首页 > 最新文献

Bioelectricity最新文献

英文 中文
Voltage-Gated Potassium Channels Beyond the Action Potential. 动作电位之外的电压门控钾通道。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1089/bioe.2022.0014
Luis A Pardo

Bioelectricity goes far beyond electrical signaling in the nervous system, but this was initially not obvious for me. This article describes the journey from studying the biophysics of ion channels in classical electrically excitable tissues to focusing on the pathogenic roles of the Kv10.1 potassium channel in cancers.

生物电远远超出了神经系统中的电信号,但最初对我来说并不明显。本文描述了从研究经典电兴奋组织中离子通道的生物物理学到关注Kv10.1钾通道在癌症中的致病作用的历程。
{"title":"Voltage-Gated Potassium Channels Beyond the Action Potential.","authors":"Luis A Pardo","doi":"10.1089/bioe.2022.0014","DOIUrl":"https://doi.org/10.1089/bioe.2022.0014","url":null,"abstract":"<p><p>Bioelectricity goes far beyond electrical signaling in the nervous system, but this was initially not obvious for me. This article describes the journey from studying the biophysics of ion channels in classical electrically excitable tissues to focusing on the pathogenic roles of the Kv10.1 potassium channel in cancers.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"4 2","pages":"117-125"},"PeriodicalIF":2.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9450483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Acknowledgment of Reviewers 2021. 感谢审稿人 2021.
IF 1.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-15 eCollection Date: 2022-03-01 DOI: 10.1089/bioe.2021.29029.ack
{"title":"Acknowledgment of Reviewers 2021.","authors":"","doi":"10.1089/bioe.2021.29029.ack","DOIUrl":"https://doi.org/10.1089/bioe.2021.29029.ack","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"4 1","pages":"68"},"PeriodicalIF":1.6,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Bioelectricity-Related Articles Selected by Ann M. Rajnicek, Media Editor of Bioelectricity. 生物电》媒体编辑 Ann M. Rajnicek 挑选的近期生物电相关文章。
IF 1.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-15 eCollection Date: 2022-03-01 DOI: 10.1089/bioe.2022.0002
Ann M Rajnicek
{"title":"Recent Bioelectricity-Related Articles Selected by Ann M. Rajnicek, Media Editor of <i>Bioelectricity</i>.","authors":"Ann M Rajnicek","doi":"10.1089/bioe.2022.0002","DOIUrl":"https://doi.org/10.1089/bioe.2022.0002","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"4 1","pages":"59-64"},"PeriodicalIF":1.6,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion Channel Modulators for Treatment-Resistant Rheumatoid Arthritis: Focus on Inflammation 离子通道调节剂治疗难治性类风湿关节炎:关注炎症
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-06 DOI: 10.1089/bioe.2021.0038
R. Vaiciuleviciute, Ursule Kalvaityte, E. Bernotiene, A. Mobasheri
{"title":"Ion Channel Modulators for Treatment-Resistant Rheumatoid Arthritis: Focus on Inflammation","authors":"R. Vaiciuleviciute, Ursule Kalvaityte, E. Bernotiene, A. Mobasheri","doi":"10.1089/bioe.2021.0038","DOIUrl":"https://doi.org/10.1089/bioe.2021.0038","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"44 4 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79642513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Probing the Putative Role of KATP Channels and Biological Variability in a Mathematical Model of Chondrocyte Electrophysiology 在软骨细胞电生理数学模型中探讨KATP通道和生物变异的假定作用
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-06 DOI: 10.1089/bioe.2021.0034
Sophie Fischer-Holzhausen, K. Yamamoto, Maria P. Fjeldstad, M. Maleckar
{"title":"Probing the Putative Role of KATP Channels and Biological Variability in a Mathematical Model of Chondrocyte Electrophysiology","authors":"Sophie Fischer-Holzhausen, K. Yamamoto, Maria P. Fjeldstad, M. Maleckar","doi":"10.1089/bioe.2021.0034","DOIUrl":"https://doi.org/10.1089/bioe.2021.0034","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"99 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79644882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosensitive Ion Channels and Stem Cell Differentiation 机械敏感离子通道与干细胞分化
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-06 DOI: 10.1089/bioe.2021.0037
M. Djamgoz, Ekaterina Pchelintseva
{"title":"Mechanosensitive Ion Channels and Stem Cell Differentiation","authors":"M. Djamgoz, Ekaterina Pchelintseva","doi":"10.1089/bioe.2021.0037","DOIUrl":"https://doi.org/10.1089/bioe.2021.0037","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"78 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77672391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Call for Special Issue Papers: Bioelectricity in Plant Morphogenesis 《植物形态发生中的生物电》特刊征稿
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-02 DOI: 10.1089/bioe.2021.29028.cfp
G. Sena
{"title":"Call for Special Issue Papers: Bioelectricity in Plant Morphogenesis","authors":"G. Sena","doi":"10.1089/bioe.2021.29028.cfp","DOIUrl":"https://doi.org/10.1089/bioe.2021.29028.cfp","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"5 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88811365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. 通过匡威压电效应促进骨再生--应用机械刺激的新方法
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-12-16 DOI: 10.1089/bioe.2021.0019
Amber Carter, Kristen Popowski, Ke Cheng, Alon Greenbaum, Frances S Ligler, Adele Moatti

Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.

严重的骨伤会对患者的生活造成破坏性影响,包括限制工作能力和高昂的费用。骨科植入物在修复骨折或大面积骨缺损方面可以帮助愈合损伤,其程度超过了骨骼的自然再生能力。自体移植物和同种异体移植物是目前使用的标准植入物,但由于存在供体部位并发症、可移植骨数量有限和成本高昂等缺点,对合成骨移植替代物的需求日益增加。然而,复制生物骨的复杂生理特性,更不用说再现其复杂的组织功能,是一项具有挑战性的工作。由于骨骼具有天然的压电特性,因此人们对压电智能材料进行了研究。压电材料可通过以下两种方式促进骨骼再生:一种是在机械应力作用下积累电荷,通过直接压电效应模拟生物电信号;另一种是通过反向压电效应在电刺激作用下提供机械刺激。虽然这两种效应都有益处,但反向压电效应可以通过改善愈合缺损的机械反应,解决应力屏蔽和不活动造成的骨萎缩问题。机械刺激可激活细胞通路,增加骨形成,减少骨吸收,从而对骨再生产生积极影响。本综述将通过讨论有益细胞通路的激活、压电生物材料的特性以及利用无线控制更有效地管理反向压电效应的潜力,突出反向压电效应在促进骨再生方面的潜力。
{"title":"Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation.","authors":"Amber Carter, Kristen Popowski, Ke Cheng, Alon Greenbaum, Frances S Ligler, Adele Moatti","doi":"10.1089/bioe.2021.0019","DOIUrl":"10.1089/bioe.2021.0019","url":null,"abstract":"<p><p>Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"3 4","pages":"255-271"},"PeriodicalIF":2.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/ae/bioe.2021.0019.PMC8742263.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9641959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Special Issue Papers: Bioelectricity of the Tumor Microenvironment 特刊论文征集:肿瘤微环境的生物电
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-01 DOI: 10.1089/bioe.2021.29027.cfp2
P. Buchanan, C. Vandier
{"title":"Call for Special Issue Papers: Bioelectricity of the Tumor Microenvironment","authors":"P. Buchanan, C. Vandier","doi":"10.1089/bioe.2021.29027.cfp2","DOIUrl":"https://doi.org/10.1089/bioe.2021.29027.cfp2","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"45 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83655286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bioelectricity of Connective Tissue Cells and Their Environments: Bridging the Gap 结缔组织细胞及其环境的生物电:弥合差距
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-01 DOI: 10.1089/bioe.2021.0040
A. Mobasheri, M. Maleckar
{"title":"The Bioelectricity of Connective Tissue Cells and Their Environments: Bridging the Gap","authors":"A. Mobasheri, M. Maleckar","doi":"10.1089/bioe.2021.0040","DOIUrl":"https://doi.org/10.1089/bioe.2021.0040","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"13 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81936499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioelectricity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1