by the code. From the results of electronic calculations, the rate constants for each pathway are obtained automatically by the application of the transition state theory with tunneling corrections, in a defined temperature range. The kinetic coefficients, as well as the modified Arrhenius parameters, are then assembled and organized to create a final table that connects the kinetic data with TS structure characteristics. These tables can be directly applied as a kinetic data source for reaction mechanism development. The ability of the code to generate reliable rate constants was tested for 1,3-H-shift reactions and the results were compared with theoretical data manually produced, and showed a good agreement. In particular, the code was able to create all the transition state configurations, with an exhaustive description of all possible reaction pathways, using a rigorous and systematic counting based on symmetry, stereocenters, and diastereomers. The proposed method leads to more accurate results on these aspects, compared to repetitive hand calculations of dozens of rate constants.
动力学参数估计是化学燃烧建模的一个关键方面,人们开发了多种方法来近似未知数据。在这项工作中,我们用 Python 开发了一套代码,用于为烷基自由基分子内 H 移位反应自动建立过渡态(TS)模型表。该代码根据最小、非取代、反应物、TS 和产物的结构,为甲基取代反应的所有可能组合生成动力学规则。该代码能够创建和区分多种过渡态构型,考虑环状取代基的轴向和赤道位置,并包括反应的所有可能路径,这已被证明是进行精确自动动力学计算的重要特征。每个结构都会自动进行几何优化和电子能量计算,并对代码确定的扭转模式进行松弛扫描。根据电子计算的结果,在规定的温度范围内,应用带有隧道修正的过渡态理论,自动获得每种途径的速率常数。然后,对动力学系数和修正的阿伦尼斯参数进行组合和组织,创建一个最终表格,将动力学数据与 TS 结构特征联系起来。这些表格可直接用作反应机理开发的动力学数据源。该代码生成可靠速率常数的能力已在 1,3-H-转变反应中进行了测试,测试结果与人工生成的理论数据进行了比较,结果显示两者具有良好的一致性。特别是,该代码能够创建所有的过渡态构型,并通过基于对称性、立体中心和非对映异构体的严格而系统的计算,详尽地描述了所有可能的反应途径。与重复手工计算几十个速率常数相比,所提出的方法在这些方面得出的结果更为精确。
{"title":"Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions","authors":"F.C. Destro,&nbsp;R. Fournet,&nbsp;R. Bounaceur,&nbsp;V. Warth,&nbsp;P.A. Glaude,&nbsp;B. Sirjean","doi":"10.1016/j.combustflame.2024.113731","DOIUrl":"10.1016/j.combustflame.2024.113731","url":null,"abstract":"<div><div>Estimation of kinetic parameters is a key aspect of chemical combustion modeling and several approaches were developed to approximate unknown data. In this work, a code in Python was developed to build tables of transition state (TS) models automatically for intramolecular H-shift reactions in alkyl radicals. The code generates the kinetic rules for all the possible combinations of methyl-substituted reactions based on the structures of the minimal, non-substituted, reactant, TS, and product. The code is able to create and differentiate multiple transition state configurations, considering the axial and equatorial positions for the cyclic substituents and including all the possible pathways for the reactions, which is shown to be an important feature in performing accurate automatic kinetic calculations. Each structure is automatically submitted to geometry optimization and electronic energy calculations, as well as the relaxed scans of the torsional modes identified by the code. From the results of electronic calculations, the rate constants for each pathway are obtained automatically by the application of the transition state theory with tunneling corrections, in a defined temperature range. The kinetic coefficients, as well as the modified Arrhenius parameters, are then assembled and organized to create a final table that connects the kinetic data with TS structure characteristics. These tables can be directly applied as a kinetic data source for reaction mechanism development. The ability of the code to generate reliable rate constants was tested for 1,3-H-shift reactions and the results were compared with theoretical data manually produced, and showed a good agreement. In particular, the code was able to create all the transition state configurations, with an exhaustive description of all possible reaction pathways, using a rigorous and systematic counting based on symmetry, stereocenters, and diastereomers. The proposed method leads to more accurate results on these aspects, compared to repetitive hand calculations of dozens of rate constants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113731"},"PeriodicalIF":5.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combustion and Flame
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1