In-doped BaCoO3–δ (BaCo1–xInxO3–δ, x = 0, 0.10, 0.15; denoted BC, BCI10, BCI15) were synthesized via solid-state reaction. 15 mol% In3+ doping stabilized the cubic phase and improved thermal expansion stability. Even 10 mol% In3+ significantly enhanced oxygen reduction reaction activity, likely by favourably modifying the cobalt oxidation state within the cubic structure, thereby improving oxygen surface exchange. Symmetrical cells with BCI10 and BCI15 cathodes exhibited low area-specific resistances of 0.107 Ω cm2 and 0.139 Ω cm2, respectively, at 650 °C. These results demonstrate that In3+ doping produces highly promising cathodes for solid oxide fuel cells.
Pub Date : 2025-09-24DOI: 10.1016/j.elecom.2025.108049
Ba Long Nguyen , Vladislav Ivanistsev
The electric double layer (EDL) – arguably the central concept in electrochemistry – remains the nut everyone wants to crack to tune its properties and, thus, control the performance of electrochemical devices. One such property is the differential capacitance that determines the energy density in supercapacitors. In this communication, we show that the capacitance–potential dependence can be fitted with a four-parameter model for ionic liquid–electrode interfaces, where steric packing naturally results in a power-law scaling. First, we demonstrate how these parameters can be evaluated and used to interpret the EDL structure and properties. Second, we demonstrate how the model enables predictions of both differential capacitance and energy density.
{"title":"Ionic liquid–electrode interface: From one law to fit them all to one model to predict them all","authors":"Ba Long Nguyen , Vladislav Ivanistsev","doi":"10.1016/j.elecom.2025.108049","DOIUrl":"10.1016/j.elecom.2025.108049","url":null,"abstract":"<div><div>The electric double layer (EDL) – arguably the central concept in electrochemistry – remains the nut everyone wants to crack to tune its properties and, thus, control the performance of electrochemical devices. One such property is the differential capacitance that determines the energy density in supercapacitors. In this communication, we show that the capacitance–potential dependence can be fitted with a four-parameter model for ionic liquid–electrode interfaces, where steric packing naturally results in a power-law scaling. First, we demonstrate how these parameters can be evaluated and used to interpret the EDL structure and properties. Second, we demonstrate how the model enables predictions of both differential capacitance and energy density.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108049"},"PeriodicalIF":4.2,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145155989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to global demands for more efficient energy and water management amidst environmental crises, wastewater is increasingly valued not just as a waste product but as a potential source of renewable energy. Microbial Fuel Cells are at the forefront of this transformation, capable of directly converting organic substrates found in wastewater into electrical energy through the activity of electrogenic bacteria. This paper provides a comprehensive review of advancements over the past two decades in Microbial Fuel Cell technology, focusing on improvements in system design, material selection, and operational efficacy that reduce costs and enhance energy efficiency. It examines key factors including internal resistance, dissolved oxygen, conductivity, organic loading rate, and optimal conditions such as temperature (20–35 °C) and pH (6.3–7.8) in maximizing the performance of Microbial Fuel Cells. Despite significant technological advances, several barriers remain that prevent the widespread commercial application of Microbial Fuel Cells, including high investment costs and limited scalability. Addressing these challenges is crucial for realizing the full potential of Microbial Fuel Cells in sustainable wastewater management. This review underscores the critical operational parameters that influence Microbial Fuel Cell efficiency, proposing strategies to overcome existing limitations and enhance the energy recovery process.
{"title":"Exploring operational barriers in microbial fuel cells: Enhancing energy recovery from wastewater","authors":"Behzad Kanani , Alireza Zahedi , Fatemeh Abtahi , Sepideh Abedi","doi":"10.1016/j.elecom.2025.108051","DOIUrl":"10.1016/j.elecom.2025.108051","url":null,"abstract":"<div><div>In response to global demands for more efficient energy and water management amidst environmental crises, wastewater is increasingly valued not just as a waste product but as a potential source of renewable energy. Microbial Fuel Cells are at the forefront of this transformation, capable of directly converting organic substrates found in wastewater into electrical energy through the activity of electrogenic bacteria. This paper provides a comprehensive review of advancements over the past two decades in Microbial Fuel Cell technology, focusing on improvements in system design, material selection, and operational efficacy that reduce costs and enhance energy efficiency. It examines key factors including internal resistance, dissolved oxygen, conductivity, organic loading rate, and optimal conditions such as temperature (20–35 °C) and pH (6.3–7.8) in maximizing the performance of Microbial Fuel Cells. Despite significant technological advances, several barriers remain that prevent the widespread commercial application of Microbial Fuel Cells, including high investment costs and limited scalability. Addressing these challenges is crucial for realizing the full potential of Microbial Fuel Cells in sustainable wastewater management. This review underscores the critical operational parameters that influence Microbial Fuel Cell efficiency, proposing strategies to overcome existing limitations and enhance the energy recovery process.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108051"},"PeriodicalIF":4.2,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145155986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1016/j.elecom.2025.108055
Jing Yao , Anqi Zhao , Luning Wang
In this work, zinc oxide (ZnO) nanotubular arrays were fabricated on the surface of zinc‑bismuth (Znbi) alloys with different bismuth contents (0.5, 1, 1.5, and 2 wt%) using an anodization technique. The influence of bismuth content on the morphology of the ZnO nanotubular arrays was explored. By optimizing anodization parameters in an electrolyte containing 50 mM sodium bicarbonate, ethylene glycol, and volume ratio of water to ethylene glycol is 9:1. ZnO nanotubular arrays with uniform nanotubular diameters (395.2 ± 53.6 nm) were synthesized on the zinc surface. The increasing of content of bismuth reduced the average nanotubular diameter from 487.2 ± 54.2 nm for ZnO (Zn-0.5Bi) to 293.4 ± 26.5 nm for ZnO (Zn2Bi). When used as an anode, the anodized Znbi alloy demonstrated good cycling stability in aqueous zinc-ion battery, maintaining a capacity of 95.04 mAh g−1 after 1000 cycles at 1 a g−1. The anodized Znbi electrode also exhibited excellent cycling stability in a symmetric cell, with an overpotential of only 28.5 mV at 1 mA cm−2. This work provides a promising protocol for designing highly stable zinc-based anodes
在这项工作中,采用阳极氧化技术在不同铋含量(0.5、1、1.5和2 wt%)的锌铋(Znbi)合金表面制备了氧化锌(ZnO)纳米管阵列。探讨了铋含量对ZnO纳米管阵列形貌的影响。通过优化阳极氧化参数,电解液中含有50mm碳酸氢钠和乙二醇,水与乙二醇的体积比为9:1。在锌表面合成了直径均匀(395.2±53.6 nm)的ZnO纳米管阵列。随着铋含量的增加,ZnO (Zn-0.5Bi)的平均纳米管直径从487.2±54.2 nm降低到293.4±26.5 nm。阳极氧化后的Znbi合金在水溶液锌离子电池中表现出良好的循环稳定性,在1 a g−1下循环1000次后,其容量保持在95.04 mAh g−1。阳极氧化的锌铋电极在对称电池中也表现出良好的循环稳定性,在1ma cm−2时过电位仅为28.5 mV。这项工作为设计高稳定性的锌基阳极提供了一种有前途的方案
{"title":"Fabrication zinc oxide nanotubular arrays on the surface of zinc‑bismuth alloy for high-performance aqueous zinc-ion battery anodes","authors":"Jing Yao , Anqi Zhao , Luning Wang","doi":"10.1016/j.elecom.2025.108055","DOIUrl":"10.1016/j.elecom.2025.108055","url":null,"abstract":"<div><div>In this work, zinc oxide (ZnO) nanotubular arrays were fabricated on the surface of zinc‑bismuth (Zn<img>bi) alloys with different bismuth contents (0.5, 1, 1.5, and 2 wt%) using an anodization technique. The influence of bismuth content on the morphology of the ZnO nanotubular arrays was explored. By optimizing anodization parameters in an electrolyte containing 50 mM sodium bicarbonate, ethylene glycol, and volume ratio of water to ethylene glycol is 9:1. ZnO nanotubular arrays with uniform nanotubular diameters (395.2 ± 53.6 nm) were synthesized on the zinc surface. The increasing of content of bismuth reduced the average nanotubular diameter from 487.2 ± 54.2 nm for ZnO (Zn-0.5Bi) to 293.4 ± 26.5 nm for ZnO (Zn<img>2Bi). When used as an anode, the anodized Zn<img>bi alloy demonstrated good cycling stability in aqueous zinc-ion battery, maintaining a capacity of 95.04 mAh g<sup>−1</sup> after 1000 cycles at 1 a g<sup>−1</sup>. The anodized Zn<img>bi electrode also exhibited excellent cycling stability in a symmetric cell, with an overpotential of only 28.5 mV at 1 mA cm<sup>−2</sup>. This work provides a promising protocol for designing highly stable zinc-based anodes</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108055"},"PeriodicalIF":4.2,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145155990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1016/j.elecom.2025.108056
Zhenya Wang , Dmitri L. Danilov , Jingjing Zhou , Meng Zheng , Yi Huang , Tao Chen , Rüdiger-A. Eichel , Peter H.L. Notten
Researchers have conducted in-depth investigations into lithium-ion battery models. However, a notable limitation of existing models lies in the assumption of infinitely conductive current collectors, which compromises simulation accuracy. Herein, we present a model that explicitly accounts for current collector resistance, employing Kirchhoff's circuit laws and a suitable discretization method to characterize the associated current density and SoC distribution in all-solid-state thin-film batteries. Simulation results demonstrate that the highest SoC occurs near the charging tab, leading to preferential full-charge in this region. Intriguingly, when charging is interrupted at this stage, the battery enters a self-balancing state: the state of charge SoC near the tab gradually decreases. At the same time, SoC in other regions increases, culminating in a homogeneous SoC across the entire battery. This phenomenon reflects the underlying process of lithium-ion redistribution. Additionally, a larger resistance disparity between cathodic and anodic current collectors creates an inhomogeneous current density distribution, thereby accelerating localized battery aging. The approach adopted by our model exhibits broad generality and can be readily adapted to other battery types.
{"title":"Modeling current density and SoC distribution of all-solid-state lithium-ion batteries","authors":"Zhenya Wang , Dmitri L. Danilov , Jingjing Zhou , Meng Zheng , Yi Huang , Tao Chen , Rüdiger-A. Eichel , Peter H.L. Notten","doi":"10.1016/j.elecom.2025.108056","DOIUrl":"10.1016/j.elecom.2025.108056","url":null,"abstract":"<div><div>Researchers have conducted in-depth investigations into lithium-ion battery models. However, a notable limitation of existing models lies in the assumption of infinitely conductive current collectors, which compromises simulation accuracy. Herein, we present a model that explicitly accounts for current collector resistance, employing Kirchhoff's circuit laws and a suitable discretization method to characterize the associated current density and SoC distribution in all-solid-state thin-film batteries. Simulation results demonstrate that the highest SoC occurs near the charging tab, leading to preferential full-charge in this region. Intriguingly, when charging is interrupted at this stage, the battery enters a self-balancing state: the state of charge SoC near the tab gradually decreases. At the same time, SoC in other regions increases, culminating in a homogeneous SoC across the entire battery. This phenomenon reflects the underlying process of lithium-ion redistribution. Additionally, a larger resistance disparity between cathodic and anodic current collectors creates an inhomogeneous current density distribution, thereby accelerating localized battery aging. The approach adopted by our model exhibits broad generality and can be readily adapted to other battery types.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108056"},"PeriodicalIF":4.2,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adsorption of sulfur (S) significantly reduces the electrochemically active surface area of platinum (Pt) electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs), namely, S poisoning. Mitigation techniques against S poisoning are strongly desired for highly durable PEMFCs. A Pt single-crystal surface was demonstrated to be modified with cerium (Ce) species by being immersed in a Ce-containing aqueous solution with hydrogen (H2) gas bubbling or potential holding at −0.2 V vs. Ag/AgCl. For a Ce-free Pt electrode, electrochemical responses characteristic of the adsorption/desorption of hydrogen and hydroxyl species at the bare Pt surface disappeared due to the adsorbed elemental sulfur, Sad, while the oxidative desorption of Sad from the Pt electrode occurred at around 0.80 V vs. Ag/AgCl. In contrast, for the Ce-modified Pt electrode, the oxidative desorption of Sad occurred at a potential around 0.3 V which is less positive (more negative) than that of Ce-free Pt electrode, showing the enhanced oxidative desorption capability due to the presence of Ce species on the surface. While the Ce species was desorbed from the Pt electrode simultaneously with the oxidative desorption of Sad, the Pt surface can be re-modified with the Ce species by H2 gas bubbling or potential holding at −0.2 V vs. Ag/AgCl, which is a similar condition to that of anode of PEMFC under operations. Thus, the Ce-modification of Pt surfaces potentially acts as a practical mitigation measure against the S poisoning.
硫(S)的吸附显著降低了聚合物电解质膜燃料电池(pemfc)中铂(Pt)电催化剂的电化学活性表面积,即S中毒。对于高度耐用的pemfc,迫切需要针对S中毒的缓解技术。将Pt单晶表面浸泡在含Ce的水溶液中,使氢气(H2)鼓泡或电位保持在−0.2 V /Ag /AgCl下,证明了铈(Ce)可以修饰Pt单晶表面。对于无ce Pt电极,由于吸附了单质硫(Sad),裸Pt表面的氢和羟基的吸附/解吸特征消失,而在0.80 V /Ag /AgCl左右,Pt电极上的Sad发生氧化解吸。相比之下,对于Ce修饰的Pt电极,Sad的氧化脱附发生在0.3 V左右的电位下,该电位比无Ce修饰的Pt电极的正极电位少(负极电位多),表明由于表面存在Ce物质而增强了氧化脱附能力。Ce在Pt电极上的脱附过程与Sad的氧化脱附过程同时进行,通过H2气体鼓泡或电位保持在- 0.2 V vs. Ag/AgCl下,Ce可以在Pt表面进行再修饰,这与PEMFC阳极的操作条件相似。因此,铂表面的ce修饰有可能作为一种实际的缓解S中毒的措施。
{"title":"Modification of platinum surfaces with cerium species for promoting oxidative desorption of adsorbed sulfur","authors":"Tetsuro Morooka , Tamao Shishido , Takuya Nakanishi , Takuya Masuda","doi":"10.1016/j.elecom.2025.108050","DOIUrl":"10.1016/j.elecom.2025.108050","url":null,"abstract":"<div><div>Adsorption of sulfur (S) significantly reduces the electrochemically active surface area of platinum (Pt) electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs), namely, S poisoning. Mitigation techniques against S poisoning are strongly desired for highly durable PEMFCs. A Pt single-crystal surface was demonstrated to be modified with cerium (Ce) species by being immersed in a Ce-containing aqueous solution with hydrogen (H<sub>2</sub>) gas bubbling or potential holding at −0.2 V vs. Ag/AgCl. For a Ce-free Pt electrode, electrochemical responses characteristic of the adsorption/desorption of hydrogen and hydroxyl species at the bare Pt surface disappeared due to the adsorbed elemental sulfur, S<sub>ad</sub>, while the oxidative desorption of S<sub>ad</sub> from the Pt electrode occurred at around 0.80 V vs. Ag/AgCl. In contrast, for the Ce-modified Pt electrode, the oxidative desorption of S<sub>ad</sub> occurred at a potential around 0.3 V which is less positive (more negative) than that of Ce-free Pt electrode, showing the enhanced oxidative desorption capability due to the presence of Ce species on the surface. While the Ce species was desorbed from the Pt electrode simultaneously with the oxidative desorption of S<sub>ad</sub>, the Pt surface can be re-modified with the Ce species by H<sub>2</sub> gas bubbling or potential holding at −0.2 V vs. Ag/AgCl, which is a similar condition to that of anode of PEMFC under operations. Thus, the Ce-modification of Pt surfaces potentially acts as a practical mitigation measure against the S poisoning.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108050"},"PeriodicalIF":4.2,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-20DOI: 10.1016/j.elecom.2025.108048
Naomi Naraki, Yuto Okayama, Naoto Todoroki
Ru- and Ir-oxides have considerable attentions as acidic oxygen evolution electrocatalysts for polymer electrolyte membrane water electrolysis. However, there have been no reports of comparative study of electrochemical stability depending on the surface orientations. Here, we prepared the (hkl)-oriented (hkl = 110, 001, 100) RuO2 and IrO2 thin films on rutile-TiO2 single crystal substrates by arc-plasma deposition and investigated the surface orientation dependence of electrochemical stability under oxygen evolution reaction (OER) in 0.1 M HClO4. At the initial state, RuO2 showed a lower OER overpotential and smaller Tafel slope compared to IrO2 for all the surface orientations. However, the overpotential of RuO2 steeply increased during chronopotentiometry (CP) measurements, while the overpotential increase for IrO2 was significantly suppressed. After the CP measurement, the overpotential of IrO2 became smaller than that of RuO2 for all the surface orientation. RuO2 shows orientation dependence on the stability number, i.e. ratio of total charges used for CP and dissolution amount of Ru or Ir, while the IrO2 didn't show a clear trend. The results demonstrated that the surface orientation of both RuO2 and IrO2 affects not only the activity, but also the stability, and elemental dissolution and the influence is more significant for RuO2.
Ru和ir氧化物作为聚合物电解质膜电解的酸性析氧电催化剂受到了广泛的关注。然而,目前还没有关于表面取向对电化学稳定性影响的比较研究报道。本文采用电弧等离子体沉积方法在金红石- tio2单晶衬底上制备了(hkl)取向(hkl = 110、001、100)的RuO2和IrO2薄膜,并在0.1 M HClO4中研究了表面取向对电化学稳定性的影响。在初始状态下,与IrO2相比,RuO2在所有表面取向上都表现出更低的OER过电位和更小的Tafel斜率。然而,在时间电位测量(CP)期间,RuO2过电位急剧增加,而IrO2过电位的增加明显受到抑制。CP测量后,在所有表面取向上,IrO2的过电位都小于RuO2。RuO2的取向依赖于稳定数,即CP的总电荷比与Ru或Ir的溶出量,而IrO2的取向依赖不明显。结果表明,RuO2和IrO2的表面取向不仅影响其活性,而且影响其稳定性,其中元素溶解对RuO2的影响更为显著。
{"title":"Surface orientation dependent electrochemical stability of RuO2 and IrO2 under acidic oxygen evolution reaction","authors":"Naomi Naraki, Yuto Okayama, Naoto Todoroki","doi":"10.1016/j.elecom.2025.108048","DOIUrl":"10.1016/j.elecom.2025.108048","url":null,"abstract":"<div><div>Ru- and Ir-oxides have considerable attentions as acidic oxygen evolution electrocatalysts for polymer electrolyte membrane water electrolysis. However, there have been no reports of comparative study of electrochemical stability depending on the surface orientations. Here, we prepared the (<em>hkl</em>)-oriented (<em>hkl</em> = 110, 001, 100) RuO<sub>2</sub> and IrO<sub>2</sub> thin films on rutile-TiO<sub>2</sub> single crystal substrates by arc-plasma deposition and investigated the surface orientation dependence of electrochemical stability under oxygen evolution reaction (OER) in 0.1 M HClO<sub>4</sub>. At the initial state, RuO<sub>2</sub> showed a lower OER overpotential and smaller Tafel slope compared to IrO<sub>2</sub> for all the surface orientations. However, the overpotential of RuO<sub>2</sub> steeply increased during chronopotentiometry (CP) measurements, while the overpotential increase for IrO<sub>2</sub> was significantly suppressed. After the CP measurement, the overpotential of IrO<sub>2</sub> became smaller than that of RuO<sub>2</sub> for all the surface orientation. RuO<sub>2</sub> shows orientation dependence on the stability number, i.e. ratio of total charges used for CP and dissolution amount of Ru or Ir, while the IrO<sub>2</sub> didn't show a clear trend. The results demonstrated that the surface orientation of both RuO<sub>2</sub> and IrO<sub>2</sub> affects not only the activity, but also the stability, and elemental dissolution and the influence is more significant for RuO<sub>2</sub>.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108048"},"PeriodicalIF":4.2,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145155987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-11DOI: 10.1016/j.elecom.2025.108047
Fariba Garkani Nejad , Hadi Beitollahi , Iran Sheikhshoaie
Copper ions act as essential metal ions in various physiological processes, but their excessive accumulation can cause toxicity and severe risks to human health and the environment. Hence, the sensitive and accurate determination of copper levels in water samples is of great significance for public health protection and environmental monitoring. In this study, a new strategy was proposed for the determination of Cu (II) ions in the water samples based on polyamidoamine dendrimer-functionalized NH2-mesoporous silica (PAMAM-functionalized NH2-MCM-41) as a sensing platform. The PAMAM-functionalized NH2-MCM-41 was prepared by using a post-grafting method. The structure/morphology of the prepared PAMAM-functionalized MCM-41 was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDS) spectroscopy techniques. Then, the PAMAM-functionalized NH2-MCM-41 modified glassy carbon electrode (GCE) was used for differential pulse anodic stripping voltammetric (DPASV) determination of Cu (II). Due to the combination of the high chelating ability of terminal amino groups of PAMAM dendrimer to metal ion (Cu (II)) with the large surface area of MCM-41, the PAMAM/NH2-MCM-41/GCE showed an excellent sensitive effect for Cu (II) determination. The different parameters and conditions affecting the stripping current response of Cu (II), including accumulation time, accumulation potential, and pH value were investigated and optimized. Under the optimum conditions, the stripping peak current of Cu (II) linearly increased with its concentration between the 0.002 μM–8.0 μM. The limit of detection (LOD) is calculated to be 6.1 × 10−10 M for Cu (II) (S/N = 3). Finally, the PAMAM/NH2-MCM-41/GCE sensor was successfully used for the Cu (II) determination in water samples, with acceptable recoveries of 97.1 %–103.3 %. The obtained results showed that PAMAM-Functionalized MCM-41 as a promising modifying material can be potentially used in the design and fabrication of electrochemical sensors for heavy metal ions determination.
{"title":"Application of PAMAM-functionalized NH2-MCM-41 modified glassy carbon electrode for quantitative determination of Cu (II) in water samples by using stripping voltammetry","authors":"Fariba Garkani Nejad , Hadi Beitollahi , Iran Sheikhshoaie","doi":"10.1016/j.elecom.2025.108047","DOIUrl":"10.1016/j.elecom.2025.108047","url":null,"abstract":"<div><div>Copper ions act as essential metal ions in various physiological processes, but their excessive accumulation can cause toxicity and severe risks to human health and the environment. Hence, the sensitive and accurate determination of copper levels in water samples is of great significance for public health protection and environmental monitoring. In this study, a new strategy was proposed for the determination of Cu (II) ions in the water samples based on polyamidoamine dendrimer-functionalized NH<sub>2</sub>-mesoporous silica (PAMAM-functionalized NH<sub>2</sub>-MCM-41) as a sensing platform. The PAMAM-functionalized NH<sub>2</sub>-MCM-41 was prepared by using a post-grafting method. The structure/morphology of the prepared PAMAM-functionalized MCM-41 was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDS) spectroscopy techniques. Then, the PAMAM-functionalized NH<sub>2</sub>-MCM-41 modified glassy carbon electrode (GCE) was used for differential pulse anodic stripping voltammetric (DPASV) determination of Cu (II). Due to the combination of the high chelating ability of terminal amino groups of PAMAM dendrimer to metal ion (Cu (II)) with the large surface area of MCM-41, the PAMAM/NH<sub>2</sub>-MCM-41/GCE showed an excellent sensitive effect for Cu (II) determination. The different parameters and conditions affecting the stripping current response of Cu (II), including accumulation time, accumulation potential, and pH value were investigated and optimized. Under the optimum conditions, the stripping peak current of Cu (II) linearly increased with its concentration between the 0.002 μM–8.0 μM. The limit of detection (LOD) is calculated to be 6.1 × 10<sup>−10</sup> M for Cu (II) (S/N = 3). Finally, the PAMAM/NH<sub>2</sub>-MCM-41/GCE sensor was successfully used for the Cu (II) determination in water samples, with acceptable recoveries of 97.1 %–103.3 %. The obtained results showed that PAMAM-Functionalized MCM-41 as a promising modifying material can be potentially used in the design and fabrication of electrochemical sensors for heavy metal ions determination.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108047"},"PeriodicalIF":4.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-08DOI: 10.1016/j.elecom.2025.108046
Jaesub Lee , Jeong-Jin Yang , Beomgi Kim , Sunkyung You , Jae-Kwang Kim , Young-Ran Lee , Seongki Ahn , Jeha Kim , Hong-Il Kim
Solid-state electrolytes have attracted significant attention due to their high safety, mechanical stability, and compatibility with lithium metal anodes, making them a critical component in the development of next-generation all-solid-state batteries. Polymer-based solid electrolytes (PSEs) offer advantages such as flexibility, processability, and good interfacial contact with electrodes but suffer from low structural stability. In this study, PSEs were fabricated by photopolymerization from ethoxylated trimethylolpropane triacrylate and expanded illite (EI) functional filler. The PSEs synthesized with 4 wt% EI show a favorable ionic conductivity of 2.31 × 10−4 S cm−1 at 25 °C and an all-solid-state Li/NCM622 coin cell using the PSE as the electrolyte delivered a discharge capacity of 129.5 mAh g−1 at 0.1C with 98 % Coulombic efficiency. In addition, the EI-containing PSE exhibited improved mechanical strength, enabling the fabrication of a flexible all-solid-state Li-metal battery pouch cell. This study offers valuable insight into the design of PSEs using clay-based fillers.
固态电解质由于其高安全性、机械稳定性和与锂金属阳极的兼容性而引起了人们的极大关注,使其成为下一代全固态电池发展的关键部件。聚合物基固体电解质(pse)具有柔韧性、可加工性和与电极良好的界面接触等优点,但结构稳定性较低。本研究以乙氧基化三甲基丙烷三丙烯酸酯和膨胀伊利石(EI)功能填料为原料,采用光聚合法制备了pse。以4 wt% EI合成的PSE在25°C时的离子电导率为2.31 × 10−4 S cm−1,以PSE为电解质的全固态Li/NCM622纽扣电池在0.1C时的放电容量为129.5 mAh g−1,库仑效率为98%。此外,含有ei的PSE表现出更好的机械强度,使柔性全固态锂金属电池袋芯的制造成为可能。本研究为使用粘土基填料的聚乙烯基复合材料的设计提供了有价值的见解。
{"title":"Mechanically reinforced solid-state polymer electrolyte using illite filler for flexible all-solid-state Li-metal batteries","authors":"Jaesub Lee , Jeong-Jin Yang , Beomgi Kim , Sunkyung You , Jae-Kwang Kim , Young-Ran Lee , Seongki Ahn , Jeha Kim , Hong-Il Kim","doi":"10.1016/j.elecom.2025.108046","DOIUrl":"10.1016/j.elecom.2025.108046","url":null,"abstract":"<div><div>Solid-state electrolytes have attracted significant attention due to their high safety, mechanical stability, and compatibility with lithium metal anodes, making them a critical component in the development of next-generation all-solid-state batteries. Polymer-based solid electrolytes (PSEs) offer advantages such as flexibility, processability, and good interfacial contact with electrodes but suffer from low structural stability. In this study, PSEs were fabricated by photopolymerization from ethoxylated trimethylolpropane triacrylate and expanded illite (EI) functional filler. The PSEs synthesized with 4 wt% EI show a favorable ionic conductivity of 2.31 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25 °C and an all-solid-state Li/NCM622 coin cell using the PSE as the electrolyte delivered a discharge capacity of 129.5 mAh g<sup><strong>−</strong>1</sup> at 0.1C with 98 % Coulombic efficiency. In addition, the EI-containing PSE exhibited improved mechanical strength, enabling the fabrication of a flexible all-solid-state Li-metal battery pouch cell. This study offers valuable insight into the design of PSEs using clay-based fillers.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108046"},"PeriodicalIF":4.2,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145046912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01DOI: 10.1016/j.elecom.2025.108039
Sang Bum Lee , Kwang-Mo Kang , Ji-Hyeong Lee , Yoon-Chae Nah
This study demonstrates a significant enhancement in reversible metal electrodeposition devices (RMEDs) through a systematic activation process using a silver‑copper electrolyte system. An electrode conditioning protocol employing a wider voltage range cyclic voltammetry (−3.5 V to 1.3 V) was developed to enable robust four-state optical switching beyond traditional transparent-mirror operation. The activation process resulted in a 63.6% increase in electrochemical activity and improved coloration efficiency, increasing from 43.2 to 54.7 cm2/C. Using an optimized step-voltage method, vivid red and blue color states were achieved, with transmittance modulation increasing from 26.2% to 58.9% for red color and from 56.9% to 63.0% for blue color after activation. The four-state device demonstrated excellent long-term stability, maintaining consistent optical performance over 6000 s of continuous cycling without degradation. This work establishes electrode activation as a key advancement for practical smart window applications, offering both aesthetic versatility through multicolor options and operational reliability for commercial use.
{"title":"Activation-enhanced four-state electrochromic mirrors with enhanced optical performance","authors":"Sang Bum Lee , Kwang-Mo Kang , Ji-Hyeong Lee , Yoon-Chae Nah","doi":"10.1016/j.elecom.2025.108039","DOIUrl":"10.1016/j.elecom.2025.108039","url":null,"abstract":"<div><div>This study demonstrates a significant enhancement in reversible metal electrodeposition devices (RMEDs) through a systematic activation process using a silver‑copper electrolyte system. An electrode conditioning protocol employing a wider voltage range cyclic voltammetry (−3.5 V to 1.3 V) was developed to enable robust four-state optical switching beyond traditional transparent-mirror operation. The activation process resulted in a 63.6% increase in electrochemical activity and improved coloration efficiency, increasing from 43.2 to 54.7 cm<sup>2</sup>/C. Using an optimized step-voltage method, vivid red and blue color states were achieved, with transmittance modulation increasing from 26.2% to 58.9% for red color and from 56.9% to 63.0% for blue color after activation. The four-state device demonstrated excellent long-term stability, maintaining consistent optical performance over 6000 s of continuous cycling without degradation. This work establishes electrode activation as a key advancement for practical smart window applications, offering both aesthetic versatility through multicolor options and operational reliability for commercial use.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108039"},"PeriodicalIF":4.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}