Pub Date : 2025-08-26DOI: 10.1016/j.enchem.2025.100169
Carlos M. Costa , Vera M. Macedo , Manuel Salado , Liliana C. Fernandes , Mingcai Zhao , Senentxu Lanceros-Méndez
Lithium-ion batteries still have some relevant drawbacks despite their extensive use, mainly in terms of durability and safety concerns related to the use of liquid electrolytes.
Given the unique capability of Li metal, i.e. 3860 mAh.g-1, solid-state lithium metal batteries based on solid electrolytes emerge as an efficient way to circumvent current battery constraints.
This review shows the latest advances in solid-state lithium metal batteries with focus on the different materials used for their development and the rational design of materials and interfaces. The main materials, battery components, physical-chemical phenomena and parameters determining their functionality are described and discussed. Further, considerations related to battery modelling, advanced characterization, fabrication and future perspective are provided.
{"title":"An overview of solid-state lithium metal batteries: Materials, properties and challenges","authors":"Carlos M. Costa , Vera M. Macedo , Manuel Salado , Liliana C. Fernandes , Mingcai Zhao , Senentxu Lanceros-Méndez","doi":"10.1016/j.enchem.2025.100169","DOIUrl":"10.1016/j.enchem.2025.100169","url":null,"abstract":"<div><div>Lithium-ion batteries still have some relevant drawbacks despite their extensive use, mainly in terms of durability and safety concerns related to the use of liquid electrolytes.</div><div>Given the unique capability of Li metal, i.e. 3860 mAh.g<sup>-1</sup>, solid-state lithium metal batteries based on solid electrolytes emerge as an efficient way to circumvent current battery constraints.</div><div>This review shows the latest advances in solid-state lithium metal batteries with focus on the different materials used for their development and the rational design of materials and interfaces. The main materials, battery components, physical-chemical phenomena and parameters determining their functionality are described and discussed. Further, considerations related to battery modelling, advanced characterization, fabrication and future perspective are provided.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 5","pages":"Article 100169"},"PeriodicalIF":23.8,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144916377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-24DOI: 10.1016/j.enchem.2025.100167
Xusheng Wang , Mingchen Gao , Alexander R.P. Harrison , Muhammad Irfan , Xi Lin , Boyang Mao , Binjian Nie , Zhigang Hu , Jianxin Zou
Ammonia (NH3) is a promising energy carrier to store and transport renewable energy due to its high energy density (18.6 MJ kg-1, containing 17.6 wt% H2) and mature storage and transportation. Ammonia-fuelled solid oxide fuel cells (NH3-SOFC) show multiple clean energy applications due to their high efficiency, near-zero CO2 emissions, and flexible integration. This work delineates the current status and prospects of integrated NH3-SOFC technology towards a green ammonia economy by investigating its operating principle, system integration, and cost-competitiveness. Technoeconomic analysis results suggest that the levelized cost of electricity (LCOE) for NH3-SOFC is approximately 0.24 $ kWh-1. In addition, ammonia has demonstrated a high potential as a green shipping fuel because of its carbon-free and low flammability characteristics, while necessitating industry standards and large-scale application scenarios. It has also been indentified that the large-scale application of NH3-SOFC largely depends on the reduction in capital cost, electrode materials improvement and volumetric power density increase.
{"title":"A green ammonia utilization pathway: Integrated ammonia-solid oxide fuel cell systems for efficient power generation","authors":"Xusheng Wang , Mingchen Gao , Alexander R.P. Harrison , Muhammad Irfan , Xi Lin , Boyang Mao , Binjian Nie , Zhigang Hu , Jianxin Zou","doi":"10.1016/j.enchem.2025.100167","DOIUrl":"10.1016/j.enchem.2025.100167","url":null,"abstract":"<div><div>Ammonia (NH<sub>3</sub>) is a promising energy carrier to store and transport renewable energy due to its high energy density (18.6 MJ kg<sup>-1</sup>, containing 17.6 wt% H<sub>2</sub>) and mature storage and transportation. Ammonia-fuelled solid oxide fuel cells (NH<sub>3</sub>-SOFC) show multiple clean energy applications due to their high efficiency, near-zero CO<sub>2</sub> emissions, and flexible integration. This work delineates the current status and prospects of integrated NH<sub>3</sub>-SOFC technology towards a green ammonia economy by investigating its operating principle, system integration, and cost-competitiveness. Technoeconomic analysis results suggest that the levelized cost of electricity (LCOE) for NH<sub>3</sub>-SOFC is approximately 0.24 $ kWh<sup>-1</sup>. In addition, ammonia has demonstrated a high potential as a green shipping fuel because of its carbon-free and low flammability characteristics, while necessitating industry standards and large-scale application scenarios. It has also been indentified that the large-scale application of NH<sub>3</sub>-SOFC largely depends on the reduction in capital cost, electrode materials improvement and volumetric power density increase.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 5","pages":"Article 100167"},"PeriodicalIF":23.8,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144722317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-23DOI: 10.1016/j.enchem.2025.100168
Xilin Jia , Qiao Zhang , Jun Tao , Pingxi Mo , Yu Han
The rapid advancement of energy-related technologies has led to increasingly complex material systems featuring hierarchical structures, heterogeneous interfaces, and dynamic behavior. Transmission electron microscopy (TEM), with its unparalleled spatial resolution, imaging versatility, and analytical capabilities, provides unique insights into these systems by enabling direct visualization of structure–property relationships at the atomic scale. This review highlights the essential role of modern TEM and scanning TEM (STEM) techniques in energy chemistry. We introduce key imaging modalities alongside complementary spectroscopic and diffraction-based characterization methods. Representative applications are presented across three major categories of energy materials: energy conversion materials, energy storage systems, and nanoporous materials for catalysis and separation. These examples illustrate how careful selection of imaging modes and dose control strategies enables meaningful structural analysis, even for highly beam-sensitive or metastable systems. We conclude with an outlook on future directions, addressing current limitations and emphasizing the need for low-dose, in situ/operando, three-dimensional, and diffraction-based approaches to probe structural complexity under realistic operating conditions.
{"title":"Transmission electron microscopy in energy chemistry: Current applications and future perspectives","authors":"Xilin Jia , Qiao Zhang , Jun Tao , Pingxi Mo , Yu Han","doi":"10.1016/j.enchem.2025.100168","DOIUrl":"10.1016/j.enchem.2025.100168","url":null,"abstract":"<div><div>The rapid advancement of energy-related technologies has led to increasingly complex material systems featuring hierarchical structures, heterogeneous interfaces, and dynamic behavior. Transmission electron microscopy (TEM), with its unparalleled spatial resolution, imaging versatility, and analytical capabilities, provides unique insights into these systems by enabling direct visualization of structure–property relationships at the atomic scale. This review highlights the essential role of modern TEM and scanning TEM (STEM) techniques in energy chemistry. We introduce key imaging modalities alongside complementary spectroscopic and diffraction-based characterization methods. Representative applications are presented across three major categories of energy materials: energy conversion materials, energy storage systems, and nanoporous materials for catalysis and separation. These examples illustrate how careful selection of imaging modes and dose control strategies enables meaningful structural analysis, even for highly beam-sensitive or metastable systems. We conclude with an outlook on future directions, addressing current limitations and emphasizing the need for low-dose, in situ/operando, three-dimensional, and diffraction-based approaches to probe structural complexity under realistic operating conditions.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 5","pages":"Article 100168"},"PeriodicalIF":23.8,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144866196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-01DOI: 10.1016/j.enchem.2025.100163
Chun-Yan Yang , Jian-Ping Lang
Metal-organic frameworks (MOFs)-derived carbon-based materials have garnered significant attention in electrochemical energy storage and conversion owing to their tunable porous structures, compositional flexibility, and structural diversity. This review categorizes typical synthetic strategies for MOFs-derived carbon-based materials, while highlights their cutting-edge applications in two key domains in recent years: (1) electrocatalytic reactions, mainly encompassing hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and nitrogen reduction reaction; and (2) electrochemical energy storage systems, with a focus on lithium-ion batteries and sodium-ion batteries. Particular emphasis is placed on elucidating the critical structure-property relationships governing the performance of these functional materials. Finally, we present a forward-looking perspective addressing current challenges and future research directions, offering strategic insights for designing novel high-performance electrochemical materials through rational engineering of the architectures of MOFs-derived carbon-based materials.
{"title":"Diverse MOFs-derived carbon-based materials for advanced electrochemical energy applications","authors":"Chun-Yan Yang , Jian-Ping Lang","doi":"10.1016/j.enchem.2025.100163","DOIUrl":"10.1016/j.enchem.2025.100163","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs)-derived carbon-based materials have garnered significant attention in electrochemical energy storage and conversion owing to their tunable porous structures, compositional flexibility, and structural diversity. This review categorizes typical synthetic strategies for MOFs-derived carbon-based materials, while highlights their cutting-edge applications in two key domains in recent years: (1) electrocatalytic reactions, mainly encompassing hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and nitrogen reduction reaction; and (2) electrochemical energy storage systems, with a focus on lithium-ion batteries and sodium-ion batteries. Particular emphasis is placed on elucidating the critical structure-property relationships governing the performance of these functional materials. Finally, we present a forward-looking perspective addressing current challenges and future research directions, offering strategic insights for designing novel high-performance electrochemical materials through rational engineering of the architectures of MOFs-derived carbon-based materials.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 4","pages":"Article 100163"},"PeriodicalIF":22.2,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-20DOI: 10.1016/j.enchem.2025.100162
Top Archie Dela Peña , Ruijie Ma , Wei Gao , Zhanhua Wei , Huanyu Zhou , Jiaying Wu , Antonio Facchetti , Gang Li
The organic solar cell (OSC) technology has advanced significantly during the past decade, with power conversion efficiencies now exceeding 20%. However, the fabrication of high-performance devices still relies on using halogenated solvents, which pose environmental risks and limit industrial scalability. To address this issue, researchers are developing new strategies such as new molecular design concepts, control of blend morphology through processing conditions, and performance optimization guided by charge carrier mechanisms aiming to enhance solubility in green solvents while ensuring optimal film formation, as to be summarized in this review. Despite these efforts, the complex chemical/morphological structure-processing-property-function relationships remain elusive. A deeper understanding of film formation dynamics and consequences in charge carrier dynamics is essential, thereby necessitating both ex-situ and in-situ morphological and optical characterizations. Accordingly, this review begins with an overview of the key reminders for commonly used characterization techniques together with solvent properties, and solubility-morphology relationships. Ultimately, this review highlights the latest advancements in materials and device engineering and discusses the challenges that the field must overcome to enable more sustainable and scalable OSC fabrication.
{"title":"Advancing organic photovoltaics processed from green-solvents: From characterization methods to optimization strategies","authors":"Top Archie Dela Peña , Ruijie Ma , Wei Gao , Zhanhua Wei , Huanyu Zhou , Jiaying Wu , Antonio Facchetti , Gang Li","doi":"10.1016/j.enchem.2025.100162","DOIUrl":"10.1016/j.enchem.2025.100162","url":null,"abstract":"<div><div>The organic solar cell (OSC) technology has advanced significantly during the past decade, with power conversion efficiencies now exceeding 20%. However, the fabrication of high-performance devices still relies on using halogenated solvents, which pose environmental risks and limit industrial scalability. To address this issue, researchers are developing new strategies such as new molecular design concepts, control of blend morphology through processing conditions, and performance optimization guided by charge carrier mechanisms aiming to enhance solubility in green solvents while ensuring optimal film formation, as to be summarized in this review. Despite these efforts, the complex chemical/morphological structure-processing-property-function relationships remain elusive. A deeper understanding of film formation dynamics and consequences in charge carrier dynamics is essential, thereby necessitating both ex-situ and in-situ morphological and optical characterizations. Accordingly, this review begins with an overview of the key reminders for commonly used characterization techniques together with solvent properties, and solubility-morphology relationships. Ultimately, this review highlights the latest advancements in materials and device engineering and discusses the challenges that the field must overcome to enable more sustainable and scalable OSC fabrication.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 4","pages":"Article 100162"},"PeriodicalIF":22.2,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-20DOI: 10.1016/j.enchem.2025.100161
Anju Mathew , Sivaraj Rajendran , Thomas Mathew , N. Raveendran Shiju
One of the best alternatives to fossil fuels and a plausible solution to the issues related to its perpetual consumption such as carbon emission and energy crisis is the use of “green hydrogen” as the fuel of future with zero carbon emission. The electrocatalytic water-splitting reaction to produce ‘green hydrogen’ has a high kinetic energy barrier and hence developing a high performance electrocatalyst is very crucial and challenging. The electrocatalysts that based on NiFe catalyst system has received considerable attention because of their low cost, easy availability, increased electrochemically active surface sites compared to pure nickel and iron materials, and excellent electronic properties due to the synergistic interaction between Nickel and Iron. This review highlights the recent trends and a comprehensive analysis of the critical factors described in the literature for the design and optimization of an effective NiFe-based hydrogen evolution reaction (HER) electrocatalyst in alkaline medium. The important factors that influence the catalytic efficiency of NiFe-based electrocatalysts such as the modifications in the surface morphology, electronic structure of the catalyst, supporting material characteristics, doping with heteroatoms of metals or non-metals, heterostructuring, synthesis strategies, compositional variations, and pore structure of the catalyst are addressed from experimental and theoretical point of view. The variation of these parameters provides much exposed active sites, improved surface area, electronic conductivity, fast mass diffusion and easy desorption of hydrogen gas from the catalyst surface and stability. The NiFe-based overall water splitting, and various in situ/operando studies employed for elucidating the reaction mechanism as well as the structural evolution of the catalyst during the electrocatalytic water splitting reaction under alkaline conditions are also discussed in this review. The challenges and prospects for developing NiFe-based electrocatalyst for HER under alkaline medium are highlighted in the end. Even though advancement has made in the area of electrocatalytic HER, continuous efforts are needed to fabricate a highly efficient NiFe-based electrocatalyst that show long term electrochemical stability along with scalability for sustainable H2 production and implementation of it for commercial applications.
{"title":"NiFe-based electrocatalysts for hydrogen evolution reaction in alkaline conditions: Recent trends in the design and structure–activity correlations","authors":"Anju Mathew , Sivaraj Rajendran , Thomas Mathew , N. Raveendran Shiju","doi":"10.1016/j.enchem.2025.100161","DOIUrl":"10.1016/j.enchem.2025.100161","url":null,"abstract":"<div><div>One of the best alternatives to fossil fuels and a plausible solution to the issues related to its perpetual consumption such as carbon emission and energy crisis is the use of “green hydrogen” as the fuel of future with zero carbon emission. The electrocatalytic water-splitting reaction to produce ‘green hydrogen’ has a high kinetic energy barrier and hence developing a high performance electrocatalyst is very crucial and challenging. The electrocatalysts that based on NiFe catalyst system has received considerable attention because of their low cost, easy availability, increased electrochemically active surface sites compared to pure nickel and iron materials, and excellent electronic properties due to the synergistic interaction between Nickel and Iron. This review highlights the recent trends and a comprehensive analysis of the critical factors described in the literature for the design and optimization of an effective NiFe-based hydrogen evolution reaction (HER) electrocatalyst in alkaline medium. The important factors that influence the catalytic efficiency of NiFe-based electrocatalysts such as the modifications in the surface morphology, electronic structure of the catalyst, supporting material characteristics, doping with heteroatoms of metals or non-metals, heterostructuring, synthesis strategies, compositional variations, and pore structure of the catalyst are addressed from experimental and theoretical point of view. The variation of these parameters provides much exposed active sites, improved surface area, electronic conductivity, fast mass diffusion and easy desorption of hydrogen gas from the catalyst surface and stability. The NiFe-based overall water splitting, and various in situ/operando studies employed for elucidating the reaction mechanism as well as the structural evolution of the catalyst during the electrocatalytic water splitting reaction under alkaline conditions are also discussed in this review. The challenges and prospects for developing NiFe-based electrocatalyst for HER under alkaline medium are highlighted in the end. Even though advancement has made in the area of electrocatalytic HER, continuous efforts are needed to fabricate a highly efficient NiFe-based electrocatalyst that show long term electrochemical stability along with scalability for sustainable H<sub>2</sub> production and implementation of it for commercial applications.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 5","pages":"Article 100161"},"PeriodicalIF":22.2,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144604709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-14DOI: 10.1016/j.enchem.2025.100160
Zhijun Wu , Yifan Wang , Wubin Du , Kang Shen , Bao Chen , Hongge Pan , Yong Wu , Yingying Lu
Solid-state polymer electrolytes (SPEs) have emerged as a promising candidate to work out remaining challenges faced by conventional liquid electrolytes, including the safety risks and limited energy density lithium batteries. Despite these benefits, polymer electrolytes are still required further optimization for constructing high-performance energy storage systems. Controlled radical polymerization (CRP) techniques, encompassing reversible addition-fragmentation transfer (RAFT), atom transfer radical polymerization (ATRP), and nitroxide-mediated polymerization (NMP), enable precise control over polymer architectures, molecular weights, and functionalities, which plays an essential role in regulating the ionic conductivity, cycling stability, mechanical performance, and interfacial compatibility of polymer electrolytes. Here, on the basis of discussing the CRP reaction mechanisms and the typical topological structures, this review thoroughly delves into the effects of CRP on electrochemical performance, and particularly focuses the current development of polymer electrolytes with different topological structures synthesized via CRP. Ending with providing the underlying challenges and perspectives, this review allows to deepen the comprehension of CRP methodologies on constructing polymer electrolytes, and offers the scientific guidance for shaping the high-performance CRP-derived polymer electrolytes.
{"title":"Controlled radical polymerization-derived solid-state polymer electrolytes for lithium batteries","authors":"Zhijun Wu , Yifan Wang , Wubin Du , Kang Shen , Bao Chen , Hongge Pan , Yong Wu , Yingying Lu","doi":"10.1016/j.enchem.2025.100160","DOIUrl":"10.1016/j.enchem.2025.100160","url":null,"abstract":"<div><div>Solid-state polymer electrolytes (SPEs) have emerged as a promising candidate to work out remaining challenges faced by conventional liquid electrolytes, including the safety risks and limited energy density lithium batteries. Despite these benefits, polymer electrolytes are still required further optimization for constructing high-performance energy storage systems. Controlled radical polymerization (CRP) techniques, encompassing reversible addition-fragmentation transfer (RAFT), atom transfer radical polymerization (ATRP), and nitroxide-mediated polymerization (NMP), enable precise control over polymer architectures, molecular weights, and functionalities, which plays an essential role in regulating the ionic conductivity, cycling stability, mechanical performance, and interfacial compatibility of polymer electrolytes. Here, on the basis of discussing the CRP reaction mechanisms and the typical topological structures, this review thoroughly delves into the effects of CRP on electrochemical performance, and particularly focuses the current development of polymer electrolytes with different topological structures synthesized via CRP. Ending with providing the underlying challenges and perspectives, this review allows to deepen the comprehension of CRP methodologies on constructing polymer electrolytes, and offers the scientific guidance for shaping the high-performance CRP-derived polymer electrolytes.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 4","pages":"Article 100160"},"PeriodicalIF":22.2,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144330140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-03DOI: 10.1016/j.enchem.2025.100159
R. Kavitha , C. Manjunatha , Jiaguo Yu , S.Girish Kumar
Rational design and engineering the interfacial structure with diverse morphological features of functional semiconductors for the fabrication of S-scheme heterojunction (SSH) remains as pivotal aspiration in energy and environmental applications. This review article diligently summarises the state-of-art progress and provides specific insights into the design and fabrication of hierarchical hybrid nanostructures comprising 0D, 1D, 2D and 3D nanomaterials. The analytical tools to attest the formation of SSH between the integrated components are briefly highlighted. The photocatalytic application of hierarchical SSH encompassing the energy-environmental aspects such as H2 generation, CO2 reduction, pollutant degradation, organic synthesis and coupled photocatalytic systems are concisely discussed. The further progress achieved through co-catalyst modifications and fabrication of dual SSH are outlined. The current challenges and the prospects in this futuristic and burgeoning arena are envisaged to broaden their applications. It is foreseen that the meticulous fabrication complemented with superlative interfacial structures would inspire the designing of exemplar SSH for sustainable energy and environmental crisis as well as for coupled photocatalytic systems.
{"title":"Rational design and interfacial engineering of hierarchical S-scheme heterojunction and their photocatalytic applications","authors":"R. Kavitha , C. Manjunatha , Jiaguo Yu , S.Girish Kumar","doi":"10.1016/j.enchem.2025.100159","DOIUrl":"10.1016/j.enchem.2025.100159","url":null,"abstract":"<div><div>Rational design and engineering the interfacial structure with diverse morphological features of functional semiconductors for the fabrication of S-scheme heterojunction (SSH) remains as pivotal aspiration in energy and environmental applications. This review article diligently summarises the state-of-art progress and provides specific insights into the design and fabrication of hierarchical hybrid nanostructures comprising 0D, 1D, 2D and 3D nanomaterials. The analytical tools to attest the formation of SSH between the integrated components are briefly highlighted. The photocatalytic application of hierarchical SSH encompassing the energy-environmental aspects such as H<sub>2</sub> generation, CO<sub>2</sub> reduction, pollutant degradation, organic synthesis and coupled photocatalytic systems are concisely discussed. The further progress achieved through co-catalyst modifications and fabrication of dual SSH are outlined. The current challenges and the prospects in this futuristic and burgeoning arena are envisaged to broaden their applications. It is foreseen that the meticulous fabrication complemented with superlative interfacial structures would inspire the designing of exemplar SSH for sustainable energy and environmental crisis as well as for coupled photocatalytic systems.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 4","pages":"Article 100159"},"PeriodicalIF":22.2,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144480183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-12DOI: 10.1016/j.enchem.2025.100156
Fu-Zhi Li , Hai-Gang Qin , Jun Gu
The electrochemical CO2 reduction reaction (CO2RR) at ambient temperature holds great promise as a technology for storing intermittent and fluctuating renewable electricity while producing valuable carbon-containing feedstocks. As such, it has the potential to play a crucial role in closing the carbon cycle. Over the past decade, extensive research has focused on developing catalysts that enhance selectivity and reduce the overpotential of CO2RR. However, further attention should be directed towards the design of electrolyzers and integrated systems to achieve high current densities, improved energy efficiency, carbon efficiency, and stability. This review categorizes electrolysis systems into H-cells, gas diffusion electrode (GDE)-based flow cells, and membrane electrode assemblies (MEAs). In H-cells, the relatively low solubility of CO2 in aqueous electrolytes limits current density, and strategies to enhance CO2 mass transport are discussed. For GDE-based flow cells, strategies to maintain the hydrophobicity of GDEs are examined. Additionally, the impact of pH and alkali cations on energy efficiency, carbon efficiency, and anti-flooding performance is reviewed. MEAs with anion exchange membranes, cation exchange membranes, bipolar membranes, and solid-state electrolytes are introduced, with an exploration of the challenges associated with each type. Furthermore, tandem systems for CO2COC2+ conversion are presented, including single cells incorporating two types of catalysts and cascades of two individual cells for CO2RR to CO and CO reduction, respectively. Finally, the review outlines future directions for CO2RR electrolysis systems and highlights the potential contributions of operando technologies and theoretical simulations.
{"title":"Development of electrolysis systems for ambient temperature CO2 reduction","authors":"Fu-Zhi Li , Hai-Gang Qin , Jun Gu","doi":"10.1016/j.enchem.2025.100156","DOIUrl":"10.1016/j.enchem.2025.100156","url":null,"abstract":"<div><div>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) at ambient temperature holds great promise as a technology for storing intermittent and fluctuating renewable electricity while producing valuable carbon-containing feedstocks. As such, it has the potential to play a crucial role in closing the carbon cycle. Over the past decade, extensive research has focused on developing catalysts that enhance selectivity and reduce the overpotential of CO<sub>2</sub>RR. However, further attention should be directed towards the design of electrolyzers and integrated systems to achieve high current densities, improved energy efficiency, carbon efficiency, and stability. This review categorizes electrolysis systems into H-cells, gas diffusion electrode (GDE)-based flow cells, and membrane electrode assemblies (MEAs). In H-cells, the relatively low solubility of CO<sub>2</sub> in aqueous electrolytes limits current density, and strategies to enhance CO<sub>2</sub> mass transport are discussed. For GDE-based flow cells, strategies to maintain the hydrophobicity of GDEs are examined. Additionally, the impact of pH and alkali cations on energy efficiency, carbon efficiency, and anti-flooding performance is reviewed. MEAs with anion exchange membranes, cation exchange membranes, bipolar membranes, and solid-state electrolytes are introduced, with an exploration of the challenges associated with each type. Furthermore, tandem systems for CO<sub>2</sub><sub><img></sub>CO<img>C<sub>2+</sub> conversion are presented, including single cells incorporating two types of catalysts and cascades of two individual cells for CO<sub>2</sub>RR to CO and CO reduction, respectively. Finally, the review outlines future directions for CO<sub>2</sub>RR electrolysis systems and highlights the potential contributions of operando technologies and theoretical simulations.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 3","pages":"Article 100156"},"PeriodicalIF":22.2,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Global warming and energy consumption have spurred the research and development of proton exchange membrane fuel cells (PEMFCs), a high-energy-density and zero-emission energy conversion device. Currently, the predominant commercial catalyst employed for hydrogen oxidation reaction (HOR) in PEMFCs anode is Pt/C, and the efficiency of Pt-based catalysts is significantly undermined by the presence of CO mixed in the PEMFCs anode reactants. The incorporation of transition metals can modify the electronic structure of Pt-base catalysts and reduce the adsorption energy of CO on the platinum surface, thereby enhancing the CO tolerance. This timely review aims to present the crucial role of Pt-based alloy strategies for anti-CO poisoning of PEMFC anodes and performance optimization for HOR, and to offer a current overview of the research field. By following the demonstration on the CO poisoning mechanisms and the alloy design principles for anodic HOR in PEMFCs, recent progress on CO-resistant Pt-based alloy catalysts for high-efficiency PEMFCs is briefly presented. Finally, future challenges and directions for the commercialization of Pt-based alloy catalysts are reviewed. This review offers the significant insights into Pt-based alloys as a cutting-edge strategy for enhanced CO tolerance and favorable HOR for high performance PEMFCs.
{"title":"Recent advance and perspectives on CO tolerant platinum-based alloys in PEMFC anodes","authors":"Fujun Niu , Jiachang Cao , Huai Chen , Shaohua Shen","doi":"10.1016/j.enchem.2025.100158","DOIUrl":"10.1016/j.enchem.2025.100158","url":null,"abstract":"<div><div>Global warming and energy consumption have spurred the research and development of proton exchange membrane fuel cells (PEMFCs), a high-energy-density and zero-emission energy conversion device. Currently, the predominant commercial catalyst employed for hydrogen oxidation reaction (HOR) in PEMFCs anode is Pt/C, and the efficiency of Pt-based catalysts is significantly undermined by the presence of CO mixed in the PEMFCs anode reactants. The incorporation of transition metals can modify the electronic structure of Pt-base catalysts and reduce the adsorption energy of CO on the platinum surface, thereby enhancing the CO tolerance. This timely review aims to present the crucial role of Pt-based alloy strategies for anti-CO poisoning of PEMFC anodes and performance optimization for HOR, and to offer a current overview of the research field. By following the demonstration on the CO poisoning mechanisms and the alloy design principles for anodic HOR in PEMFCs, recent progress on CO-resistant Pt-based alloy catalysts for high-efficiency PEMFCs is briefly presented. Finally, future challenges and directions for the commercialization of Pt-based alloy catalysts are reviewed. This review offers the significant insights into Pt-based alloys as a cutting-edge strategy for enhanced CO tolerance and favorable HOR for high performance PEMFCs.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 3","pages":"Article 100158"},"PeriodicalIF":22.2,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}