Pub Date : 2024-11-05DOI: 10.1016/j.corsci.2024.112557
Qionghuan Zeng, Yiming Chen, Zhongsheng Yang, Lei Zhang, Zhijun Wang, Lei Wang, Junjie Li, Jincheng Wang
A phase-field model coupled with polycrystalline microstructure is utilized to investigate the effect of grain size and grain boundary types on intergranular stress corrosion cracking in austenitic stainless steels. Considering the dilute solution environment, the free energy density of the two phases is hypothesized to be in parabolic form. The slower corrosion crack propagation rate in coarse-grained microstructures can be attributed to a higher frequency of transgranular cracking. Low-angle grain boundaries can effectively deflect intergranular corrosion cracks into grains with lower corrosion susceptibility, thereby impeding crack propagation. Twin boundaries mitigate corrosion crack propagation by reducing potential initiation sites.
{"title":"Effect of grain size and grain boundary type on intergranular stress corrosion cracking of austenitic stainless steel: A phase-field study","authors":"Qionghuan Zeng, Yiming Chen, Zhongsheng Yang, Lei Zhang, Zhijun Wang, Lei Wang, Junjie Li, Jincheng Wang","doi":"10.1016/j.corsci.2024.112557","DOIUrl":"10.1016/j.corsci.2024.112557","url":null,"abstract":"<div><div>A phase-field model coupled with polycrystalline microstructure is utilized to investigate the effect of grain size and grain boundary types on intergranular stress corrosion cracking in austenitic stainless steels. Considering the dilute solution environment, the free energy density of the two phases is hypothesized to be in parabolic form. The slower corrosion crack propagation rate in coarse-grained microstructures can be attributed to a higher frequency of transgranular cracking. Low-angle grain boundaries can effectively deflect intergranular corrosion cracks into grains with lower corrosion susceptibility, thereby impeding crack propagation. Twin boundaries mitigate corrosion crack propagation by reducing potential initiation sites.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112557"},"PeriodicalIF":7.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.corsci.2024.112554
Jingpei Nie , liwei Bai , Xiaoguang Yang , Zhichao Zhao , Yujing Fu , Zihe Liu , Xin Li , Ying Li , Hongliang Liu , Xue Zhang
Hot forming is a prominent technique to produce lightweight automotive steels. However, the generation of a weakly adhering oxide scale during hot forming and the subsequent post-processing of the scale pose a great threat to the shape precision of the product. Here, we propose a cost-effective solution to the spallation issue by incorporating minor silicate-molybdate additives into the rinse following pickling. The pre-deposited film serves as an effective barrier against high-temperature oxidation. Our innovative strategy enables the formation of an oxide scale that sticks to the substrate and paint layer, potentially eliminating the necessity for scale removal in industrial settings.
{"title":"An innovative strategy against oxide spallation of hot formed steels","authors":"Jingpei Nie , liwei Bai , Xiaoguang Yang , Zhichao Zhao , Yujing Fu , Zihe Liu , Xin Li , Ying Li , Hongliang Liu , Xue Zhang","doi":"10.1016/j.corsci.2024.112554","DOIUrl":"10.1016/j.corsci.2024.112554","url":null,"abstract":"<div><div>Hot forming is a prominent technique to produce lightweight automotive steels. However, the generation of a weakly adhering oxide scale during hot forming and the subsequent post-processing of the scale pose a great threat to the shape precision of the product. Here, we propose a cost-effective solution to the spallation issue by incorporating minor silicate-molybdate additives into the rinse following pickling. The pre-deposited film serves as an effective barrier against high-temperature oxidation. Our innovative strategy enables the formation of an oxide scale that sticks to the substrate and paint layer, potentially eliminating the necessity for scale removal in industrial settings.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112554"},"PeriodicalIF":7.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.corsci.2024.112553
Zhiheng Fan , Herong Zhou , Xiuyuan Wang , Jialiang Song , Jingrui Shi , Jiachang Chen
The study on the initial corrosion of duplex bronze alloy by dissolved oxygen in Cl-containing environment showed that bronze alloy was preferentially passivated in aerobic environment, and then Cu selectively dissolved. The corrosion rate first slowed down and then gradually accelerated. In contrast, the oxygen-free environment accelerates the reaction of Cu-Cl and Sn-Cl, forms a Cl- rich layer on the metal surface. This layer promotes the formation of Sn chloride, thereby inducing the stratification of Cu-Sn products. In this process, the acidification of the solution causes the metal to enter a self-circulating corrosion mechanism, but the corrosion rate remains low.
{"title":"Comparison and study of the corrosion differences of bronze alloys in oxygen-free and oxygen-containing conditions","authors":"Zhiheng Fan , Herong Zhou , Xiuyuan Wang , Jialiang Song , Jingrui Shi , Jiachang Chen","doi":"10.1016/j.corsci.2024.112553","DOIUrl":"10.1016/j.corsci.2024.112553","url":null,"abstract":"<div><div>The study on the initial corrosion of duplex bronze alloy by dissolved oxygen in Cl<sup>-</sup>containing environment showed that bronze alloy was preferentially passivated in aerobic environment, and then Cu selectively dissolved. The corrosion rate first slowed down and then gradually accelerated. In contrast, the oxygen-free environment accelerates the reaction of Cu-Cl and Sn-Cl, forms a Cl<sup>-</sup> rich layer on the metal surface. This layer promotes the formation of Sn chloride, thereby inducing the stratification of Cu-Sn products. In this process, the acidification of the solution causes the metal to enter a self-circulating corrosion mechanism, but the corrosion rate remains low.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112553"},"PeriodicalIF":7.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.corsci.2024.112550
Venkateswararao Mannava , TT Saravanan , Singaravelu Rajan Sabari , NTBN Koundinya , A. Venugopal , SVSN Murty , B. Govind , M. Kamaraj , Ravi Sankar Kottada
The influence of LPBF-IN718 microstructure on hot corrosion behavior was studied at 650 °C. The H-IN718 with <001> oriented grains undergo more weight changes than V-IN718 with <110> oriented grains. Detailed characterization analysis corroborates that Rapp-Goto fluxing and sulphidation mechanisms are operating in LPBF-IN718 with 3SM. Further, GDOES confirms the sulphur gradient existence between Air/3SM and 3SM/H-IN718 interfaces. It suggests that <001> oriented grains serve as preferred sites for ion adsorption and reactions, which might facilitate the sulfur diffusion more effectively than other grain orientations. As a result, oxy-anions generated during sulfidation enhance the fluxing mechanism, thus increasing weight gain in H-IN718.
{"title":"A distinct role of microstructure on hot corrosion behaviour of additively manufactured IN718","authors":"Venkateswararao Mannava , TT Saravanan , Singaravelu Rajan Sabari , NTBN Koundinya , A. Venugopal , SVSN Murty , B. Govind , M. Kamaraj , Ravi Sankar Kottada","doi":"10.1016/j.corsci.2024.112550","DOIUrl":"10.1016/j.corsci.2024.112550","url":null,"abstract":"<div><div>The influence of LPBF-IN718 microstructure on hot corrosion behavior was studied at 650 °C. The H-IN718 with <001> oriented grains undergo more weight changes than V-IN718 with <110> oriented grains. Detailed characterization analysis corroborates that Rapp-Goto fluxing and sulphidation mechanisms are operating in LPBF-IN718 with 3SM. Further, GDOES confirms the sulphur gradient existence between Air/3SM and 3SM/H-IN718 interfaces. It suggests that <001> oriented grains serve as preferred sites for ion adsorption and reactions, which might facilitate the sulfur diffusion more effectively than other grain orientations. As a result, oxy-anions generated during sulfidation enhance the fluxing mechanism, thus increasing weight gain in H-IN718.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112550"},"PeriodicalIF":7.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.corsci.2024.112535
Zhe Yang , Zhenbao Liu , Jianxiong Liang , Jie Su , Zhiyong Yang , Boning Zhang , Guangmin Sheng
{"title":"Corrigendum to “Correlation between the microstructure and hydrogen embrittlement resistance in a precipitation-hardened martensitic stainless steel” [Corros. Sci. 182 (2021) 109260]","authors":"Zhe Yang , Zhenbao Liu , Jianxiong Liang , Jie Su , Zhiyong Yang , Boning Zhang , Guangmin Sheng","doi":"10.1016/j.corsci.2024.112535","DOIUrl":"10.1016/j.corsci.2024.112535","url":null,"abstract":"","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112535"},"PeriodicalIF":7.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.corsci.2024.112549
Chaowen Zheng, Qi Wang, Ruirun Chen, Wei Wei, Yanqing Su, Hengzhi Fu
The effect of grain refinement and second phase (Pr4O7) on the corrosion mechanism of the Ti-0.3Mo-0.8Ni was studied. The Pr4O7 nanophases are distributed in the α/β phase boundaries and the β phases (Pr ≤ 0.5 wt. %). Most of the Pr4O7 phases are distributed at the boundaries (Pr ≥ 1 wt. %). The Pr element refines the primary β grains. With the increment of Pr content, the passivation film becomes more stable, denser and thicker, which prolongs the decrease time of OCP, increases the corrosion potential and reduces the corrosion tendency. After the passivation film ruptures, the Pr4O7 aggravates the galvanic corrosion.
{"title":"Effect of rare earth oxide (Pr4O7) second phase and fine grain on the corrosion behavior of Ti-0.3Mo-0.8Ni","authors":"Chaowen Zheng, Qi Wang, Ruirun Chen, Wei Wei, Yanqing Su, Hengzhi Fu","doi":"10.1016/j.corsci.2024.112549","DOIUrl":"10.1016/j.corsci.2024.112549","url":null,"abstract":"<div><div>The effect of grain refinement and second phase (Pr<sub>4</sub>O<sub>7</sub>) on the corrosion mechanism of the Ti-0.3Mo-0.8Ni was studied. The Pr<sub>4</sub>O<sub>7</sub> nanophases are distributed in the α/β phase boundaries and the β phases (Pr ≤ 0.5 wt. %). Most of the Pr<sub>4</sub>O<sub>7</sub> phases are distributed at the boundaries (Pr ≥ 1 wt. %). The Pr element refines the primary β grains. With the increment of Pr content, the passivation film becomes more stable, denser and thicker, which prolongs the decrease time of OCP, increases the corrosion potential and reduces the corrosion tendency. After the passivation film ruptures, the Pr<sub>4</sub>O<sub>7</sub> aggravates the galvanic corrosion.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112549"},"PeriodicalIF":7.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.corsci.2024.112548
Yongxin Liu , Xiaowei Lei , Wenbo Du , Wenjing Yao , Nan Wang
The transpassive dissolution behaviors of Ni-based single crystal superalloy in 10 %NaCl, 10 %NaNO3, and mixed solution are investigated by using potentiodynamic polarization, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The alloy exhibits opposite yet complementary dissolution characteristics in NaCl and NaNO3 solutions. The different responses of γ/γ′ phases to and contribute to the opposite dissolution behaviors of dendrites and interdendritic regions. The surface flatness is noticeably enhanced in mixed solution due to the synchronous dissolution of the γ/γ′ phases. Our work paves the way for obtaining high-quality surface in electrochemical machining of single crystal superalloys.
利用电位极化、扫描电子显微镜、能量色散 X 射线光谱和 X 射线光电子能谱研究了镍基单晶超级合金在 10%NaCl、10%NaNO3 和混合溶液中的渗透溶解行为。合金在 NaCl 和 NaNO3 溶液中表现出相反但互补的溶解特性。γ/γ′相对 Cl- 和 NO3- 的不同反应导致了树枝状和树枝间区域相反的溶解行为。在混合溶液中,由于γ/γ′相的同步溶解,表面平整度明显提高。我们的研究为在单晶超合金的电化学加工中获得高质量的表面铺平了道路。
{"title":"Optimizing the surface quality of electrochemical machined Ni-based single crystal superalloy via manipulation of phase and dendrite dissolution","authors":"Yongxin Liu , Xiaowei Lei , Wenbo Du , Wenjing Yao , Nan Wang","doi":"10.1016/j.corsci.2024.112548","DOIUrl":"10.1016/j.corsci.2024.112548","url":null,"abstract":"<div><div>The transpassive dissolution behaviors of Ni-based single crystal superalloy in 10 %NaCl, 10 %NaNO<sub>3</sub>, and mixed solution are investigated by using potentiodynamic polarization, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The alloy exhibits opposite yet complementary dissolution characteristics in NaCl and NaNO<sub>3</sub> solutions. The different responses of γ/γ′ phases to <span><math><msup><mrow><mtext>Cl</mtext></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <span><math><msubsup><mrow><mtext>NO</mtext></mrow><mrow><mn>3</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> contribute to the opposite dissolution behaviors of dendrites and interdendritic regions. The surface flatness is noticeably enhanced in mixed solution due to the synchronous dissolution of the γ/γ′ phases. Our work paves the way for obtaining high-quality surface in electrochemical machining of single crystal superalloys.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112548"},"PeriodicalIF":7.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.corsci.2024.112542
Wenqi Lu , Yujing Liu , Xiang Wu , Xiaochun Liu , Jincheng Wang
This study examines the corrosion behavior of Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511), comparing forged and LSRed (laser surface remelting) samples. LSR via 0.02 mm laser interval eliminates surface macro defects, enhances element homogenization, and converts primary and secondary α to β on forged Ti-55511 surface, yielding a thicker passivation film with higher stability than that of as-forged counterpart. This study investigates corrosion mechanisms by comparing the phase type, elemental homogeneity, grain size, morphology, and defects in relation to corrosion behavior. Galvanic corrosion predominates in the as-forged sample, with intensified pitting on the α phase and oxygen accumulation near α/β phase interface, while LSR-treated sample experiences β grain boundary corrosion.
{"title":"Corrosion behavior and microstructural effects on passivation film mechanisms in forged Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy under laser surface remelting","authors":"Wenqi Lu , Yujing Liu , Xiang Wu , Xiaochun Liu , Jincheng Wang","doi":"10.1016/j.corsci.2024.112542","DOIUrl":"10.1016/j.corsci.2024.112542","url":null,"abstract":"<div><div>This study examines the corrosion behavior of Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511), comparing forged and LSRed (laser surface remelting) samples. LSR via 0.02 mm laser interval eliminates surface macro defects, enhances element homogenization, and converts primary and secondary α to β on forged Ti-55511 surface, yielding a thicker passivation film with higher stability than that of as-forged counterpart. This study investigates corrosion mechanisms by comparing the phase type, elemental homogeneity, grain size, morphology, and defects in relation to corrosion behavior. Galvanic corrosion predominates in the as-forged sample, with intensified pitting on the α phase and oxygen accumulation near α/β phase interface, while LSR-treated sample experiences β grain boundary corrosion.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112542"},"PeriodicalIF":7.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.corsci.2024.112541
Seoyeon Bak, Takuji Oda
Molecular dynamics using a machine-learning (ML) potential trained by density functional theory (DFT) calculations is an emerging computational tool that enables accurate atomistic simulations of complex phenomena. Using iron corrosion in liquid lead as a test case, we show that although an as-trained ML potential still has significant error in simulating iron solubility due to the propagation of DFT errors, a simple correction can realize near experimental accuracy. This study provides a basic framework for the construction, correction, and use of ML potentials to facilitate their advanced and widespread applications for accurate atomistic simulations on liquid metal corrosion.
使用由密度泛函理论(DFT)计算训练的机器学习(ML)势的分子动力学是一种新兴的计算工具,可以对复杂现象进行精确的原子模拟。以铁在液态铅中的腐蚀为测试案例,我们发现尽管由于 DFT 误差的传播,经过训练的 ML 势在模拟铁的溶解度时仍存在显著误差,但通过简单的修正就能实现接近实验精度的结果。本研究为 ML 电位的构建、修正和使用提供了一个基本框架,以促进其在液态金属腐蚀的精确原子模拟中的先进和广泛应用。
{"title":"Generation and correction of machine learning interatomic potential for simulation of liquid metal corrosion with near experimental accuracy: A study for iron corrosion in liquid lead","authors":"Seoyeon Bak, Takuji Oda","doi":"10.1016/j.corsci.2024.112541","DOIUrl":"10.1016/j.corsci.2024.112541","url":null,"abstract":"<div><div>Molecular dynamics using a machine-learning (ML) potential trained by density functional theory (DFT) calculations is an emerging computational tool that enables accurate atomistic simulations of complex phenomena. Using iron corrosion in liquid lead as a test case, we show that although an as-trained ML potential still has significant error in simulating iron solubility due to the propagation of DFT errors, a simple correction can realize near experimental accuracy. This study provides a basic framework for the construction, correction, and use of ML potentials to facilitate their advanced and widespread applications for accurate atomistic simulations on liquid metal corrosion.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112541"},"PeriodicalIF":7.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.corsci.2024.112543
Lijin Dong , Guohan Zhang , Shuang Li , Chengchuan Wu , Hongli Wang , Huaibei Zheng , Qinying Wang
The stress corrosion cracking of M54 steel in marine environments at varying temperatures was investigated. The slow strain rate tensile tests show that increasing the temperature from 5 to 45°C leads to a 71.9 % and 77.4 % decrease in plastic elongation ratio and reduction in area ratio in full immersion environments, while only 7.8 % and 7.9 % in atmospheric environments. The da/dtII increases from 0.75 nm/s to 5.5 nm/s in atmospheric environments, but first decreases and then increases in full immersion environments. Compared to full immersion environments, the sufficient oxygen supply within the crack in atmospheric environments lowers da/dtII by 50–80 %.
{"title":"Insights into the stress corrosion cracking of M54 ultra-high-strength steel in the marine environments at varying temperatures by comparison of slow strain rate tensile and crack growth tests","authors":"Lijin Dong , Guohan Zhang , Shuang Li , Chengchuan Wu , Hongli Wang , Huaibei Zheng , Qinying Wang","doi":"10.1016/j.corsci.2024.112543","DOIUrl":"10.1016/j.corsci.2024.112543","url":null,"abstract":"<div><div>The stress corrosion cracking of M54 steel in marine environments at varying temperatures was investigated. The slow strain rate tensile tests show that increasing the temperature from 5 to 45°C leads to a 71.9 % and 77.4 % decrease in plastic elongation ratio and reduction in area ratio in full immersion environments, while only 7.8 % and 7.9 % in atmospheric environments. The da/dt<sub>II</sub> increases from 0.75 nm/s to 5.5 nm/s in atmospheric environments, but first decreases and then increases in full immersion environments. Compared to full immersion environments, the sufficient oxygen supply within the crack in atmospheric environments lowers da/dt<sub>II</sub> by 50–80 %.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112543"},"PeriodicalIF":7.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}