Barana Sandakelum Hettiarachchi, Yusuke Takaoka, Yuta Uetake, Yumi Yakiyama, Hwan Hong Lim, Takunori Taira, Mihoko Maruyama, Yusuke Mori, Hiroshi Y. Yoshikawa and Hidehiro Sakurai
The synthesis of gold nanoparticles (Au NPs) was carried out by utilising the pulsed laser ablation in liquids (PLAL) method with a microchip laser (MCL) system. This portable system features low power consumption and a giant-pulse laser. Aqueous solutions with and without the surfactant poly(N-vinyl-2-pyrrolidone) (PVP) were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs. The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation. This effect was more pronounced and prolonged in high-viscosity solutions, hindering energy transfer from subsequent laser pulses to the target. Additionally, it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency. Videography experiments were conducted to explore the ablation mechanism employed by the MCL system. The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size, which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.
利用微芯片激光器(MCL)系统,采用脉冲液体激光烧蚀法(PLAL)合成了金纳米粒子(Au NPs)。这种便携式系统具有低功耗和巨脉冲激光的特点。使用含有和不含表面活性剂聚(N-乙烯基-2-吡咯烷酮)(PVP)的水溶液对大块金棒进行激光烧蚀,以成功形成 Au NPs 胶体溶液。加热金靶表面周围的水介质所形成的气泡大大降低了 Au NP 的烧蚀效率。这种效应在高粘度溶液中更为明显和持久,阻碍了后续激光脉冲向目标的能量转移。此外,有研究表明,PVP 的链长既不会影响金氧化物的大小,也不会影响烧蚀效率。为了探索 MCL 系统所采用的烧蚀机制,我们进行了视频成像实验。MCL 系统相对较短的脉冲持续时间可能有助于形成大小一致的 NPs,这些 NPs 被抑制在明显较小的空化气泡中生长,且寿命较短。
{"title":"Uncovering gold nanoparticle synthesis using a microchip laser system through pulsed laser ablation in aqueous solution†","authors":"Barana Sandakelum Hettiarachchi, Yusuke Takaoka, Yuta Uetake, Yumi Yakiyama, Hwan Hong Lim, Takunori Taira, Mihoko Maruyama, Yusuke Mori, Hiroshi Y. Yoshikawa and Hidehiro Sakurai","doi":"10.1039/D3IM00090G","DOIUrl":"10.1039/D3IM00090G","url":null,"abstract":"<p>The synthesis of gold nanoparticles (Au NPs) was carried out by utilising the pulsed laser ablation in liquids (PLAL) method with a microchip laser (MCL) system. This portable system features low power consumption and a giant-pulse laser. Aqueous solutions with and without the surfactant poly(<em>N</em>-vinyl-2-pyrrolidone) (PVP) were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs. The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation. This effect was more pronounced and prolonged in high-viscosity solutions, hindering energy transfer from subsequent laser pulses to the target. Additionally, it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency. Videography experiments were conducted to explore the ablation mechanism employed by the MCL system. The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size, which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.</p><p>Keywords: Pulsed laser ablation in liquids (PLAL); Microchip laser (MCL); Gold nanoparticles; Viscosity; Poly(<em>N</em>-vinyl-2-pyrrolidone) (PVP).</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 340-347"},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00090g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gazi Farhan Ishraque Toki, M. Khalid Hossain, Waheed Ur Rehman, Rana Zafar Abbas Manj, Li Wang and Jianping Yang
Anode materials for Li-ion batteries (LIBs) utilized in electric vehicles, portable electronics, and other devices are mainly graphite (Gr) and its derivatives. However, the limited energy density of Gr-based anodes promotes the exploration of alternative anode materials such as silicon (Si)-based materials because of their abundance in nature and low cost. Specifically, Si can store 10 times more energy than Gr and also has the potential to enhance the energy density of LIBs. Despite the many advantages of Si-based anodes, such as high theoretical capacity and low price, their widespread use is hindered by two major issues: charge-induced volume expansion and unreliable solid electrolyte interphase (SEI) propagation. In this detailed review, we highlight the key issues, current advances, and prospects in the rational design of Si-based electrodes for practical applications. We first explain the fundamental electrochemistry of Si and the importance of Si-based anodes in LIBs. The excessive volume increase, relatively low charge efficiency, and inadequate areal capacity of Si-based anodes are discussed to identify the barriers in enhancing their performance in LIBs. Subsequently, the use of binders (e.g., linear polymer binders, branched polymer binders, cross-linked polymer binders, and conjugated conductive polymer binders), material-based anode composites (such as carbon and its derivatives, metal oxides, and MXenes), and liquid electrolyte construction techniques are highlighted to overcome the identified barriers. Further, tailoring Si-based materials and reshaping their surfaces and interfaces, including improving binders and electrolytes, are shown to be viable approaches to address their drawbacks, such as volume expansion, low charge efficiency, and poor areal capacity. Finally, we highlight that research and development on Si-based anodes are indispensable for their use in commercial applications.
{"title":"Recent progress and challenges in silicon-based anode materials for lithium-ion batteries","authors":"Gazi Farhan Ishraque Toki, M. Khalid Hossain, Waheed Ur Rehman, Rana Zafar Abbas Manj, Li Wang and Jianping Yang","doi":"10.1039/D3IM00115F","DOIUrl":"10.1039/D3IM00115F","url":null,"abstract":"<p>Anode materials for Li-ion batteries (LIBs) utilized in electric vehicles, portable electronics, and other devices are mainly graphite (Gr) and its derivatives. However, the limited energy density of Gr-based anodes promotes the exploration of alternative anode materials such as silicon (Si)-based materials because of their abundance in nature and low cost. Specifically, Si can store 10 times more energy than Gr and also has the potential to enhance the energy density of LIBs. Despite the many advantages of Si-based anodes, such as high theoretical capacity and low price, their widespread use is hindered by two major issues: charge-induced volume expansion and unreliable solid electrolyte interphase (SEI) propagation. In this detailed review, we highlight the key issues, current advances, and prospects in the rational design of Si-based electrodes for practical applications. We first explain the fundamental electrochemistry of Si and the importance of Si-based anodes in LIBs. The excessive volume increase, relatively low charge efficiency, and inadequate areal capacity of Si-based anodes are discussed to identify the barriers in enhancing their performance in LIBs. Subsequently, the use of binders (<em>e.g.</em>, linear polymer binders, branched polymer binders, cross-linked polymer binders, and conjugated conductive polymer binders), material-based anode composites (such as carbon and its derivatives, metal oxides, and MXenes), and liquid electrolyte construction techniques are highlighted to overcome the identified barriers. Further, tailoring Si-based materials and reshaping their surfaces and interfaces, including improving binders and electrolytes, are shown to be viable approaches to address their drawbacks, such as volume expansion, low charge efficiency, and poor areal capacity. Finally, we highlight that research and development on Si-based anodes are indispensable for their use in commercial applications.</p><p>Keywords: Lithium-ion battery; Silicon-based anode; Volume expansion; Solid electrolyte interphase propagation; Binders; Composite anode materials.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 226-269"},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00115f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Ren, Hai-Yang Wu, Wen Yan, Peng Huang and Chao Lai
Aqueous zinc-ion batteries (ZIBs) have attracted great research interest for use in large-scale energy storage devices due to their inherent safety, environmental friendliness, and low cost. Unfortunately, dendrite growth and interfacial side reactions during the plating/stripping process triggered by uneven electric field distribution on the surface of the Zn anode seriously hinder the further development of aqueous ZIBs. Here, practical and inexpensive sodium tartrate (STA) is used as an electrolyte additive to construct a stable electrode–electrolyte interface, in which STA adsorbs preferentially on the Zn metal surface, contributing to promoting homogeneous Zn deposition. Moreover, STA interacts more strongly with Zn2+, which takes the place of the water molecules in the solvated shell and prevents the development of side reactions. In symmetrical cells and full cells, flat Zn anodes can therefore demonstrate remarkable cycle stability, opening the door for the development of cost-effective and effective electrolyte engineering techniques.
水性锌离子电池(ZIB)因其固有的安全性、环境友好性和低成本而在大规模储能设备领域引起了极大的研究兴趣。遗憾的是,在电镀/剥离过程中,由于锌阳极表面电场分布不均而引发的枝晶生长和界面副反应严重阻碍了水性锌离子电池的进一步发展。在这里,一种实用且廉价的酒石酸钠(STA)被用作电解质添加剂,用于构建稳定的电极-电解质界面,其中 STA 优先吸附在 Zn 金属表面,有助于促进 Zn 的均匀沉积。此外,STA 与 Zn2+ 的相互作用更为强烈,从而取代了溶壳中的水分子,防止了副反应的发生。因此,在对称电池和全电池中,扁平锌阳极可以表现出显著的循环稳定性,为开发经济有效的电解质工程技术打开了大门。
{"title":"Stable zinc anode by regulating the solvated shell and electrode–electrolyte interface with a sodium tartrate additive†","authors":"Jie Ren, Hai-Yang Wu, Wen Yan, Peng Huang and Chao Lai","doi":"10.1039/D3IM00111C","DOIUrl":"10.1039/D3IM00111C","url":null,"abstract":"<p>Aqueous zinc-ion batteries (ZIBs) have attracted great research interest for use in large-scale energy storage devices due to their inherent safety, environmental friendliness, and low cost. Unfortunately, dendrite growth and interfacial side reactions during the plating/stripping process triggered by uneven electric field distribution on the surface of the Zn anode seriously hinder the further development of aqueous ZIBs. Here, practical and inexpensive sodium tartrate (STA) is used as an electrolyte additive to construct a stable electrode–electrolyte interface, in which STA adsorbs preferentially on the Zn metal surface, contributing to promoting homogeneous Zn deposition. Moreover, STA interacts more strongly with Zn<small><sup>2+</sup></small>, which takes the place of the water molecules in the solvated shell and prevents the development of side reactions. In symmetrical cells and full cells, flat Zn anodes can therefore demonstrate remarkable cycle stability, opening the door for the development of cost-effective and effective electrolyte engineering techniques.</p><p>Keywords: Zinc ion battery; Electrolyte additive; Zinc dendrites; Hydrogen evolution reaction; Anode protection.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 328-339"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00111c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kunpeng Song, Ye-Tang Pan, Jiyu He and Rongjie Yang
The physicochemical properties of metal–organic frameworks (MOFs) are closely dependent on the topology, pore characteristics, and chemical composition, which can be tuned through targeted design. Relative to direct synthesis, the post-synthesis methods of MOFs, including ion exchange, ligand replacement as well as destruction, provide a significant increase in their application range and potential. A method based on the coordination bond cleavage of MOFs has been proved to be very effective in modulating the structure and was evaluated for its application in the flame retardant field. Herein, the construction of peculiar MOF structures is categorized based on flame-retardant features through the cleavage of coordination bonds at the molecular level, and the corresponding MOFs exhibit superior flame-retardant and smoke-suppressing properties. Different approaches are highlighted to achieve coordination bond breaking to modulate MOFs properties, involving chemical composition, topology, and pore structure. This review systematically summarizes and generalizes the direct construction of high-efficiency MOF-based flame retardants based on the structure–activity relationship and their further functionalization through coordination bond cleavage, as well as the associated challenges and prospects. It is also hoped that this work will quickly guide researchers through the field and inspire their next studies.
{"title":"Coordination bond cleavage of metal–organic frameworks and application to flame-retardant polymeric materials","authors":"Kunpeng Song, Ye-Tang Pan, Jiyu He and Rongjie Yang","doi":"10.1039/D3IM00110E","DOIUrl":"10.1039/D3IM00110E","url":null,"abstract":"<p>The physicochemical properties of metal–organic frameworks (MOFs) are closely dependent on the topology, pore characteristics, and chemical composition, which can be tuned through targeted design. Relative to direct synthesis, the post-synthesis methods of MOFs, including ion exchange, ligand replacement as well as destruction, provide a significant increase in their application range and potential. A method based on the coordination bond cleavage of MOFs has been proved to be very effective in modulating the structure and was evaluated for its application in the flame retardant field. Herein, the construction of peculiar MOF structures is categorized based on flame-retardant features through the cleavage of coordination bonds at the molecular level, and the corresponding MOFs exhibit superior flame-retardant and smoke-suppressing properties. Different approaches are highlighted to achieve coordination bond breaking to modulate MOFs properties, involving chemical composition, topology, and pore structure. This review systematically summarizes and generalizes the direct construction of high-efficiency MOF-based flame retardants based on the structure–activity relationship and their further functionalization through coordination bond cleavage, as well as the associated challenges and prospects. It is also hoped that this work will quickly guide researchers through the field and inspire their next studies.</p><p>Keywords: Metal–organic frameworks; Fire retardancy; Molecular cleavage; Coordination bond; Flame retardant mechanism.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 4","pages":" 556-570"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00110e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photocatalytic hydrogen (H2) production coupled with selective oxidation of organic compounds into high-value-added organic intermediates has expansive prospects in the utilization and transformation of solar energy, which meets the development requirements of green chemistry. In this work, high-efficiency hole cocatalyst PdS-decorated In2S3 flower-like microspheres are fabricated for the effective visible-light-driven C–N coupling of amines to imines coupled with H2 evolution. Owing to the establishment of the internal electric field, which further boosts the transfer of photoexcited holes to PdS, PdS–In2S3 exhibits distinctly enhanced photocatalytic redox performance, which is 39.8 times higher for H2 and 14.3 times higher for N-benzylidenebenzylamine than that of the blank In2S3, along with high selectivity and stability. Furthermore, the practicability of dehydrogenation coupling of various aromatic amines to the corresponding C–N coupling products on PdS–In2S3 has been demonstrated and a plausible reaction mechanism has been proposed. This work is anticipated to stimulate further interest in establishing an innovative photoredox platform for selective organic synthesis coupled with H2 evolution in a green and sustainable way.
{"title":"Cocatalyst-modified In2S3 photocatalysts for C–N coupling of amines integrated with H2 evolution†","authors":"Yu Chen, Chang-Long Tan, Jing-Yu Li, Ming-Yu Qi, Zi-Rong Tang and Yi-Jun Xu","doi":"10.1039/D3IM00116D","DOIUrl":"10.1039/D3IM00116D","url":null,"abstract":"<p>Photocatalytic hydrogen (H<small><sub>2</sub></small>) production coupled with selective oxidation of organic compounds into high-value-added organic intermediates has expansive prospects in the utilization and transformation of solar energy, which meets the development requirements of green chemistry. In this work, high-efficiency hole cocatalyst PdS-decorated In<small><sub>2</sub></small>S<small><sub>3</sub></small> flower-like microspheres are fabricated for the effective visible-light-driven C–N coupling of amines to imines coupled with H<small><sub>2</sub></small> evolution. Owing to the establishment of the internal electric field, which further boosts the transfer of photoexcited holes to PdS, PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> exhibits distinctly enhanced photocatalytic redox performance, which is 39.8 times higher for H<small><sub>2</sub></small> and 14.3 times higher for <em>N</em>-benzylidenebenzylamine than that of the blank In<small><sub>2</sub></small>S<small><sub>3</sub></small>, along with high selectivity and stability. Furthermore, the practicability of dehydrogenation coupling of various aromatic amines to the corresponding C–N coupling products on PdS–In<small><sub>2</sub></small>S<small><sub>3</sub></small> has been demonstrated and a plausible reaction mechanism has been proposed. This work is anticipated to stimulate further interest in establishing an innovative photoredox platform for selective organic synthesis coupled with H<small><sub>2</sub></small> evolution in a green and sustainable way.</p><p>Keywords: In<small><sub>2</sub></small>S<small><sub>3</sub></small>; Photoredox dual reaction; Hydrogen evolution; Visible light; Hole cocatalyst.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 289-299"},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00116d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gold nanoparticles (NPs) exhibit remarkable catalytic activity in low-temperature CO oxidation and their performance is highly dependent on size and shape. However, the underlying mechanism isn't fully understood yet. Herein, we combine density functional theory calculations, a multiscale structure reconstruction model, and kinetic Monte Carlo simulations to investigate the activity and structure sensitivity of Au NPs under different reaction conditions. The results indicate that increasing the partial pressure ratio of O2 to CO leads to the decrease of optimal reaction temperature accompanied with the increase of performance. At low temperatures, the morphology of the NPs evolves to expose a higher proportion of (110) facets to promote the activity significantly. Moreover, the size dependence analysis suggests that O2-rich conditions are favorable for small-sized NPs, while CO-rich conditions favor the large-sized NPs. These findings not only enrich our basic understanding of the structure–reactivity relationship and the origin of structure sensitivity in gold-catalysis, but provide a guide for rational design of Au catalysts.
Keywords: Kinetic Monte Carlo; CO oxidation; Gold catalysis; Nanoparticles.
{"title":"Exploration of structure sensitivity of gold nanoparticles in low-temperature CO oxidation†","authors":"Lei Ying, Yu Han, Beien Zhu and Yi Gao","doi":"10.1039/D3IM00117B","DOIUrl":"10.1039/D3IM00117B","url":null,"abstract":"<p>Gold nanoparticles (NPs) exhibit remarkable catalytic activity in low-temperature CO oxidation and their performance is highly dependent on size and shape. However, the underlying mechanism isn't fully understood yet. Herein, we combine density functional theory calculations, a multiscale structure reconstruction model, and kinetic Monte Carlo simulations to investigate the activity and structure sensitivity of Au NPs under different reaction conditions. The results indicate that increasing the partial pressure ratio of O<small><sub>2</sub></small> to CO leads to the decrease of optimal reaction temperature accompanied with the increase of performance. At low temperatures, the morphology of the NPs evolves to expose a higher proportion of (110) facets to promote the activity significantly. Moreover, the size dependence analysis suggests that O<small><sub>2</sub></small>-rich conditions are favorable for small-sized NPs, while CO-rich conditions favor the large-sized NPs. These findings not only enrich our basic understanding of the structure–reactivity relationship and the origin of structure sensitivity in gold-catalysis, but provide a guide for rational design of Au catalysts.</p><p>Keywords: Kinetic Monte Carlo; CO oxidation; Gold catalysis; Nanoparticles.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 321-327"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00117b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have the unique advantages of fast electrode reaction kinetics, high CO tolerance, and simple water and thermal management at their operating temperature (120–300 °C), which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal. The catalysts in HT-PEMFCs are mainly Pt-based catalysts, which have good catalytic activity in the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). However, in HT-PEMFCs, the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid (PA) on the platinum surface on activity expression leads to high cost, insufficient activity, decreased activity under long-term operation and carrier corrosion. The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts, systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs, and unveils the structure–activity relationship and anti-PA poisoning mechanism. The current challenges and opportunities faced by HT-PEMFCs are discussed, as well as possible future solutions. It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.
Keywords: High-temperature proton exchange membrane fuel cells; Cathodic oxygen reduction; Anti-phosphoric acid poisonous; Pt group metal catalysts; Non-precious metal catalysts.
{"title":"Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid","authors":"Dongping Xue and Jia-Nan Zhang","doi":"10.1039/D3IM00101F","DOIUrl":"10.1039/D3IM00101F","url":null,"abstract":"<p>High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have the unique advantages of fast electrode reaction kinetics, high CO tolerance, and simple water and thermal management at their operating temperature (120–300 °C), which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal. The catalysts in HT-PEMFCs are mainly Pt-based catalysts, which have good catalytic activity in the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). However, in HT-PEMFCs, the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid (PA) on the platinum surface on activity expression leads to high cost, insufficient activity, decreased activity under long-term operation and carrier corrosion. The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts, systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs, and unveils the structure–activity relationship and anti-PA poisoning mechanism. The current challenges and opportunities faced by HT-PEMFCs are discussed, as well as possible future solutions. It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.</p><p>Keywords: High-temperature proton exchange membrane fuel cells; Cathodic oxygen reduction; Anti-phosphoric acid poisonous; Pt group metal catalysts; Non-precious metal catalysts.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 173-190"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00101f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135447201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles A. Ponge, David R. Corbin, Clarice M. Sabolay and Mark B. Shiflett
Zeolites possess unique sieving properties that offer a high selectivity for removing pollutants, such as per- and polyfluoroalkyl substances (PFAS). However, there are limited studies examining the efficacy of zeolites as PFAS sorbents. Previous literature explores the effects of certain frameworks and the silica alumina ratio (SAR), and only one study has shown the effect of silanol defects on the hydrophobicity of the adsorbent. Since most zeolites are synthesized in hydroxide media, this leads to formation of silanol defects, which increase hydrophilicity with a greater effect than the inclusion of non-Si T atoms. It is critical that specific characterizations be performed to demonstrate the specific effects of different properties of the zeolites. In particular, synthesis, modification, and/or repair in fluoride media can be used to increase the hydrophobicity of zeolites by reducing silanol defects, and increasing Lewis acidity.
沸石具有独特的筛分特性,可提供去除污染物(如全氟和多氟烷基物质)的高选择性。然而,对沸石作为全氟辛烷磺酸吸附剂的功效进行的研究还很有限。以往的文献探讨了某些框架和硅铝比(SAR)的影响,只有一项研究显示了硅醇缺陷对吸附剂疏水性的影响。由于大多数沸石都是在氢氧化物介质中合成的,这会导致硅醇缺陷的形成,而硅醇缺陷比非硅 T 原子的加入更能增加亲水性。关键是要进行具体的表征,以证明沸石不同性质的具体影响。特别是在氟介质中进行合成、改性和/或修复,可以通过减少硅醇缺陷和增加路易斯酸度来增加沸石的疏水性:沸石;水吸附;PFAS;疏水作用;硅铝比。
{"title":"Designing zeolites for the removal of aqueous PFAS: a perspective","authors":"Charles A. Ponge, David R. Corbin, Clarice M. Sabolay and Mark B. Shiflett","doi":"10.1039/D3IM00091E","DOIUrl":"10.1039/D3IM00091E","url":null,"abstract":"<p>Zeolites possess unique sieving properties that offer a high selectivity for removing pollutants, such as per- and polyfluoroalkyl substances (PFAS). However, there are limited studies examining the efficacy of zeolites as PFAS sorbents. Previous literature explores the effects of certain frameworks and the silica alumina ratio (SAR), and only one study has shown the effect of silanol defects on the hydrophobicity of the adsorbent. Since most zeolites are synthesized in hydroxide media, this leads to formation of silanol defects, which increase hydrophilicity with a greater effect than the inclusion of non-Si T atoms. It is critical that specific characterizations be performed to demonstrate the specific effects of different properties of the zeolites. In particular, synthesis, modification, and/or repair in fluoride media can be used to increase the hydrophobicity of zeolites by reducing silanol defects, and increasing Lewis acidity.</p><p>Keywords: Zeolites; Aqueous adsorption; PFAS; Hydrophobic interaction; Silica–alumina ratio.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 270-275"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00091e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135058423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Han, Wenrou Tian, Ye Miao, Najun Li, Dongyun Chen, Qingfeng Xu, Hua Li and Jianmei Lu
Coupling the effects of flexoelectricity with piezoelectricity has been proved to effectively harvest mechanical energy. In this study, a composition-graded core–shell structure (HAP@FAP) was prepared by surface-gradient F-doping in hydroxyapatite, which could introduce flexoelectricity by a built-in strain gradient. A flexoelectric-boosted piezoelectric response was demonstrated by piezoresponse force microscopy (PFM) characterization, showing that the piezoelectric constant of HAP@FAP was increased by 2.25 times via a lattice strain gradient induced by chemical heterogeneities derived from the unique composition-graded core–shell structure. Thus, the piezocatalytic activity of HAP@FAP for phenanthrene (PHE) degradation in soil was enhanced. This work provides a new strategy for the modification of piezoelectric catalysts for the remediation of organics-contaminated soils on industrial land.
{"title":"Flexoelectricity in hydroxyapatite for the enhanced piezocatalytic degradation of phenanthrene in soil†","authors":"Jun Han, Wenrou Tian, Ye Miao, Najun Li, Dongyun Chen, Qingfeng Xu, Hua Li and Jianmei Lu","doi":"10.1039/D3IM00093A","DOIUrl":"10.1039/D3IM00093A","url":null,"abstract":"<p>Coupling the effects of flexoelectricity with piezoelectricity has been proved to effectively harvest mechanical energy. In this study, a composition-graded core–shell structure (HAP@FAP) was prepared by surface-gradient F-doping in hydroxyapatite, which could introduce flexoelectricity by a built-in strain gradient. A flexoelectric-boosted piezoelectric response was demonstrated by piezoresponse force microscopy (PFM) characterization, showing that the piezoelectric constant of HAP@FAP was increased by 2.25 times <em>via</em> a lattice strain gradient induced by chemical heterogeneities derived from the unique composition-graded core–shell structure. Thus, the piezocatalytic activity of HAP@FAP for phenanthrene (PHE) degradation in soil was enhanced. This work provides a new strategy for the modification of piezoelectric catalysts for the remediation of organics-contaminated soils on industrial land.</p><p>Keywords: Hydroxyapatite; Flexoelectricity; Piezocatalysis; Gradient doping; Soil remediation.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 300-308"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00093a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136257553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felix Haimerl, Sunil Kumar, Michael Heere and Aliaksandr S. Bandarenka
Quality testing costs hinder the large-scale production of PEM fuel cell systems due to long testing times and high safety measures for hydrogen. While eliminating both issues, electrochemical impedance spectroscopy at low hydrogen concentrations can provide valuable insights into fuel cell processes. However, the influence of high anode stream dilutions on PEM fuel cell performance is not yet completely understood. This study presents a new equivalent circuit model to analyze impedance spectra at low hydrogen partial pressures. The proposed model accurately describes the impedance response and explains the performance decrease at low hydrogen concentrations. First, the reduced availability of hydrogen at the anode leads to rising reaction losses from the hydrogen side. Further, the resulting losses lead to potential changes also influencing the cathode processes. The findings indicate that impedance spectroscopy at low hydrogen partial pressure might provide a reliable fuel cell quality control tool, simplifying production processes, reducing costs, and mitigating risks in fuel cell production.
{"title":"Electrochemical impedance spectroscopy of PEM fuel cells at low hydrogen partial pressures: efficient cell tests for mass production†","authors":"Felix Haimerl, Sunil Kumar, Michael Heere and Aliaksandr S. Bandarenka","doi":"10.1039/D3IM00075C","DOIUrl":"10.1039/D3IM00075C","url":null,"abstract":"<p>Quality testing costs hinder the large-scale production of PEM fuel cell systems due to long testing times and high safety measures for hydrogen. While eliminating both issues, electrochemical impedance spectroscopy at low hydrogen concentrations can provide valuable insights into fuel cell processes. However, the influence of high anode stream dilutions on PEM fuel cell performance is not yet completely understood. This study presents a new equivalent circuit model to analyze impedance spectra at low hydrogen partial pressures. The proposed model accurately describes the impedance response and explains the performance decrease at low hydrogen concentrations. First, the reduced availability of hydrogen at the anode leads to rising reaction losses from the hydrogen side. Further, the resulting losses lead to potential changes also influencing the cathode processes. The findings indicate that impedance spectroscopy at low hydrogen partial pressure might provide a reliable fuel cell quality control tool, simplifying production processes, reducing costs, and mitigating risks in fuel cell production.</p><p>Keywords: PEM fuel cells; Electrochemical impedance spectroscopy; EIS; Large scale PEMFC production; Anodes; Cathodes.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 132-140"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00075c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}