Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100415
Manjunath Veeranna Shinnur, MariaPia Pedeferri, Maria Vittoria Diamanti
TiO2 nanomaterial photocatalysts for energy and environmental applications have attracted the interest of researchers in recent decades. The broad bandgap (3–3.2 eV), which limits the quantity of light absorption, and the relatively high charge-carrier recombination, which limits photocatalytic activity, are the key bottlenecks. The discovery of black TiO2 in 2011 sparked global research attention and renewed optimism for solving this challenge. The presence of defects such as Ti3+ species and oxygen vacancies at the surface of black TiO2 nanostructures – so called due to the color assumed by the oxide following a reduction process - is responsible for enhancing the optical absorption of UV to visible light. This review focuses on recent advancements in the development of black TiO2 nanomaterials, including description of the synthesis processes, focused on plasma and thermal methods to convert TiO2 to black TiO2, discussion of black TiO2 properties, and diverse applications of black TiO2, and concludes by addressing some essential concerns that must be tackled to unleash the desired future developments, particularly for solar energy production and pollutants decomposition.
{"title":"Properties and photocatalytic applications of black TiO2 produced by thermal or plasma hydrogenation","authors":"Manjunath Veeranna Shinnur, MariaPia Pedeferri, Maria Vittoria Diamanti","doi":"10.1016/j.crgsc.2024.100415","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100415","url":null,"abstract":"<div><p>TiO<sub>2</sub> nanomaterial photocatalysts for energy and environmental applications have attracted the interest of researchers in recent decades. The broad bandgap (3–3.2 eV), which limits the quantity of light absorption, and the relatively high charge-carrier recombination, which limits photocatalytic activity, are the key bottlenecks. The discovery of black TiO<sub>2</sub> in 2011 sparked global research attention and renewed optimism for solving this challenge. The presence of defects such as Ti<sup>3+</sup> species and oxygen vacancies at the surface of black TiO<sub>2</sub> nanostructures – so called due to the color assumed by the oxide following a reduction process - is responsible for enhancing the optical absorption of UV to visible light. This review focuses on recent advancements in the development of black TiO<sub>2</sub> nanomaterials, including description of the synthesis processes, focused on plasma and thermal methods to convert TiO<sub>2</sub> to black TiO<sub>2</sub>, discussion of black TiO<sub>2</sub> properties, and diverse applications of black TiO<sub>2</sub>, and concludes by addressing some essential concerns that must be tackled to unleash the desired future developments, particularly for solar energy production and pollutants decomposition.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100415"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000201/pdfft?md5=43c463a86c552ab9c7e27069df7bc3e2&pid=1-s2.0-S2666086524000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100410
Wen Xia Ling Felicia , Kobun Rovina , Nasir Md Nur Aqilah , Abdul Aziz Jaziri
In this study, the choice of supercritical fluid extraction as a renewable alternative for extracting orange peel essential oil (OPEO) was motivated by concerns about sustainability with conventional solvent extraction methods. The physical and chemical characteristics of OPEO were examined to assess its potential as a sustainable resource. The extraction process was optimised, and the ideal conditions determined were 317.51 min of extraction time at 74.85 °C with a solvent-to-sample ratio of 4. Analysis of the extracted OPEO revealed significant values for saponification (121.67 mg KOH/g), acid (4.13 mg KOH/g), ester (117.54 mg KOH/g), and free fatty acid (1.56 mg KOH/g) content, demonstrating its composition. Notably, key ingredients such as Limonene (43.96%), α-pinene (15.60%), β-myrcene (10.21%), γ-terpinene (5.00%), and α-terpineol (4.15%) were found in high proportions according to chemical composition analysis. Furthermore, OPEO exhibited excellent antioxidant properties with an IC50 value of 7.73 ± 2.00 mg/mL and displayed notable antimicrobial activity against various microorganisms, including P. aeruginosa (17.7 ± 0.6 mm), E. coli (11.0 ± 0.0 mm), K. pneumoniae (10.7 ± 0.6 mm), and S. aureus (10.3 ± 0.6 mm). These findings have significant implications for the flavor and fragrance sector, as well as for the food preservation industry.
{"title":"Optimisation of supercritical fluid extraction of orange (Citrus sinenis L.) peel essential oil and its physicochemical properties","authors":"Wen Xia Ling Felicia , Kobun Rovina , Nasir Md Nur Aqilah , Abdul Aziz Jaziri","doi":"10.1016/j.crgsc.2024.100410","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100410","url":null,"abstract":"<div><p>In this study, the choice of supercritical fluid extraction as a renewable alternative for extracting orange peel essential oil (OPEO) was motivated by concerns about sustainability with conventional solvent extraction methods. The physical and chemical characteristics of OPEO were examined to assess its potential as a sustainable resource. The extraction process was optimised, and the ideal conditions determined were 317.51 min of extraction time at 74.85 °C with a solvent-to-sample ratio of 4. Analysis of the extracted OPEO revealed significant values for saponification (121.67 mg KOH/g), acid (4.13 mg KOH/g), ester (117.54 mg KOH/g), and free fatty acid (1.56 mg KOH/g) content, demonstrating its composition. Notably, key ingredients such as Limonene (43.96%), α-pinene (15.60%), β-myrcene (10.21%), <strong><em>γ</em></strong>-terpinene (5.00%), and α-terpineol (4.15%) were found in high proportions according to chemical composition analysis. Furthermore, OPEO exhibited excellent antioxidant properties with an IC50 value of 7.73 ± 2.00 mg/mL and displayed notable antimicrobial activity against various microorganisms, including <em>P. aeruginosa</em> (17.7 ± 0.6 mm), <em>E. coli</em> (11.0 ± 0.0 mm), <em>K. pneumoniae</em> (10.7 ± 0.6 mm), and <em>S. aureus</em> (10.3 ± 0.6 mm). These findings have significant implications for the flavor and fragrance sector, as well as for the food preservation industry.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100410"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000158/pdfft?md5=54b15db8be7e5d93a78a235b4642bbd2&pid=1-s2.0-S2666086524000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti3+ was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti3+ ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti3+ incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h−1 g−1, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (<400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (>410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.
{"title":"Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water","authors":"Shoichi Somekawa , Sayaka Yanagida , Naoki Tachibana , Hiroaki Imai , Shigeru Nakazawa","doi":"10.1016/j.crgsc.2024.100423","DOIUrl":"10.1016/j.crgsc.2024.100423","url":null,"abstract":"<div><div>Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti<sup>3+</sup> was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti<sup>3+</sup> ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti<sup>3+</sup> incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h<sup>−1</sup> g<sup>−1</sup>, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (<400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (>410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100423"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100426
Alireza Rahmani , Zahra Torkshavand , Khadije Yari , Amir Shabanloo , Maryam Foroghi , Bahman Gholazrkhogaste , Roya Najafi-Vosough
Disposing wastewater from textile industries and dyes into water bodies has aesthetic effects on the nature of water, it can also cause serious adverse environmental impacts on the water ecosystem by reducing sunlight penetration and photosynthetic reactions. Adsorption is one of the most common methods for removal of toxic pollutants due to its easy and cheap operation. Using agricultural waste to prepare cheap and simple adsorbents is an alternative method for commercial carbons. In this research, a cost-effective adsorbent was fabricated from palm leaf agricultural waste during two stages of carbonization and modification with acid. XRD and FTIR analyses were used to characterize the carbon-based adsorbent. The funding indicated that the removal performance of methylene blue at an initial concentration of 25 mg/L is about 99.6 % after 60 min of reaction at solution pH 7. However, the highest adsorption capacity of 175.6 mg/g was achieved at the adsorbent dose of 25 mg. The adsorption isotherm and kinetics evaluation indicated that the adsorption of methylene blue on the adsorbent prepared from palm leaf waste is chemical heterogeneous adsorption. The findings of the present research promise the development of a cost-effective adsorbent from agricultural waste to remove dye compounds from industrial wastewater at near-neutral conditions.
{"title":"Preparation of low-cost acidic modified-adsorbent from agricultural waste palm leaf to remove methylene blue from aqueous solutions","authors":"Alireza Rahmani , Zahra Torkshavand , Khadije Yari , Amir Shabanloo , Maryam Foroghi , Bahman Gholazrkhogaste , Roya Najafi-Vosough","doi":"10.1016/j.crgsc.2024.100426","DOIUrl":"10.1016/j.crgsc.2024.100426","url":null,"abstract":"<div><p>Disposing wastewater from textile industries and dyes into water bodies has aesthetic effects on the nature of water, it can also cause serious adverse environmental impacts on the water ecosystem by reducing sunlight penetration and photosynthetic reactions. Adsorption is one of the most common methods for removal of toxic pollutants due to its easy and cheap operation. Using agricultural waste to prepare cheap and simple adsorbents is an alternative method for commercial carbons. In this research, a cost-effective adsorbent was fabricated from palm leaf agricultural waste during two stages of carbonization and modification with acid. XRD and FTIR analyses were used to characterize the carbon-based adsorbent. The funding indicated that the removal performance of methylene blue at an initial concentration of 25 mg/L is about 99.6 % after 60 min of reaction at solution pH 7. However, the highest adsorption capacity of 175.6 mg/g was achieved at the adsorbent dose of 25 mg. The adsorption isotherm and kinetics evaluation indicated that the adsorption of methylene blue on the adsorbent prepared from palm leaf waste is chemical heterogeneous adsorption. The findings of the present research promise the development of a cost-effective adsorbent from agricultural waste to remove dye compounds from industrial wastewater at near-neutral conditions.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100426"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000316/pdfft?md5=a897694005bf5007db3d7041ddd0573c&pid=1-s2.0-S2666086524000316-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100429
Ronan Farrell , Yvonne J. Cortese , Declan M. Devine , Noel Gately , Margarita Rueda , Lorena Rodriguez , Romina Pezzoli
For the last few decades, plastics have been the material of choice for food packaging applications. Combining mechanical performance with barrier properties and transparency, plastics have been a cost-effective solution for safely distributing food produce. Unfortunately, most plastic packaging is based on a linear model where packaging is designed for single use, resulting in vast amounts of post-consumer waste being generated annually. In response to this concern, many public and private bodies globally have set ambitious sustainable development targets with the goal of reducing plastic waste. To assist in meeting these targets, the implementation of reusable packaging schemes has been suggested. These schemes aim to prolong the lifespan and worth of plastic packaging and have the potential to reduce the environmental impact of single-use plastics, provided all aspects of their design are carefully considered. One design aspect often neglected is the influence of repeated use on the properties of the packaging material. Very little literature exists investigating the effects that repeated contamination and washing can have on the material's intrinsic properties. This review article aims to comprehensively review the functions and properties of various food packaging materials to assess their suitability for reusable food packaging applications.
{"title":"The function and properties of common food packaging materials and their suitability for reusable packaging: The transition from a linear to circular economy","authors":"Ronan Farrell , Yvonne J. Cortese , Declan M. Devine , Noel Gately , Margarita Rueda , Lorena Rodriguez , Romina Pezzoli","doi":"10.1016/j.crgsc.2024.100429","DOIUrl":"10.1016/j.crgsc.2024.100429","url":null,"abstract":"<div><div>For the last few decades, plastics have been the material of choice for food packaging applications. Combining mechanical performance with barrier properties and transparency, plastics have been a cost-effective solution for safely distributing food produce. Unfortunately, most plastic packaging is based on a linear model where packaging is designed for single use, resulting in vast amounts of post-consumer waste being generated annually. In response to this concern, many public and private bodies globally have set ambitious sustainable development targets with the goal of reducing plastic waste. To assist in meeting these targets, the implementation of reusable packaging schemes has been suggested. These schemes aim to prolong the lifespan and worth of plastic packaging and have the potential to reduce the environmental impact of single-use plastics, provided all aspects of their design are carefully considered. One design aspect often neglected is the influence of repeated use on the properties of the packaging material. Very little literature exists investigating the effects that repeated contamination and washing can have on the material's intrinsic properties. This review article aims to comprehensively review the functions and properties of various food packaging materials to assess their suitability for reusable food packaging applications.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100429"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100425
M. Borzova, K. Schollbach, F. Gauvin, H.J.H. Brouwers
Silica aerogels are outstanding insulation materials, and applying them as building insulation could significantly enhance the energy efficiency of dwellings. However, the current high price of aerogels hinders their use on large scales, in part due to the embedded costs of production such as raw materials and their energy-intensive drying process. This study proposes a method relying on the upcycling of waste mixed fine soda lime glass as a silica source for subsequent aerogel synthesis via ambient pressure drying (APD). The optimal conditions for the dissolution of silica from waste glass were found to be a 24-h reaction with a 4 M NaOH solution under 80 °C and a liquid-to-solid ratio of 10. The investigation of silica dissolution considers the balance between the yield of silica and the practical scalability. The resulting aerogel is hydrophobic, has a thermal conductivity of 26 mW m−1 K−1, a specific surface area of 608 m2 g−1, and a density of 121 kg/m3. These properties are comparable to commercial aerogel, and to a reference aerogel made from commercial sodium silicate. Additionally, the heat treatment of aerogel at 500 °C for 4 h further improved its properties, suggesting a potential for targeted property enhancements.
硅气凝胶是一种出色的隔热材料,将其用作建筑隔热材料可显著提高住宅的能效。然而,气凝胶目前的高昂价格阻碍了其大规模使用,部分原因是其生产成本,如原材料及其高能耗的干燥过程。本研究提出了一种方法,即利用废弃的混合钠钙玻璃作为二氧化硅源,通过环境压力干燥(APD)法合成气凝胶。研究发现,从废玻璃中溶解二氧化硅的最佳条件是在 80 °C 下与 4 M NaOH 溶液反应 24 小时,液固比为 10。对二氧化硅溶解的研究考虑了二氧化硅产量和实际可扩展性之间的平衡。所得气凝胶具有疏水性,导热系数为 26 mW m-1 K-1,比表面积为 608 m2 g-1,密度为 121 kg/m3。这些特性与商用气凝胶和商用硅酸钠气凝胶相当。此外,气凝胶在 500 °C 下热处理 4 小时可进一步改善其性能,这表明气凝胶有可能实现有针对性的性能提升。
{"title":"Sustainable ambient pressure-dried silica aerogel from waste glass","authors":"M. Borzova, K. Schollbach, F. Gauvin, H.J.H. Brouwers","doi":"10.1016/j.crgsc.2024.100425","DOIUrl":"10.1016/j.crgsc.2024.100425","url":null,"abstract":"<div><p>Silica aerogels are outstanding insulation materials, and applying them as building insulation could significantly enhance the energy efficiency of dwellings. However, the current high price of aerogels hinders their use on large scales, in part due to the embedded costs of production such as raw materials and their energy-intensive drying process. This study proposes a method relying on the upcycling of waste mixed fine soda lime glass as a silica source for subsequent aerogel synthesis via ambient pressure drying (APD). The optimal conditions for the dissolution of silica from waste glass were found to be a 24-h reaction with a 4 M NaOH solution under 80 °C and a liquid-to-solid ratio of 10. The investigation of silica dissolution considers the balance between the yield of silica and the practical scalability. The resulting aerogel is hydrophobic, has a thermal conductivity of 26 mW m<sup>−1</sup> K<sup>−1</sup>, a specific surface area of 608 m<sup>2</sup> g<sup>−1</sup>, and a density of 121 kg/m<sup>3</sup>. These properties are comparable to commercial aerogel, and to a reference aerogel made from commercial sodium silicate. Additionally, the heat treatment of aerogel at 500 °C for 4 h further improved its properties, suggesting a potential for targeted property enhancements.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100425"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000304/pdfft?md5=fdb86bcd69c9a7303775e47e3f60947f&pid=1-s2.0-S2666086524000304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100430
Naiara C. Farias , Ludivine Coudert , Declan Devine , Golnoosh Abdeali , Romina Pezzoli
Biodegradable polymers have been extensively researched as alternatives to non-biodegradable fossil-based polymers. Although they reduce environmental impact, their production competes with land needed for food crops. Therefore, exploring their reuse and recycling is essential for enhancing their circular economy and sustainability. This study evaluated the recyclability of commercially available biodegradable polymers, poly (lactic acid) (PLA) and its blend with poly (butylene adipate co-terephthalate) (PBAT), across three cycles of mechanical recycling. Each cycle simulates plastic production, shelf-life, washing, and reprocessing stages. Samples were analysed after molding, ageing, and washing for each cycle using Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and rheological analysis to track changes in crystallization, chemical structure, viscosity, and mechanical behaviors. Results indicated that both PLA and PBAT/PLA (55/45 wt%) blend showed a rise in crystallinity () due to the annealing effect of the ageing and washing. No changes in FTIR spectra and were detected after one recycling cycle, indicating stability. After three reprocessing cycles, second heating crystallinity rose from 2 % to 13 % for PLA and from 2 % to 12 % for PBAT/PLA (45 wt% PLA), indicating morphological changes from degradation and molecular weight reduction. Despite higher crystallinity and a more moderate decline in complex viscosity and storage modulus than PLA, PBAT/PLA showed reduced mechanical properties, with a 90 % drop in elongation at break and nearly 50 % in stress at break, highlighting the need for interventions to control PBAT degradation. PLA maintained strong mechanical properties, demonstrating its potential as a compostable recyclable material.
{"title":"Repeated mechanical recycling of biodegradable polymers: PLA exhibits less deterioration than PBAT/PLA blend","authors":"Naiara C. Farias , Ludivine Coudert , Declan Devine , Golnoosh Abdeali , Romina Pezzoli","doi":"10.1016/j.crgsc.2024.100430","DOIUrl":"10.1016/j.crgsc.2024.100430","url":null,"abstract":"<div><div>Biodegradable polymers have been extensively researched as alternatives to non-biodegradable fossil-based polymers. Although they reduce environmental impact, their production competes with land needed for food crops. Therefore, exploring their reuse and recycling is essential for enhancing their circular economy and sustainability. This study evaluated the recyclability of commercially available biodegradable polymers, poly (lactic acid) (PLA) and its blend with poly (butylene adipate co-terephthalate) (PBAT), across three cycles of mechanical recycling. Each cycle simulates plastic production, shelf-life, washing, and reprocessing stages. Samples were analysed after molding, ageing, and washing for each cycle using Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and rheological analysis to track changes in crystallization, chemical structure, viscosity, and mechanical behaviors. Results indicated that both PLA and PBAT/PLA (55/45 wt%) blend showed a rise in crystallinity (<span><math><mrow><msub><mi>X</mi><mi>c</mi></msub></mrow></math></span>) due to the annealing effect of the ageing and washing. No changes in FTIR spectra and <span><math><mrow><msub><mi>X</mi><mi>c</mi></msub></mrow></math></span> were detected after one recycling cycle, indicating stability. After three reprocessing cycles, second heating crystallinity rose from 2 % to 13 % for PLA and from 2 % to 12 % for PBAT/PLA (45 wt% PLA), indicating morphological changes from degradation and molecular weight reduction. Despite higher crystallinity and a more moderate decline in complex viscosity and storage modulus than PLA, PBAT/PLA showed reduced mechanical properties, with a 90 % drop in elongation at break and nearly 50 % in stress at break, highlighting the need for interventions to control PBAT degradation. PLA maintained strong mechanical properties, demonstrating its potential as a compostable recyclable material.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100430"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100402
Abuchi Elebo, Sani Uba, Patricia Adamma Ekwumemgbo, Victor Olatunji Ajibola
Corrosion has produced unprecedented disintegration of metals, constituting an imminent danger to mankind and triggering catastrophic global economic losses. The effectiveness of expired clindamycin (ECLI) as a low-cost corrosion control agent for mild steel was investigated utilising response surface methodology (RSM), artificial neural network (ANN), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), quantum chemical computation (QCC), and molecular dynamic simulation (MDS) studies in conjunction with thermometric and gasometric protocols at different HCl concentrations. The RSM model demonstrated an outstanding level of accuracy in predicting the mild steel corrosion inhibition efficiency (IE), the volume of hydrogen gas (VHG), reaction number (RN), and corrosion rate (CR). The model was significantly influenced by the operational parameters that were investigated, such as temperature (299–333 K), ECLI concentrations (100–500 mg/L), immersion time (1–6 h), and acid concentration (0.5–2.5 M). It was observed that as ECLI concentration increases, the VHG, RN, and CR decreased per time as well as % IE increased. The thermometric, gasometric, PDP, and EIS results showed percentage inhibition efficiency of 69.10, 69.49, 83.17, and 77.87 %, respectively. PDP revealed that ECLI operates as a mixed type of inhibitor, and EIS indicated that the inhibition process involves charge transfer. The Langmuir isotherm suits better and accurately describes the ECLI adsorption process on mild steel. The electron transfer propensity of the ECLI on the metal surface is measured by QCC using the DFT approach. MDS was implemented to establish the optimal adsorption orientation between ECLI and Fe (110). The inspection of surface morphology by SEM displayed the formation of a blanket-like layer on the steel by ECLI. To validate the experimental results, RSM and ANN prediction models were utilised, which were evaluated using a normal plot of residual, predicted versus actual, and residual versus run, and were found to be effective modelling tools. This study illustrates that ECLI can be utilised as a potent and affordable mild steel inhibitor, even at high acid concentrations.
{"title":"Unravelling adsorption potential of expired clindamycin as corrosion inhibitor at mild Steel/HCl interface via response surface methodology, artificial neural network, electrochemical, and computational strategies","authors":"Abuchi Elebo, Sani Uba, Patricia Adamma Ekwumemgbo, Victor Olatunji Ajibola","doi":"10.1016/j.crgsc.2024.100402","DOIUrl":"10.1016/j.crgsc.2024.100402","url":null,"abstract":"<div><p>Corrosion has produced unprecedented disintegration of metals, constituting an imminent danger to mankind and triggering catastrophic global economic losses. The effectiveness of expired clindamycin (ECLI) as a low-cost corrosion control agent for mild steel was investigated utilising response surface methodology (RSM), artificial neural network (ANN), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), quantum chemical computation (QCC), and molecular dynamic simulation (MDS) studies in conjunction with thermometric and gasometric protocols at different HCl concentrations. The RSM model demonstrated an outstanding level of accuracy in predicting the mild steel corrosion inhibition efficiency (IE), the volume of hydrogen gas (VHG), reaction number (RN), and corrosion rate (CR). The model was significantly influenced by the operational parameters that were investigated, such as temperature (299–333 K), ECLI concentrations (100–500 mg/L), immersion time (1–6 h), and acid concentration (0.5–2.5 M). It was observed that as ECLI concentration increases, the VHG, RN, and CR decreased per time as well as % IE increased. The thermometric, gasometric, PDP, and EIS results showed percentage inhibition efficiency of 69.10, 69.49, 83.17, and 77.87 %, respectively. PDP revealed that ECLI operates as a mixed type of inhibitor, and EIS indicated that the inhibition process involves charge transfer. The Langmuir isotherm suits better and accurately describes the ECLI adsorption process on mild steel. The electron transfer propensity of the ECLI on the metal surface is measured by QCC using the DFT approach. MDS was implemented to establish the optimal adsorption orientation between ECLI and Fe (110). The inspection of surface morphology by SEM displayed the formation of a blanket-like layer on the steel by ECLI. To validate the experimental results, RSM and ANN prediction models were utilised, which were evaluated using a normal plot of residual, predicted versus actual, and residual versus run, and were found to be effective modelling tools. This study illustrates that ECLI can be utilised as a potent and affordable mild steel inhibitor, even at high acid concentrations.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100402"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000079/pdfft?md5=2099c5d34dea19ea4a41e68ea726c9db&pid=1-s2.0-S2666086524000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140275673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, iron oxide biochar nanocomposites made from khat leftover (KL) and coffee husk (CH) are investigated as possibly useful adsorbents for the removal of Cr (VI) from water. Biochar-based iron oxide nanocomposites were synthesized by pretreating 25 g of biomass with a 1:1 M ratio of FeS to FeCl3 and pyrolyzing at 300 °C for 1 h. Pristine biochar, synthesized through biomass pyrolysis of CH and KL at 300 °C, removed 74.98% and 84.78% of Cr (VI) from aqueous solutions containing 20 mg L−1, respectively. The corresponding nanocomposites showed a maximum removal efficiency for Cr (VI) of 99.83% with the iron oxide-coffee husk biochar nanocomposite (Fe3O4–CHBNC) and 99.86% with the iron oxide-khat leftover biochar nanocomposite (Fe3O4-KLBNC). A pseudo-second-order model and the Langmuir isotherm are both well-fitted by the adsorption process, suggesting advantageous monolayer adsorption. The Fe3O4–CHBNC and Fe3O4-KLBNC demonstrated satisfactory removal efficiencies even up to six cycles, indicating their potential effectiveness for large-scale use for treating wastewater contaminated by Cr (VI).
{"title":"Magnetic biochar nanocomposites of coffee husk and khat (Catha edulis) leftover for removal of Cr (VI) from wastewater","authors":"Jemere Kochito , Abera Gure , Negera Abdisa , Tamene Tadesse Beyene , Olu Emmanuel Femi","doi":"10.1016/j.crgsc.2024.100403","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100403","url":null,"abstract":"<div><p>In this study, iron oxide biochar nanocomposites made from khat leftover (KL) and coffee husk (CH) are investigated as possibly useful adsorbents for the removal of Cr (VI) from water. Biochar-based iron oxide nanocomposites were synthesized by pretreating 25 g of biomass with a 1:1 M ratio of FeS to FeCl<sub>3</sub> and pyrolyzing at 300 °C for 1 h. Pristine biochar, synthesized through biomass pyrolysis of CH and KL at 300 °C, removed 74.98% and 84.78% of Cr (VI) from aqueous solutions containing 20 mg L<sup>−1</sup>, respectively. The corresponding nanocomposites showed a maximum removal efficiency for Cr (VI) of 99.83% with the iron oxide-coffee husk biochar nanocomposite (Fe<sub>3</sub>O<sub>4</sub>–CHBNC) and 99.86% with the iron oxide-khat leftover biochar nanocomposite (Fe<sub>3</sub>O<sub>4</sub>-KLBNC). A pseudo-second-order model and the Langmuir isotherm are both well-fitted by the adsorption process, suggesting advantageous monolayer adsorption. The Fe<sub>3</sub>O<sub>4</sub>–CHBNC and Fe<sub>3</sub>O<sub>4</sub>-KLBNC demonstrated satisfactory removal efficiencies even up to six cycles, indicating their potential effectiveness for large-scale use for treating wastewater contaminated by Cr (VI).</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100403"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000080/pdfft?md5=c6b7209c1eea90ee65f302eebedf9059&pid=1-s2.0-S2666086524000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100405
Subban Kathiravan , Ian A. Nicholls
Electroorganic synthesis is a powerful sustainable tool for achieving greener and more efficient chemical processes across various industries. By adhering to the principles of green chemistry, atom economy, and resource efficiency, electroorganic synthesis can play a pivotal role in addressing environmental concerns and promoting a more sustainable future for chemical production. This review focuses on the latest advancements in the emerging application of electrochemistry in C-N bond formation through C-H/N-H cross-coupling. The first part of the review describes the electrochemical amination of arenes using metal catalysis (Cu, Co, Ni) with directing groups on the arene moiety. The next section addresses the same type of electrochemical C-N bond formation on arenes without directing groups, which represents a more general strategy enabling the synthesis of anilines and various heterocyclic-bound arenes in high yields. Further developments on benzylic systems are also discussed. This is followed by developments in the combination of photocatalysis and electrochemistry to activate C-H bonds in arenes, alkanes, and benzylic systems, including the use of flow reactor configurations for these reactions.
{"title":"Recent advances in electrochemical C-N bond formation via C-H/N–H activation with hydrogen evolution","authors":"Subban Kathiravan , Ian A. Nicholls","doi":"10.1016/j.crgsc.2024.100405","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100405","url":null,"abstract":"<div><p>Electroorganic synthesis is a powerful sustainable tool for achieving greener and more efficient chemical processes across various industries. By adhering to the principles of green chemistry, atom economy, and resource efficiency, electroorganic synthesis can play a pivotal role in addressing environmental concerns and promoting a more sustainable future for chemical production. This review focuses on the latest advancements in the emerging application of electrochemistry in C-N bond formation through C-H/N-H cross-coupling. The first part of the review describes the electrochemical amination of arenes using metal catalysis (Cu, Co, Ni) with directing groups on the arene moiety. The next section addresses the same type of electrochemical C-N bond formation on arenes without directing groups, which represents a more general strategy enabling the synthesis of anilines and various heterocyclic-bound arenes in high yields. Further developments on benzylic systems are also discussed. This is followed by developments in the combination of photocatalysis and electrochemistry to activate C-H bonds in arenes, alkanes, and benzylic systems, including the use of flow reactor configurations for these reactions.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100405"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000109/pdfft?md5=2a6566646747b81635db56a82a317245&pid=1-s2.0-S2666086524000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}