首页 > 最新文献

Current Opinion in Solid State & Materials Science最新文献

英文 中文
Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling 钛的氢化:先进表征和多尺度建模的最新趋势和前景
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-01 DOI: 10.1016/j.cossms.2022.101020
Yakun Zhu , Tae Wook Heo , Jennifer N. Rodriguez , Peter K. Weber , Rongpei Shi , Bruce J. Baer , Felipe F. Morgado , Stoichko Antonov , Kyoung E. Kweon , Erik B. Watkins , Daniel J. Savage , James E. Chapman , Nathan D. Keilbart , Younggil Song , Qi Zhen , Baptiste Gault , Sven C. Vogel , Shohini T. Sen-Britain , Matthew G. Shalloo , Chris Orme , Brandon C. Wood

Titanium (Ti) and its alloys are attractive for a wide variety of structural and functional applications owing to excellent specific strength, toughness and stiffness, and corrosion resistance. However, if exposed to hydrogen sources, these alloys are susceptible to hydride formation in the form of TiHx (0 < x ≤ 2), leading to crack initiation and mechanical failure due to lattice deformation and stress accumulation. The kinetics of the hydriding process depends on several factors, including the critical saturation threshold for hydrogen within Ti, the specific interaction of hydrogen with protective surface oxide, the rates of mass transport, and the kinetics of nucleation and phase transformation. Unfortunately, key knowledge gaps and challenges remain regarding the details of these coupled processes, which take place across vast ranges of time and length scales and are often difficult to probe directly. This work reviews recent advances in multiscale characterization and modeling efforts in Ti hydriding. We identify unanswered questions and key challenges, propose new perspectives on how to solve these remaining issues, and close knowledge gaps by discussing and demonstrating specific opportunities for integrating advanced characterization and multiscale modeling to elucidate chemistry and composition, microstructure phenomena, and macroscale performance and testing.

钛(Ti)及其合金由于具有优异的比强度、韧性和刚度以及耐腐蚀性,在各种结构和功能应用中具有很大的吸引力。然而,如果暴露于氢源,这些合金容易形成以TiHx (0 <X≤2),晶格变形和应力积累导致裂纹萌生和机械失效。氢化过程的动力学取决于几个因素,包括氢在Ti中的临界饱和阈值,氢与保护表面氧化物的特定相互作用,质量传递速率以及成核和相变动力学。不幸的是,关于这些耦合过程的细节,关键的知识差距和挑战仍然存在,这些过程发生在大范围的时间和长度尺度上,通常难以直接探测。本文综述了钛氢化过程中多尺度表征和建模的最新进展。我们确定了未解决的问题和关键挑战,提出了如何解决这些遗留问题的新观点,并通过讨论和展示集成高级表征和多尺度建模的具体机会来缩小知识差距,以阐明化学和成分,微观结构现象,宏观尺度性能和测试。
{"title":"Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling","authors":"Yakun Zhu ,&nbsp;Tae Wook Heo ,&nbsp;Jennifer N. Rodriguez ,&nbsp;Peter K. Weber ,&nbsp;Rongpei Shi ,&nbsp;Bruce J. Baer ,&nbsp;Felipe F. Morgado ,&nbsp;Stoichko Antonov ,&nbsp;Kyoung E. Kweon ,&nbsp;Erik B. Watkins ,&nbsp;Daniel J. Savage ,&nbsp;James E. Chapman ,&nbsp;Nathan D. Keilbart ,&nbsp;Younggil Song ,&nbsp;Qi Zhen ,&nbsp;Baptiste Gault ,&nbsp;Sven C. Vogel ,&nbsp;Shohini T. Sen-Britain ,&nbsp;Matthew G. Shalloo ,&nbsp;Chris Orme ,&nbsp;Brandon C. Wood","doi":"10.1016/j.cossms.2022.101020","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101020","url":null,"abstract":"<div><p>Titanium (Ti) and its alloys are attractive for a wide variety of structural and functional applications owing to excellent specific strength, toughness and stiffness, and corrosion resistance. However, if exposed to hydrogen sources, these alloys are susceptible to hydride formation in the form of TiH<sub>x</sub> (0 &lt; x ≤ 2), leading to crack initiation and mechanical failure due to lattice deformation and stress accumulation. The kinetics of the hydriding process depends on several factors, including the critical saturation threshold for hydrogen within Ti, the specific interaction of hydrogen with protective surface oxide, the rates of mass transport, and the kinetics of nucleation and phase transformation. Unfortunately, key knowledge gaps and challenges remain regarding the details of these coupled processes, which take place across vast ranges of time and length scales and are often difficult to probe directly. This work reviews recent advances in multiscale characterization and modeling efforts in Ti hydriding. We identify unanswered questions and key challenges, propose new perspectives on how to solve these remaining issues, and close knowledge gaps by discussing and demonstrating specific opportunities for integrating advanced characterization and multiscale modeling to elucidate chemistry and composition, microstructure phenomena, and macroscale performance and testing.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101020"},"PeriodicalIF":11.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028622000407/pdfft?md5=f5859dcfb7978fbedb39fd37670bf6a8&pid=1-s2.0-S1359028622000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92069505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Antibacterial applications of elemental nanomaterials 元素纳米材料的抗菌应用
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-01 DOI: 10.1016/j.cossms.2022.101043
Shuang Chai , Yutao Xie , Lihua Yang

The emergence and spread of antimicrobial resistance call for the development of antibacterial substances that may be able to circumvent the resistance mechanisms of bacteria. To this end, intensive research efforts have been directed toward non-antibiotic materials with antibacterial potency. In particular, single-element inorganic nanomaterials have demonstrated promising activity against bacteria, and prominent examples of single-element inorganic nanomaterials include silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets. With activity modes distinct from those of commercial antibiotics, these single-element inorganic nanomaterials have demonstrated activity against antibiotic-resistant bacterial strains and may delay the emergence of resistance in bacteria. In this review, we focus on silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets, and discuss their antibacterial potency, factors that influence their antibacterial performances, as well as their cytotoxicity to mammalian cells.

抗菌素耐药性的出现和蔓延要求开发能够绕过细菌耐药机制的抗菌物质。为此,密集的研究工作已指向具有抗菌效力的非抗生素材料。特别是,单元素无机纳米材料已经显示出有希望的抗细菌活性,单元素无机纳米材料的突出例子包括银(Ag)纳米颗粒,0、1和2维碳纳米材料,以及2维黑磷(BP)纳米片。由于活性模式不同于商业抗生素,这些单元素无机纳米材料已经证明对抗生素耐药菌株具有活性,并可能延迟细菌耐药性的出现。本文以银纳米粒子、0-、1-和2维碳纳米材料和2维黑磷纳米片为研究对象,讨论了它们的抑菌能力、抑菌性能的影响因素以及对哺乳动物细胞的细胞毒性。
{"title":"Antibacterial applications of elemental nanomaterials","authors":"Shuang Chai ,&nbsp;Yutao Xie ,&nbsp;Lihua Yang","doi":"10.1016/j.cossms.2022.101043","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101043","url":null,"abstract":"<div><p><span>The emergence and spread of antimicrobial resistance call for the development of antibacterial substances that may be able to circumvent the resistance mechanisms of bacteria. To this end, intensive research efforts have been directed toward non-antibiotic materials with antibacterial potency. In particular, single-element inorganic nanomaterials have demonstrated promising activity against bacteria, and prominent examples of single-element inorganic nanomaterials include silver (Ag) </span>nanoparticles<span>, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets. With activity modes distinct from those of commercial antibiotics, these single-element inorganic nanomaterials have demonstrated activity against antibiotic-resistant bacterial strains and may delay the emergence of resistance in bacteria. In this review, we focus on silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets, and discuss their antibacterial potency, factors that influence their antibacterial performances, as well as their cytotoxicity to mammalian cells.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101043"},"PeriodicalIF":11.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92069715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D 利用形状设计的二维多边形胶体操纵自组装结构
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-01 DOI: 10.1016/j.cossms.2022.101022
Yiwu Zong , Kun Zhao

Manipulating self-assembled structures through shape-control of constitute particles is a fascinating yet quite challenging route to make new functional materials that can be used in a variety of applications. Toward this goal, the physics underlying the relation between the shape of constitute building blocks and their self-assembled structures (shape-structure relation) is the key and need to be better understood first. With the advances in particle fabrication techniques, our library of available anisotropic building blocks has expanded enormously, which opens up new opportunities for studying the shape-structure relation. There have been extensive studies performed to explore the self-assembly of anisotropic building blocks and tremendous progress has been made. In this mini-review, we will report recent progress on the self-assembly of non-spherical colloids both in experiments and in simulations. We focus on the self-assembly of polygonal platelets with a variety of shapes in two dimensions including regular polygonal shapes and a specific type of shape, kite-shape. Associated models that are helpful to understand the shape-structure relation are also summarized. We conclude this review with a brief discussion of current challenges in the field.

通过对构成粒子的形状控制来操纵自组装结构是一种令人着迷但颇具挑战性的方法,可以制造出可用于各种应用的新功能材料。为了实现这一目标,构建模块的形状与其自组装结构(形状-结构关系)之间关系的物理学基础是关键,需要首先更好地理解。随着粒子制造技术的进步,我们可用的各向异性构件库已经大大扩展,这为研究形状-结构关系开辟了新的机会。人们对各向异性构件的自组装进行了大量的研究,并取得了巨大的进展。在这篇综述中,我们将报告在实验和模拟中非球形胶体自组装的最新进展。我们重点研究了具有多种形状的多边形血小板在二维上的自组装,包括规则多边形形状和特定类型的形状,风筝形状。总结了有助于理解形状-结构关系的相关模型。我们以对该领域当前挑战的简要讨论来结束这一综述。
{"title":"Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D","authors":"Yiwu Zong ,&nbsp;Kun Zhao","doi":"10.1016/j.cossms.2022.101022","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101022","url":null,"abstract":"<div><p>Manipulating self-assembled structures through shape-control of constitute particles is a fascinating yet quite challenging route to make new functional materials that can be used in a variety of applications. Toward this goal, the physics underlying the relation between the shape of constitute building blocks and their self-assembled structures (shape-structure relation) is the key and need to be better understood first. With the advances in particle fabrication techniques, our library of available anisotropic building blocks has expanded enormously, which opens up new opportunities for studying the shape-structure relation. There have been extensive studies performed to explore the self-assembly of anisotropic building blocks and tremendous progress has been made. In this mini-review, we will report recent progress on the self-assembly of non-spherical colloids both in experiments and in simulations. We focus on the self-assembly of polygonal platelets with a variety of shapes in two dimensions including regular polygonal shapes and a specific type of shape, kite-shape. Associated models that are helpful to understand the shape-structure relation are also summarized. We conclude this review with a brief discussion of current challenges in the field.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101022"},"PeriodicalIF":11.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1890584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preparation and applications of artificial mucins in biomedicine 人工黏液蛋白的制备及其在生物医学中的应用
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-01 DOI: 10.1016/j.cossms.2022.101031
Rachel E. Detwiler, Jessica R. Kramer

Mucus is an essential barrier material that separates organisms from the outside world. This slippery material regulates the transport of nutrients, drugs, gases, and pathogens toward the cell surface. The surface of the cell itself is coated in a mucus-like barrier of glycoproteins and glycolipids. Mucin glycoproteins are the primary component of mucus and the epithelial glycocalyx. Aberrant mucin production is implicated in diverse disease states from cancer and inflammation to pre-term birth and infection. Biological mucins are inherently heterogenous in structure, which has challenged understanding their molecular functions as a barrier and as biochemically active proteins. Therefore, many synthetic materials have been developed as artificial mucins with precisely tunable structures. This review highlights advances in design and synthesis of artificial mucins and their application in biomedical studies of mucin chemistry, biology, and physics.

粘液是将生物体与外界隔开的重要屏障物质。这种光滑的物质调节营养物质、药物、气体和病原体向细胞表面的运输。细胞本身的表面包裹着一层由糖蛋白和糖脂组成的粘液状屏障。粘蛋白糖蛋白是粘液和上皮糖萼的主要成分。从癌症和炎症到早产和感染,黏液蛋白的异常产生与多种疾病状态有关。生物粘蛋白在结构上具有固有的异质性,这对理解其作为屏障和生物化学活性蛋白的分子功能提出了挑战。因此,许多合成材料被开发为具有精确可调结构的人工粘蛋白。本文综述了人工粘蛋白的设计和合成及其在粘蛋白化学、生物学和物理学等生物医学研究中的应用进展。
{"title":"Preparation and applications of artificial mucins in biomedicine","authors":"Rachel E. Detwiler,&nbsp;Jessica R. Kramer","doi":"10.1016/j.cossms.2022.101031","DOIUrl":"10.1016/j.cossms.2022.101031","url":null,"abstract":"<div><p>Mucus is an essential barrier material that separates organisms from the outside world. This slippery material regulates the transport of nutrients, drugs, gases, and pathogens toward the cell surface. The surface of the cell itself is coated in a mucus-like barrier of glycoproteins and glycolipids. Mucin glycoproteins are the primary component of mucus and the epithelial glycocalyx. Aberrant mucin production is implicated in diverse disease states from cancer and inflammation to pre-term birth and infection. Biological mucins are inherently heterogenous in structure, which has challenged understanding their molecular functions as a barrier and as biochemically active proteins. Therefore, many synthetic materials have been developed as artificial mucins with precisely tunable structures. This review highlights advances in design and synthesis of artificial mucins and their application in biomedical studies of mucin chemistry, biology, and physics.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101031"},"PeriodicalIF":11.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9974253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial: Special issue on solid-state battery materials, phenomena, and systems 社论:固态电池材料、现象和系统特刊
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101006
Matthew T. McDowell
{"title":"Editorial: Special issue on solid-state battery materials, phenomena, and systems","authors":"Matthew T. McDowell","doi":"10.1016/j.cossms.2022.101006","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101006","url":null,"abstract":"","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101006"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1890585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral photonic materials self-assembled by cellulose nanocrystals 纤维素纳米晶体自组装的手性光子材料
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101017
Chaoxuan Wang , Chuanmei Tang , Yuefei Wang , Yuhe Shen , Wei Qi , Ting Zhang , Rongxin Su , Zhimin He

Cellulose nanocrystals are natural nanomaterials with a high aspect ratio, high specific area, excellent stability, and favorable optical performances. Cellulose nanocrystals can form cholesteric liquid crystals through a left-handed spiral arrangement. The suspension liquid of cellulose nanocrystals can retain the chiral cholesteric structure in the solid film after being completely dried, leading to the appearance of Bragg reflection and bright structural color in the visible spectrum. By changing the conditions or mixing with polymers, the cellulose nanocrystals film will show different structural colors due to the change of pitch. The film can cover almost the entire visible spectrum, which can be applied to various aspects such as sensing, anti-counterfeiting, detection, and so on. In this review, we elaborated on the synthesis and properties of cellulose nanocrystals materials and introduced the mechanism of structural color formation, as well as the current research progress and applications. Cellulose nanocrystals have become a hot spot in the field of structural color, and provide more research value for providing a cheap, easy-to-obtain, green-friendly, and high-biocompatibility natural photonic material.

纤维素纳米晶体是具有高纵横比、高比面积、优异的稳定性和良好的光学性能的天然纳米材料。纤维素纳米晶体可以通过左旋螺旋排列形成胆甾型液晶。纤维素纳米晶体悬浮液在完全干燥后可以保留固体膜中的手性胆甾体结构,导致在可见光谱中出现布拉格反射和明亮的结构色。通过改变条件或与聚合物混合,纤维素纳米晶体薄膜会因沥青的变化而呈现出不同的结构颜色。该薄膜几乎可以覆盖整个可见光谱,可应用于传感、防伪、检测等各个方面。本文综述了纤维素纳米晶材料的合成和性能,介绍了结构色的形成机理,以及目前的研究进展和应用。纤维素纳米晶体已成为结构色领域的研究热点,为提供一种廉价、易得、绿色环保、高生物相容性的天然光子材料提供了更大的研究价值。
{"title":"Chiral photonic materials self-assembled by cellulose nanocrystals","authors":"Chaoxuan Wang ,&nbsp;Chuanmei Tang ,&nbsp;Yuefei Wang ,&nbsp;Yuhe Shen ,&nbsp;Wei Qi ,&nbsp;Ting Zhang ,&nbsp;Rongxin Su ,&nbsp;Zhimin He","doi":"10.1016/j.cossms.2022.101017","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101017","url":null,"abstract":"<div><p>Cellulose nanocrystals are natural nanomaterials with a high aspect ratio, high specific area, excellent stability, and favorable optical performances. Cellulose nanocrystals can form cholesteric liquid crystals through a left-handed spiral arrangement. The suspension liquid of cellulose nanocrystals can retain the chiral cholesteric structure in the solid film after being completely dried, leading to the appearance of Bragg reflection and bright structural color in the visible spectrum. By changing the conditions or mixing with polymers, the cellulose nanocrystals film will show different structural colors due to the change of pitch. The film can cover almost the entire visible spectrum, which can be applied to various aspects such as sensing, anti-counterfeiting, detection, and so on. In this review, we elaborated on the synthesis and properties of cellulose nanocrystals materials and introduced the mechanism of structural color formation, as well as the current research progress and applications. Cellulose nanocrystals have become a hot spot in the field of structural color, and provide more research value for providing a cheap, easy-to-obtain, green-friendly, and high-biocompatibility natural photonic material.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101017"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2555189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Statistical mechanical modeling of glass-forming systems: A practical review considering an example calcium silicate system 玻璃成型系统的统计力学建模:以硅酸钙系统为例的实际回顾
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101018
Collin J. Wilkinson , Cory L. Trivelpiece , John C. Mauro

The Glass Genome has only started to be explored. To advance the next generation design of glasses, both physics-informed and data-driven models must be widely available and understood. The most common difficulty in materials modeling is determining which are the simplest approaches appropriate for understanding and predicting key properties. The structure and properties of any material, including its thermodynamics and kinetics, originate from its underlying statistical mechanics. In this work, we present a tutorial view of statistical mechanical modeling of glass, covering structural predictions, structure-property relationships, and the complex kinetics of the glass-forming systems. While the approach presented herein is general and can be applied to any liquid or glassy system, we select calcium silicates as a specific example for this step-by-step review. We hope that this tutorial will be especially beneficial to those who are new to the modeling of glass-forming materials. A list of open questions related to the modeling techniques is also discussed.

玻璃基因组的探索才刚刚开始。为了推进下一代眼镜的设计,物理学和数据驱动的模型都必须被广泛使用和理解。材料建模中最常见的困难是确定哪些是最简单的方法,适合于理解和预测关键特性。任何材料的结构和性质,包括其热力学和动力学,都源于其基础的统计力学。在这项工作中,我们提出了玻璃统计力学建模的教程观点,涵盖结构预测,结构-性能关系,以及玻璃形成系统的复杂动力学。虽然这里提出的方法是一般的,可以应用于任何液体或玻璃系统,我们选择硅酸钙作为这个逐步审查的具体例子。我们希望本教程将特别有利于那些谁是新的玻璃成型材料的建模。还讨论了与建模技术相关的一系列未决问题。
{"title":"Statistical mechanical modeling of glass-forming systems: A practical review considering an example calcium silicate system","authors":"Collin J. Wilkinson ,&nbsp;Cory L. Trivelpiece ,&nbsp;John C. Mauro","doi":"10.1016/j.cossms.2022.101018","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101018","url":null,"abstract":"<div><p>The Glass Genome has only started to be explored. To advance the next generation design of glasses, both physics-informed and data-driven models must be widely available and understood. The most common difficulty in materials modeling is determining which are the simplest approaches appropriate for understanding and predicting key properties. The structure and properties of any material, including its thermodynamics and kinetics, originate from its underlying statistical mechanics. In this work, we present a tutorial view of statistical mechanical modeling of glass, covering structural predictions, structure-property relationships, and the complex kinetics of the glass-forming systems. While the approach presented herein is general and can be applied to any liquid or glassy system, we select calcium silicates as a specific example for this step-by-step review. We hope that this tutorial will be especially beneficial to those who are new to the modeling of glass-forming materials. A list of open questions related to the modeling techniques is also discussed.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101018"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1814755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conductive-synthetic diamond materials in meeting the sustainable development goals 导电合成金刚石材料符合可持续发展目标
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101019
Carlos A. Martínez-Huitle , Yasuaki Einaga , Mehmet A. Oturan
{"title":"Conductive-synthetic diamond materials in meeting the sustainable development goals","authors":"Carlos A. Martínez-Huitle ,&nbsp;Yasuaki Einaga ,&nbsp;Mehmet A. Oturan","doi":"10.1016/j.cossms.2022.101019","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101019","url":null,"abstract":"","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101019"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1890586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Using lifetime of point defects for dislocation bias in bcc Fe 用点缺陷寿命研究bcc Fe中位错偏置
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101021
Jiannan Hao , Luis Casillas-Trujillo , Haixuan Xu

The interaction between dislocations and point defects is key to deformation processes and microstructural evolution of structural materials. In this work, we compute the lifetime of point defects to describe their interaction with dislocations. This approach can accurately account for the effects of the dislocation core and anisotropic defect dynamics to accumulatively determine the capture efficiency, sink strength, and dislocation bias at different temperatures and dislocation densities. Particularly, the absorption of point defects by straight screw and edge dislocations in a model bcc iron system is studied. The maximum swelling rates based on the obtained bias factors are in close agreement with a variety of experimental measurements, including both neutron and ion-irradiation data, especially when considering the survival fraction for point defects from displacement cascades. This approach applies to many other processes and sinks, such as dislocation loops and interfaces, providing a powerful means to develop fundamental insights critical for improving radiation resistance and mechanical properties of structural materials through controlling defect interaction and evolution.

位错与点缺陷之间的相互作用是结构材料变形过程和微观组织演化的关键。在这项工作中,我们计算点缺陷的寿命来描述它们与位错的相互作用。该方法可以准确地解释位错核和各向异性缺陷动力学的影响,从而累积确定不同温度和位错密度下的捕获效率、沉降强度和位错偏差。特别研究了直螺位错和边缘位错对bcc铁体系中点缺陷的吸收。基于所得偏置系数的最大膨胀率与各种实验测量结果(包括中子和离子辐照数据)非常吻合,特别是考虑位移级联中点缺陷的存活分数时。这种方法适用于许多其他过程和下沉,例如位错环和界面,为通过控制缺陷的相互作用和演变来提高结构材料的耐辐射性和机械性能提供了一种强有力的手段。
{"title":"Using lifetime of point defects for dislocation bias in bcc Fe","authors":"Jiannan Hao ,&nbsp;Luis Casillas-Trujillo ,&nbsp;Haixuan Xu","doi":"10.1016/j.cossms.2022.101021","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101021","url":null,"abstract":"<div><p>The interaction between dislocations and point defects<span><span> is key to deformation processes and microstructural evolution<span><span> of structural materials. In this work, we compute the lifetime of point defects to describe their interaction with dislocations. This approach can accurately account for the effects of the dislocation core and anisotropic defect dynamics to accumulatively determine the capture efficiency, sink strength, and dislocation bias at different temperatures and dislocation densities. Particularly, the absorption of point defects by straight screw and </span>edge dislocations in a model bcc iron system is studied. The maximum swelling rates based on the obtained bias factors are in close agreement with a variety of experimental measurements, including both neutron and ion-irradiation data, especially when considering the survival fraction for point defects from displacement cascades. This approach applies to many other processes and sinks, such as dislocation loops and interfaces, providing a powerful means to develop fundamental insights critical for improving radiation resistance and </span></span>mechanical properties of structural materials through controlling defect interaction and evolution.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101021"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1695308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications 用于机电转导的铋基高居里温度压电/铁电钙钛矿的最新进展
IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-10-01 DOI: 10.1016/j.cossms.2022.101016
Zenghui Liu , Hua Wu , Yi Yuan , Hongyan Wan , Zeng Luo , Pan Gao , Jian Zhuang , Jie Zhang , Nan Zhang , Jingrui Li , Yage Zhan , Wei Ren , Zuo-Guang Ye

Piezo-/ferroelectric materials with high Curie temperature (TC) are widely needed in sensors, actuators and transducers which can be used for high-temperature (HT) electromechanical transduction applications. In recent years, remarkable progress has been made in bismuth-based piezo-/ferroelectric perovskite materials (BPPs). In this article, recent progress in high TC BPPs is reviewed. This review starts with an introduction to HT piezoelectrics and their applications. A detailed survey is then carried out on bismuth-based perovskites (BPs) with high TC. Material synthesis, doping effects and chemical modifications of the related solid solutions are examined. Based on this analysis, the structure–property relationship of these materials is established. In addition, recent developments of BPPs for HT electromechanical transduction applications are presented and evaluated. Lastly, some main existing issues are analyzed and their possible solutions are proposed. This article provides a comprehensive overview of the research and development of BPPs and offers some prospects towards making these materials a viable resource for the design and fabrication of electromechanical transducers with unique specifications, especially, high temperature, high frequency and high power, for a wide range of technological applications.

具有高居里温度(TC)的压电/铁电材料广泛应用于传感器、执行器和换能器中,可用于高温(HT)机电换能器应用。近年来,铋基压电/铁电钙钛矿材料(BPPs)的研究取得了显著进展。本文综述了高TC bpp的最新研究进展。本文首先介绍高温压电材料及其应用。然后对高TC的铋基钙钛矿(BPs)进行了详细的调查。考察了材料的合成、掺杂效应和相关固溶体的化学修饰。在此基础上,建立了这些材料的结构-性能关系。此外,介绍和评估了高温机电转导应用中bpp的最新发展。最后,对存在的主要问题进行了分析,并提出了可能的解决方案。本文对bpp材料的研究和发展进行了综述,并展望了bpp材料在设计和制造具有独特规格,特别是高温、高频和大功率的机电换能器方面的应用前景。
{"title":"Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications","authors":"Zenghui Liu ,&nbsp;Hua Wu ,&nbsp;Yi Yuan ,&nbsp;Hongyan Wan ,&nbsp;Zeng Luo ,&nbsp;Pan Gao ,&nbsp;Jian Zhuang ,&nbsp;Jie Zhang ,&nbsp;Nan Zhang ,&nbsp;Jingrui Li ,&nbsp;Yage Zhan ,&nbsp;Wei Ren ,&nbsp;Zuo-Guang Ye","doi":"10.1016/j.cossms.2022.101016","DOIUrl":"https://doi.org/10.1016/j.cossms.2022.101016","url":null,"abstract":"<div><p>Piezo-/ferroelectric materials with high Curie temperature (<em>T</em><sub>C</sub>) are widely needed in sensors, actuators and transducers which can be used for <em>high-temperature</em> (HT) electromechanical transduction applications. In recent years, remarkable progress has been made in <em>bismuth-based piezo-/ferroelectric perovskite materials</em> (BPPs). In this article, recent progress in high <em>T</em><sub>C</sub> BPPs is reviewed. This review starts with an introduction to HT piezoelectrics and their applications. A detailed survey is then carried out on <em>bismuth-based perovskites</em> (BPs) with high <em>T</em><sub>C</sub>. Material synthesis, doping effects and chemical modifications of the related solid solutions are examined. Based on this analysis, the structure–property relationship of these materials is established. In addition, recent developments of BPPs for HT electromechanical transduction applications are presented and evaluated. Lastly, some main existing issues are analyzed and their possible solutions are proposed. This article provides a comprehensive overview of the research and development of BPPs and offers some prospects towards making these materials a viable resource for the design and fabrication of electromechanical transducers with unique specifications, especially, high temperature, high frequency and high power, for a wide range of technological applications.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101016"},"PeriodicalIF":11.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1616413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Current Opinion in Solid State & Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1