首页 > 最新文献

Electrochemistry Communications最新文献

英文 中文
Long-term electrochemical characterization of novel Sr2FeMo0.65Ni0.35O6−δ fuel electrode for high-temperature steam electrolysis in solid oxide cells 用于固体氧化物电池高温蒸汽电解的新型 Sr2FeMo0.65Ni0.35O6-δ 燃料电极的长期电化学特性分析
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-31 DOI: 10.1016/j.elecom.2024.107799
Stephanie E. Wolf , Vaibhav Vibhu , Pritam K. Chakraborty , Shibabrata Basak , Izaak C. Vinke , L.G.J. (Bert) de Haart , Rüdiger-A. Eichel

The present study focuses on the highly catalytic double-perovskite Sr2FeMo0.65Ni0.35O6−δ (SFMNi) fuel electrode material for Solid Oxide Electrolysis Cells (SOECs). The electrolyte-supported single button cells with the highly active SFMNi fuel electrode were electrochemically characterized between 900 °C down to 750 °C in steam and co-electrolysis conditions using DC- and AC-techniques. The cells achieved current densities of −1.62 A cm−2 and −1.74 A cm−2 at 900 °C under steam and co-electrolysis conditions, respectively, exceeding the performance of cells with Ni-8YSZ fuel electrodes by ∼65–79 % and Ni-GDC fuel electrodes by 24–28 %. The post-test SEM-EDX analyses of the as-prepared and tested cells’ cross-section showed increased pore formation and particle growth of the SFMNi fuel electrode after testing in the humidified atmosphere for 500 h.

本研究的重点是用于固体氧化物电解电池(SOECs)的高催化双过氧化物 Sr2FeMo0.65Ni0.35O6-δ (SFMNi)燃料电极材料。采用直流和交流技术,在 900 ℃ 至 750 ℃ 的蒸汽和共电解条件下,对采用高活性 SFMNi 燃料电极的电解质支撑单扣电池进行了电化学表征。在 900 °C 蒸汽和共电解条件下,电池的电流密度分别达到 -1.62 A cm-2 和 -1.74 A cm-2,比采用 Ni-8YSZ 燃料电极的电池性能高出 65-79 %,比采用 Ni-GDC 燃料电极的电池性能高出 24-28 %。测试后对制备和测试电池横截面进行的 SEM-EDX 分析表明,在加湿气氛中测试 500 小时后,SFMNi 燃料电极的孔隙形成和颗粒生长增加。
{"title":"Long-term electrochemical characterization of novel Sr2FeMo0.65Ni0.35O6−δ fuel electrode for high-temperature steam electrolysis in solid oxide cells","authors":"Stephanie E. Wolf ,&nbsp;Vaibhav Vibhu ,&nbsp;Pritam K. Chakraborty ,&nbsp;Shibabrata Basak ,&nbsp;Izaak C. Vinke ,&nbsp;L.G.J. (Bert) de Haart ,&nbsp;Rüdiger-A. Eichel","doi":"10.1016/j.elecom.2024.107799","DOIUrl":"10.1016/j.elecom.2024.107799","url":null,"abstract":"<div><p>The present study focuses on the highly catalytic double-perovskite Sr<sub>2</sub>FeMo<sub>0.65</sub>Ni<sub>0.35</sub>O<sub>6−δ</sub> (SFMNi) fuel electrode material for Solid Oxide Electrolysis Cells (SOECs). The electrolyte-supported single button cells with the highly active SFMNi fuel electrode were electrochemically characterized between 900 °C down to 750 °C in steam and co-electrolysis conditions using DC- and AC-techniques. The cells achieved current densities of −1.62 A cm<sup>−2</sup> and −1.74 A cm<sup>−2</sup> at 900 °C under steam and co-electrolysis conditions, respectively, exceeding the performance of cells with Ni-8YSZ fuel electrodes by ∼65–79 % and Ni-GDC fuel electrodes by 24–28 %. The post-test SEM-EDX analyses of the as-prepared and tested cells’ cross-section showed increased pore formation and particle growth of the SFMNi fuel electrode after testing in the humidified atmosphere for 500 h.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107799"},"PeriodicalIF":4.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001425/pdfft?md5=496966460028e72da99245cef877861c&pid=1-s2.0-S1388248124001425-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode 通过硫阴极的催化伪 8 电子氧化还原反应补救锂硫电池中的穿梭效应
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-23 DOI: 10.1016/j.elecom.2024.107797
Dantong Qiu, Huainan Qu, Dong Zheng, Xiaoxiao Zhang, Deyang Qu

A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (Sx2-, where 3 < x < 7) undergo rapid disproportionation into elemental sulfur (S8) and Li2S2, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as S8+8Li++8e4Li2S2. In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li2S2 within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.

通过促进锂硫电池中高阶多硫离子的歧化,实现了硫的催化伪 8 电子氧化还原反应。电化学生成的多硫离子(Sx2-,其中 3 < x < 7)在双功能碳宿主/催化剂的催化下迅速歧化为元素硫(S8)和 Li2S2。硫阴极的整体催化氧化还原反应表现为 S8+8Li++8e⇌4Li2S2。与多硫离子的物理或化学封闭方法不同,这种方法通过将电解液中的可溶性多硫化物迅速转化为阴极基质中的元素硫和不溶性 Li2S2 来消除穿梭效应。因此,溶解的多硫化物与锂阳极之间的不利化学作用得到了缓解。
{"title":"Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode","authors":"Dantong Qiu,&nbsp;Huainan Qu,&nbsp;Dong Zheng,&nbsp;Xiaoxiao Zhang,&nbsp;Deyang Qu","doi":"10.1016/j.elecom.2024.107797","DOIUrl":"10.1016/j.elecom.2024.107797","url":null,"abstract":"<div><p>A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (S<sub>x</sub><sup>2-</sup>, where 3 &lt; x &lt; 7) undergo rapid disproportionation into elemental sulfur (S<sub>8</sub>) and Li<sub>2</sub>S<sub>2</sub>, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as <span><math><mrow><msub><mi>S</mi><mn>8</mn></msub><mo>+</mo><msup><mrow><mn>8</mn><mi>L</mi><mi>i</mi></mrow><mo>+</mo></msup><mo>+</mo><mn>8</mn><mi>e</mi><mo>⇌</mo><msub><mrow><mn>4</mn><mi>L</mi><mi>i</mi></mrow><mn>2</mn></msub><msub><mi>S</mi><mn>2</mn></msub></mrow></math></span>. In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li<sub>2</sub>S<sub>2</sub> within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107797"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001401/pdfft?md5=cc77affa7850ff5b0ffee23757edfd90&pid=1-s2.0-S1388248124001401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells 用于固体氧化物燃料电池的构型熵无钴 Bi0.5Sr0.5FeO3-δ 阴极催化剂的先进电催化性能
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-23 DOI: 10.1016/j.elecom.2024.107795
Shichao Zhang, Qiang Li, Liping Sun, Hui Zhao

The medium-entropy perovskite oxide Bi0.5Sr0.5Fe0.85Nb0.05Ta0.05Sb0.05O3–δ (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO2 tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm2. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm−2. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO2 tolerance and durability in a CO2-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.

该研究评估了中熵包晶氧化物 Bi0.5Sr0.5Fe0.85Nb0.05Ta0.05Sb0.05O3-δ (BSFNTS)作为固体氧化物燃料电池(SOFC)潜在阴极催化剂的性能。对晶体结构、电催化活性、氧还原动力学和二氧化碳耐受性进行了系统研究。700 °C 时,BSFNTS 阴极表现出优异的电化学性能,极化电阻低至 0.095 Ω cm2。使用 BSFNTS 阴极的燃料电池的最大功率密度为 900 mW cm-2。此外,电极氧还原反应(ORR)的速率控制步骤主要是氧分子的吸附和扩散过程。BSFNTS 电极在含二氧化碳的大气中具有优异的二氧化碳耐受性和耐久性,这与 Bi、Nb、Ta 和 Sb 阳离子的高酸度以及 BSFNTS 较高的平均键能有关。初步研究结果表明,BSFNTS 中熵氧化物是一种极具吸引力的 SOFC 阴极电催化剂。
{"title":"Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells","authors":"Shichao Zhang,&nbsp;Qiang Li,&nbsp;Liping Sun,&nbsp;Hui Zhao","doi":"10.1016/j.elecom.2024.107795","DOIUrl":"10.1016/j.elecom.2024.107795","url":null,"abstract":"<div><p>The medium-entropy perovskite oxide Bi<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.85</sub>Nb<sub>0.05</sub>Ta<sub>0.05</sub>Sb<sub>0.05</sub>O<sub>3–</sub><em><sub>δ</sub></em> (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO<sub>2</sub> tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm<sup>2</sup>. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm<sup>−2</sup>. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO<sub>2</sub> tolerance and durability in a CO<sub>2</sub>-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107795"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001383/pdfft?md5=aea0ca4e15480e99e282a5004080971a&pid=1-s2.0-S1388248124001383-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relatively low temperature defluorination and carbon coating in CFx by dimethyl silicone oil/polyethylene glycol for enhancing performance of lithium primary battery 用二甲基硅油/聚乙二醇在 CFx 中进行相对低温脱氟和碳涂层,以提高锂原电池的性能
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-23 DOI: 10.1016/j.elecom.2024.107796
Xu Bi , Xiaotong Guo , Wencheng Song , Dandan Shi , Shuyue Tan , Youzheng Sun , Weiye Zhang , Hao Kang , Yanyan Li , Han Dai , Junfeng Zhao

Because of the presence of electrochemically inactive C-F2 bond and poor electronic conductivity of C-F, the discharge performance of lithium fluorocarbon (Li/CFx) batteries is limited, despite their extensive use in commercial fields. In this study, dimethyl silicone oil/polyethylene glycol was adopted to improve the performance of CFx through relatively low temperature (350 °C) defluorination and carbon coating. The uniform mixing of dimethyl silicone oil with CFx and the subsequent gas–solid reaction enables mild defluorination, transforming C-F2 into semi-ionic C-F with high conductivity. Furthermore, this dimethyl silicone oil/ polyethylene glycol treated CFx under 350 °C prevent the thermal decomposition of C-F during both of the defluorination and carbon coating process, resulting in improving the electrical performance and capacity protection of CFx. Specifically, the modified CFx cathode exhibits a 2.7 V discharge platform, a discharge capacity of 859.1 mAh/g and the energy density of 1889.7 Wh kg−1 at 0.01C. This approach allows for large scale adjustments of CFx with excellent performance, making it easy to industrialization.

由于氟碳锂电池(Li/CFx)中存在电化学不活泼的 C-F2 键,且 C-F 的电子导电性较差,因此尽管其在商业领域得到了广泛应用,但其放电性能却十分有限。本研究采用二甲基硅油/聚乙二醇,通过相对较低的温度(350 °C)脱氟和碳涂层来改善 CFx 的性能。二甲基硅油与 CFx 的均匀混合以及随后的气固反应实现了温和的脱氟,将 C-F2 转化为具有高导电性的半离子 C-F。此外,这种二甲基硅油/聚乙二醇处理的 CFx 在 350 ℃ 下可防止 C-F 在脱氟和涂碳过程中发生热分解,从而改善 CFx 的电气性能和容量保护。具体而言,改进后的 CFx 阴极在 0.01C 时的放电平台电压为 2.7 V,放电容量为 859.1 mAh/g,能量密度为 1889.7 Wh kg-1。这种方法可以大规模调整性能优异的 CFx,使其易于产业化。
{"title":"Relatively low temperature defluorination and carbon coating in CFx by dimethyl silicone oil/polyethylene glycol for enhancing performance of lithium primary battery","authors":"Xu Bi ,&nbsp;Xiaotong Guo ,&nbsp;Wencheng Song ,&nbsp;Dandan Shi ,&nbsp;Shuyue Tan ,&nbsp;Youzheng Sun ,&nbsp;Weiye Zhang ,&nbsp;Hao Kang ,&nbsp;Yanyan Li ,&nbsp;Han Dai ,&nbsp;Junfeng Zhao","doi":"10.1016/j.elecom.2024.107796","DOIUrl":"10.1016/j.elecom.2024.107796","url":null,"abstract":"<div><p>Because of the presence of electrochemically inactive C-F<sub>2</sub> bond and poor electronic conductivity of C-F, the discharge performance of lithium fluorocarbon (Li/CF<sub>x</sub>) batteries is limited, despite their extensive use in commercial fields. In this study, dimethyl silicone oil/polyethylene glycol was adopted to improve the performance of CF<sub>x</sub> through relatively low temperature (350 °C) defluorination and carbon coating. The uniform mixing of dimethyl silicone oil with CF<sub>x</sub> and the subsequent gas–solid reaction enables mild defluorination, transforming C-F<sub>2</sub> into semi-ionic C-F with high conductivity. Furthermore, this dimethyl silicone oil/ polyethylene glycol treated CF<sub>x</sub> under 350 °C prevent the thermal decomposition of C-F during both of the defluorination and carbon coating process, resulting in improving the electrical performance and capacity protection of CF<sub>x</sub>. Specifically, the modified CF<sub>x</sub> cathode exhibits a 2.7 V discharge platform, a discharge capacity of 859.1 mAh/g and the energy density of 1889.7 Wh kg<sup>−1</sup> at 0.01C. This approach allows for large scale adjustments of CF<sub>x</sub> with excellent performance, making it easy to industrialization.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107796"},"PeriodicalIF":4.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001395/pdfft?md5=3fdf55572417d0f8e4e69bdd038cd7f1&pid=1-s2.0-S1388248124001395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic nitrogen reduction in continuous-flow cell via water oxidation at ambient conditions: Promising for ammonia or diazene? 连续流电池在环境条件下通过水氧化进行电催化氮还原:有望用于氨或重氮?
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-13 DOI: 10.1016/j.elecom.2024.107794
Susanta Bera , Rutger van der Breggen , Pramod Patil Kunturu, Stefan Welzel, Mihalis N. Tsampas

Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N2) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N2 feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled 15N2 and by replacing the anodic water feed with isotopic labeled D2O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N2H2) resulted from genuine N2 reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.

电化学氮还原反应(eNRR)被认为是传统高能耗化石催化过程(如哈伯-博世)的替代性绿色方法。在本研究中,我们在质子交换膜(PEM)水电解槽中实施了 eNRR,在阴极中加入氮气(N2)。这种运行模式被认为是克服传质限制的一种方法,但目前还缺乏用于适当产品识别的评估协议。在此,我们将结合在线产品分析和同位素标记,在设备层面体现气相操作评估协议的精神。我们的方案包括用 (i) 惰性气体(即 Ar)和 (ii) 同位素标记的 15N2 取代阴极 N2 供料,以及用同位素标记的 D2O 取代阳极水供料的控制实验。利用阴极气相操作的优势,通过在线技术,即四极质谱仪(QMS)和傅立叶变换红外光谱仪(FTIR),实现了产品分析。这使我们能够验证重氮(N2H2)的产生是真正的 N2 还原,而不是含氮污染物。我们的方法为如何消除气相研究中的假阳性结果提供了一种途径,也为在阴极中使用有前景或特殊催化剂的后续研究提供了一个平台,特别是为了验证 eNRR 产品或发现更多产品。
{"title":"Electrocatalytic nitrogen reduction in continuous-flow cell via water oxidation at ambient conditions: Promising for ammonia or diazene?","authors":"Susanta Bera ,&nbsp;Rutger van der Breggen ,&nbsp;Pramod Patil Kunturu,&nbsp;Stefan Welzel,&nbsp;Mihalis N. Tsampas","doi":"10.1016/j.elecom.2024.107794","DOIUrl":"10.1016/j.elecom.2024.107794","url":null,"abstract":"<div><p>Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N<sub>2</sub>) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N<sub>2</sub> feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled <sup>15</sup>N<sub>2</sub> and by replacing the anodic water feed with isotopic labeled D<sub>2</sub>O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N<sub>2</sub>H<sub>2</sub>) resulted from genuine N<sub>2</sub> reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107794"},"PeriodicalIF":4.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001371/pdfft?md5=911aed3ca326b99090808ff73df865b1&pid=1-s2.0-S1388248124001371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Cu(200)/Ti cathode for the enhancement of N2 selectivity in direct ammonia electrolysis: The controls of Cu cathode facet orientation 用于提高直接氨电解中 N2 选择性的新型 Cu(200)/Ti 阴极:对铜阴极面取向的控制
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-08-05 DOI: 10.1016/j.elecom.2024.107793
Ming-Han Tsai , Yaju Juang , Chi-Chang Hu , Shih-Hua Chen , Lap-Cuong Hua , Chihpin Huang

Direct electrochemical ammonia oxidation reaction (AOR) using NiCu-based anodes is effective in removing ammonia from wastewater. However, this type of anode frequently produces undesired byproducts NO3. Here, we investigated three configurations of novel Cu/Ti cathodes (Cu(1 1 1)/Ti, Cu(2 0 0)/Ti, Cu(2 2 0)/Ti) coupled with Cu/Ni foam (Cu/NF) anode to enhance N2 selectivity (SN2) in a direct ammonia electrolysis cell. Cu(2 0 0)/Ti cathode improved SN2 from 35 % (bare Ti cathode) to 60 % and it achieved 10–15 % higher SN2 compared to Cu(1 1 1)/Ti and Cu(2 2 0)/Ti. The improvement of SN2 on Cu(2 0 0) facet was ascribed to the high nitrate electroreduction activity and its conversion to N2. In real wastewater, Cu/NF anode-Cu(2 0 0)/Ti cathode paired electrolysis system demonstrated its excellent capability of 88 % NH3 removal with 95 % SN2. Our electrolysis system was capable to maintain the residual NH3-N and the NO3-N below 8 mg L−1, meeting effluent discharge standards. Our findings highlighted the importance of the control of Cu cathode facet orientations for an efficient elimination of NO3 and improvement of N2 production during direct ammonia electrolysis.

使用镍铜阳极的直接电化学氨氧化反应(AOR)可有效去除废水中的氨。然而,这种阳极经常会产生不良副产物 NO。在此,我们研究了三种新型铜/钛阴极(Cu(111)/Ti、Cu(200)/Ti、Cu(220)/Ti)与铜/镍泡沫(Cu/NF)阳极的配置,以提高直接氨电解池中的氮选择性(SN)。与 Cu(111)/Ti 和 Cu(220)/Ti 相比,Cu(200)/Ti 阴极的氮选择性从 35%(裸 Ti 阴极)提高到 60%,氮选择性提高了 10-15%。在实际废水中,Cu/NF 阳极-Cu(200)/Ti 阴极配对电解系统表现出卓越的能力,NH 去除率达 88%,SN 为 95%。我们的电解系统能够将残留 NH-N 和 NO-N 维持在 8 mg L 以下,达到污水排放标准。我们的研究结果凸显了在直接氨电解过程中控制铜阴极面取向对于高效去除氮氧化物和提高氮产量的重要性。
{"title":"Novel Cu(200)/Ti cathode for the enhancement of N2 selectivity in direct ammonia electrolysis: The controls of Cu cathode facet orientation","authors":"Ming-Han Tsai ,&nbsp;Yaju Juang ,&nbsp;Chi-Chang Hu ,&nbsp;Shih-Hua Chen ,&nbsp;Lap-Cuong Hua ,&nbsp;Chihpin Huang","doi":"10.1016/j.elecom.2024.107793","DOIUrl":"10.1016/j.elecom.2024.107793","url":null,"abstract":"<div><p>Direct electrochemical ammonia oxidation reaction (AOR) using NiCu-based anodes is effective in removing ammonia from wastewater. However, this type of anode frequently produces undesired byproducts NO<sub>3</sub><sup>−</sup>. Here, we investigated three configurations of novel Cu/Ti cathodes (Cu(1<!--> <!-->1<!--> <!-->1)/Ti, Cu(2<!--> <!-->0<!--> <!-->0)/Ti, Cu(2<!--> <!-->2<!--> <!-->0)/Ti) coupled with Cu/Ni foam (Cu/NF) anode to enhance N<sub>2</sub> selectivity (SN<sub>2</sub>) in a direct ammonia electrolysis cell. Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode improved SN<sub>2</sub> from 35 % (bare Ti cathode) to 60 % and it achieved 10–15 % higher SN<sub>2</sub> compared to Cu(1<!--> <!-->1<!--> <!-->1)/Ti and Cu(2<!--> <!-->2<!--> <!-->0)/Ti. The improvement of SN<sub>2</sub> on Cu(2<!--> <!-->0<!--> <!-->0) facet was ascribed to the high nitrate electroreduction activity and its conversion to N<sub>2</sub>. In real wastewater, Cu/NF anode-Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode paired electrolysis system demonstrated its excellent capability of 88 % NH<sub>3</sub> removal with 95 % SN<sub>2</sub>. Our electrolysis system was capable to maintain the residual NH<sub>3</sub>-N and the NO<sub>3</sub>-N below 8 mg L<sup>−1</sup>, meeting effluent discharge standards. Our findings highlighted the importance of the control of Cu cathode facet orientations for an efficient elimination of NO<sub>3</sub><sup>–</sup> and improvement of N<sub>2</sub> production during direct ammonia electrolysis.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107793"},"PeriodicalIF":4.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400136X/pdfft?md5=68cde13eb19ccf745d3d627e9a46acf5&pid=1-s2.0-S138824812400136X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving rate performance of FeC2O4/rGO composites on lithium storage via single-polymerization‐induced electrostatic self‐assembly 通过单聚合诱导静电自组装提高 FeC2O4/rGO 复合材料的锂存储速率性能
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-07-30 DOI: 10.1016/j.elecom.2024.107791
Keqi Chen , Zengmou Li , Keyu Zhang , Dingfang Cui , Rui Yan , Minghao Ye , Bin Yang , Yaochun Yao

Based on the wide interlayer distance for ions diffusion, iron (II) oxalate exhibits excellent lithium storage ability. However, the local deposition of metallic nanoparticles of Fe0 leads to low electrochemical reactivity, which hinders the actual application of FeC2O4 in large current regions (>5C). To solve this problem, a strong cationic polymeric electrolyte, polyelectrolyte diallyl dimethyl ammonium (PDDA), was introduced to construct a [FeC2O4(PDDA)]+ ligand. By single-polymerization‐induced electrostatic self-assembly, the [FeC2O4(PDDA)]+ ligand was combined with the surface-charged rGO to produce a FeC2O4/rGO material. It is proved that the rGO carrier improves the interparticle conductivity, electrochemical activity and structure stability of the iron (II) oxalate particles, ensuring the stability of Li || FeC2O4/rGO battery at a rapid charging rate of 20C (8 A g−1) for more than 500 cycles (with the special capacity of 713 mAh g−1). Compared with FeC2O4 electrode, owning to high reactivity of rGO and continuously activating on the nanoscale Fe metal generated at ∼0.75 V, FeC2O4/rGO shows higher electrochemical activity of conversion reaction in the first 50 cycles and better reversibility in the rate charge–discharge test (the capacity rapidly increased to 1158.8 mAh g−1 after 20C cycles). This work reveals how the structural design of conducting and supporting the carrier can achieve fast charging for iron (II) oxalate lithium-ion batteries.

由于离子扩散的层间距离较宽,草酸铁(II)具有出色的锂存储能力。然而,金属纳米铁颗粒的局部沉积导致电化学反应活性较低,从而阻碍了 FeCO 在大电流区域(>5C)的实际应用。为了解决这个问题,我们引入了一种强阳离子聚合物电解质--聚电解质二烯丙基二甲基铵(PDDA),构建了一种[FeCO(PDDA)]配体。通过单聚合诱导的静电自组装,[FeCO(PDDA)] 配体与表面带电的 rGO 结合生成了 FeCO/rGO 材料。实验证明,rGO 载体提高了草酸铁(II)颗粒的颗粒间导电性、电化学活性和结构稳定性,确保了锂离子电池在 20C 快速充电速率下(8 A g)500 次以上循环(特殊容量为 713 mAh g)的稳定性。与 FeCO 电极相比,由于 rGO 的高反应活性和在∼0.75 V 时产生的纳米级铁金属上的持续活化,FeCO/rGO 在前 50 个循环中表现出更高的转化反应电化学活性,并且在速率充放电测试中表现出更好的可逆性(20C 循环后容量迅速增至 1158.8 mAh g)。这项工作揭示了导电和支撑载体的结构设计如何实现草酸铁(II)锂离子电池的快速充电。
{"title":"Improving rate performance of FeC2O4/rGO composites on lithium storage via single-polymerization‐induced electrostatic self‐assembly","authors":"Keqi Chen ,&nbsp;Zengmou Li ,&nbsp;Keyu Zhang ,&nbsp;Dingfang Cui ,&nbsp;Rui Yan ,&nbsp;Minghao Ye ,&nbsp;Bin Yang ,&nbsp;Yaochun Yao","doi":"10.1016/j.elecom.2024.107791","DOIUrl":"10.1016/j.elecom.2024.107791","url":null,"abstract":"<div><p>Based on the wide interlayer distance for ions diffusion, iron (II) oxalate exhibits excellent lithium storage ability. However, the local deposition of metallic nanoparticles of Fe<sup>0</sup> leads to low electrochemical reactivity, which hinders the actual application of FeC<sub>2</sub>O<sub>4</sub> in large current regions (&gt;5C). To solve this problem, a strong cationic polymeric electrolyte, polyelectrolyte diallyl dimethyl ammonium (PDDA), was introduced to construct a [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand. By single-polymerization‐induced electrostatic self-assembly, the [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand was combined with the surface-charged rGO to produce a FeC<sub>2</sub>O<sub>4</sub>/rGO material. It is proved that the rGO carrier improves the interparticle conductivity, electrochemical activity and structure stability of the iron (II) oxalate particles, ensuring the stability of Li || FeC<sub>2</sub>O<sub>4</sub>/rGO battery at a rapid charging rate of 20C (8 A g<sup>−1</sup>) for more than 500 cycles (with the special capacity of 713 mAh g<sup>−1</sup>). Compared with FeC<sub>2</sub>O<sub>4</sub> electrode, owning to high reactivity of rGO and continuously activating on the nanoscale Fe metal generated at ∼0.75 V, FeC<sub>2</sub>O<sub>4</sub>/rGO shows higher electrochemical activity of conversion reaction in the first 50 cycles and better reversibility in the rate charge–discharge test (the capacity rapidly increased to 1158.8 mAh g<sup>−1</sup> after 20C cycles). This work reveals how the structural design of conducting and supporting the carrier can achieve fast charging for iron (II) oxalate lithium-ion batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107791"},"PeriodicalIF":4.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001346/pdfft?md5=927af48ce748b51866f302ce763ebc80&pid=1-s2.0-S1388248124001346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic study of the N concentration effects on metal-free ORR electrocatalysts derived from corncob: Less is more 系统研究氮浓度对玉米芯无金属 ORR 电催化剂的影响少即是多
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-07-29 DOI: 10.1016/j.elecom.2024.107792
J.C. Martínez-Loyola , M.A. Carrasco-Cordero , I.L. Alonso-Lemus , F.J. Rodríguez-Varela , P. Bartolo-Pérez , B. Escobar-Morales , Y.I. Vega-Cantú , F.J. Rodríguez-Macías

We report nitrogen-doped biomass-derived porous carbon materials with great performance for the Oxygen Reduction Reaction (ORR) in alkaline media. The level of nitrogen doping in a simple pyrolysis of corncob (CC) was varied systematically, a 1:1 CC:urea ratio (CC1U) gave the best performance in terms of onset potential (Eonset = 0.97 V vs. RHE), maximum current density (jmax = -3.22 mA cm−2), hydroperoxide ion yield (%HO2 = 1.18 % at 0.5 V), and electron transfer number (n = 3.86 at 0.5 V). Unexpectedly, for higher CC:urea ratios the doping decreases, instead of plateauing, with lower concentration of C-N sites and more sp2 sites as determined by XPS, as well as lower specific surface area (SSA), while increasing both porosity and carbon (0 0 2) interplanar distance (d(0 0 2)). These materials should be durable and robust, since their performance actually improved after accelerated degradation tests. This study proves that renewable “waste” can be upconverted into metal-free electrocatalysts for electrochemical energy conversion technologies and emphasizes the need for studying and controlling doping levels to enhance performance.

我们报告了掺氮的生物质衍生多孔碳材料在碱性介质中发生氧还原反应(ORR)的优异性能。我们系统地改变了玉米芯(CC)简单热解过程中的氮掺杂水平,在起始电位(E = 0.97 V vs. RHE)、最大电流密度(j = -3.22 mA cm)、过氧化氢离子产率(%HO = 1.18 %,0.5 V 时)和电子转移数(= 3.86,0.5 V 时)方面,CC:尿素比为 1:1 的 CC(CC)具有最佳性能。出乎意料的是,CC:脲的比率越高,掺杂程度越低,而不是趋于稳定,C-N 位点的浓度越低,XPS 测定的 sp 位点越多,比表面积(SSA)也越低,同时孔隙率和碳(002)的平面间距()都有所增加。这些材料应该经久耐用、坚固耐用,因为经过加速降解测试后,它们的性能确实有所提高。这项研究证明,可再生 "废物 "可转化为用于电化学能量转换技术的无金属电催化剂,并强调了研究和控制掺杂水平以提高性能的必要性。
{"title":"Systematic study of the N concentration effects on metal-free ORR electrocatalysts derived from corncob: Less is more","authors":"J.C. Martínez-Loyola ,&nbsp;M.A. Carrasco-Cordero ,&nbsp;I.L. Alonso-Lemus ,&nbsp;F.J. Rodríguez-Varela ,&nbsp;P. Bartolo-Pérez ,&nbsp;B. Escobar-Morales ,&nbsp;Y.I. Vega-Cantú ,&nbsp;F.J. Rodríguez-Macías","doi":"10.1016/j.elecom.2024.107792","DOIUrl":"10.1016/j.elecom.2024.107792","url":null,"abstract":"<div><p>We report nitrogen-doped biomass-derived porous carbon materials with great performance for the Oxygen Reduction Reaction (ORR) in alkaline media. The level of nitrogen doping in a simple pyrolysis of corncob (CC) was varied systematically, a 1:1 CC:urea ratio (CC<sub>1U</sub>) gave the best performance in terms of onset potential (E<sub>onset</sub> = 0.97 V vs. RHE), maximum current density (j<em><sub>max</sub></em> = -3.22 mA cm<sup>−2</sup>), hydroperoxide ion yield (%HO<sub>2</sub><sup>–</sup> = 1.18 % at 0.5 V), and electron transfer number (<em>n</em> = 3.86 at 0.5 V). Unexpectedly, for higher CC:urea ratios the doping decreases, instead of plateauing, with lower concentration of C-N sites and more sp<sup>2</sup> sites as determined by XPS, as well as lower specific surface area (SSA), while increasing both porosity and carbon (0<!--> <!-->0<!--> <!-->2) interplanar distance (<em>d</em><sub>(0<!--> <!-->0<!--> <!-->2)</sub>). These materials should be durable and robust, since their performance actually improved after accelerated degradation tests. This study proves that renewable “waste” can be upconverted into metal-free electrocatalysts for electrochemical energy conversion technologies and emphasizes the need for studying and controlling doping levels to enhance performance.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107792"},"PeriodicalIF":4.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001358/pdfft?md5=b8c83f3ca7b21f570f3fd95d2ee38a05&pid=1-s2.0-S1388248124001358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of cations in hydrogen evolution reaction on a platinum electrode in mildly acidic media 阳离子在弱酸性介质中铂电极上的氢进化反应中的作用
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-07-26 DOI: 10.1016/j.elecom.2024.107784
Chunmiao Ye, Xuan Liu, Marc T.M. Koper

In this work, we study the influence of cation concentration and identity on the hydrogen evolution reaction (HER) on polycrystalline platinum (Pt) electrode in pH 3 electrolytes. Our observations indicate that cations in the electrolyte do not affect proton reduction at low potentials. However, an increase in cation concentration significantly enhances water reduction. Simultaneously, we identify a non-negligible migration current under mass transport limited conditions in electrolytes with low cation concentration. To separate migration effects from specific cation-promotion effects on HER, we carried out further experiments with electrolytes with mixtures of Li+ and K+ cations. Our results show that, adding strongly hydrated cations (Li+) to a K+-containing electrolyte leads to a less negative onset potential of water reduction. Interfacial pH measurements reveal a same interfacial pH at the platinum electrode in pH 3 in the presence of 80 mM LiClO4 and KClO4, respectively, at potentials where water reduction occurs. Based on these results, we suggest that under the current conditions, the strongly hydrated cations (Li+) promote water dissociation on the Pt electrode more favorably in comparison with the more weakly hydrated cations (K+), and that this promotion is not related to a local pH effect.

在这项工作中,我们研究了阳离子浓度和特性对多晶铂(Pt)电极在 pH 值为 3 的电解质中氢进化反应(HER)的影响。我们的观察结果表明,电解质中的阳离子在低电位时不影响质子还原。然而,阳离子浓度的增加会显著增强水的还原。同时,我们还发现在阳离子浓度较低的电解质中,在质量传输受限的条件下存在不可忽略的迁移电流。为了将迁移效应与特定阳离子对 HER 的促进效应区分开来,我们在含有 Li+ 和 K+ 阳离子混合物的电解质中进行了进一步的实验。我们的结果表明,在含 K+ 的电解质中加入强水合阳离子(Li+)会导致水还原的起始电位较低。界面 pH 值测量结果表明,在 pH 值为 3 的铂电极上,在分别含有 80 mM LiClO4 和 KClO4 的情况下,发生水还原的电位具有相同的界面 pH 值。根据这些结果,我们认为在当前条件下,强水合阳离子(Li+)与弱水合阳离子(K+)相比,更有利于促进铂电极上的水解离,而且这种促进作用与局部 pH 值效应无关。
{"title":"The role of cations in hydrogen evolution reaction on a platinum electrode in mildly acidic media","authors":"Chunmiao Ye,&nbsp;Xuan Liu,&nbsp;Marc T.M. Koper","doi":"10.1016/j.elecom.2024.107784","DOIUrl":"10.1016/j.elecom.2024.107784","url":null,"abstract":"<div><p>In this work, we study the influence of cation concentration and identity on the hydrogen evolution reaction (HER) on polycrystalline platinum (Pt) electrode in pH 3 electrolytes. Our observations indicate that cations in the electrolyte do not affect proton reduction at low potentials. However, an increase in cation concentration significantly enhances water reduction. Simultaneously, we identify a non-negligible migration current under mass transport limited conditions in electrolytes with low cation concentration. To separate migration effects from specific cation-promotion effects on HER, we carried out further experiments with electrolytes with mixtures of Li<sup>+</sup> and K<sup>+</sup> cations. Our results show that, adding strongly hydrated cations (Li<sup>+</sup>) to a K<sup>+</sup>-containing electrolyte leads to a less negative onset potential of water reduction. Interfacial pH measurements reveal a same interfacial pH at the platinum electrode in pH 3 in the presence of 80 mM LiClO<sub>4</sub> and KClO<sub>4</sub>, respectively, at potentials where water reduction occurs. Based on these results, we suggest that under the current conditions, the strongly hydrated cations (Li<sup>+</sup>) promote water dissociation on the Pt electrode more favorably in comparison with the more weakly hydrated cations (K<sup>+</sup>), and that this promotion is not related to a local pH effect.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107784"},"PeriodicalIF":4.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001279/pdfft?md5=9b10761716ee3d3b836bf23ec03236ce&pid=1-s2.0-S1388248124001279-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidally synthesized Cu3VS4 nanocrystals as a long cycling anode material for sodium-ion batteries 胶体合成的 Cu3VS4 纳米晶体作为钠离子电池的长循环阳极材料
IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Pub Date : 2024-07-23 DOI: 10.1016/j.elecom.2024.107783
Kelly Murphy, Deaglán Bowman, David McNulty, Tadhg Kennedy, Hugh Geaney

We report on the colloidal synthesis of Cu3VS4 nanocrystals as an earth abundant anode material for sodium-ion battery applications. The nanocrystals were structurally characterized prior to testing in half-cells, where they displayed excellent cycling stability up to 1000 cycles, demonstrating the potential of colloidally synthesised materials for sustainable battery applications.

我们报告了将 CuVS 纳米晶体胶体合成为钠离子电池应用的富土负极材料。在半电池测试之前,我们对这种纳米晶体进行了结构表征,结果表明它们具有出色的循环稳定性,循环次数可达 1000 次,这证明胶体合成材料具有可持续电池应用的潜力。
{"title":"Colloidally synthesized Cu3VS4 nanocrystals as a long cycling anode material for sodium-ion batteries","authors":"Kelly Murphy,&nbsp;Deaglán Bowman,&nbsp;David McNulty,&nbsp;Tadhg Kennedy,&nbsp;Hugh Geaney","doi":"10.1016/j.elecom.2024.107783","DOIUrl":"10.1016/j.elecom.2024.107783","url":null,"abstract":"<div><p>We report on the colloidal synthesis of Cu<sub>3</sub>VS<sub>4</sub> nanocrystals as an earth abundant anode material for sodium-ion battery applications. The nanocrystals were structurally characterized prior to testing in half-cells, where they displayed excellent cycling stability up to 1000 cycles, demonstrating the potential of colloidally synthesised materials for sustainable battery applications.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107783"},"PeriodicalIF":4.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001267/pdfft?md5=3cea936cec9f341c5a4b5320f5085a87&pid=1-s2.0-S1388248124001267-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electrochemistry Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1