首页 > 最新文献

EnergyChem最新文献

英文 中文
Microenvironment effect of covalent organic frameworks on chemical catalysis 共价有机框架对化学催化的微环境影响
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-11-01 DOI: 10.1016/j.enchem.2023.100107
Qingyan Pan , Zepeng Lei , Yingjie Zhao , Wei Zhang

Inspired by enzymatic catalysis, a variety of covalent organic frameworks (COFs), which have precisely engineered microenvironments enabled by the well-defined porous channels and cavities with catalytically active sites built in, have been developed to mimic the catalytic process of enzymes. The structure diversity and customizability of COFs make them an ideal platform for studying the catalyst structure-activity relationship in heterogeneous catalysis and obtaining a thorough understanding of the catalytic mechanisms. In this review, we summarize the recent progress in the development of COF materials for catalysis applications, with a particular focus on their microenvironment effects. Representative examples of organocatalysis, asymmetric organocatalysis, and metal-supported catalysis utilizing the microenvironment effect enabled by diversified COF materials are discussed. Finally, we outline the key fundamental issues to be addressed and provide our perspectives on the future of COF-based catalysis.

受酶催化作用的启发,人们开发了各种共价有机框架(COFs)来模拟酶的催化过程,这些框架具有精确设计的微环境,通过定义良好的多孔通道和内置催化活性位点的空腔来实现。COFs结构的多样性和可定制性使其成为研究多相催化中催化剂构效关系和深入了解催化机理的理想平台。本文综述了近年来COF材料在催化方面的研究进展,重点介绍了其微环境效应。本文讨论了有机催化、不对称有机催化和金属负载催化的典型例子,这些催化利用了多种COF材料的微环境效应。最后,我们概述了需要解决的关键基本问题,并对基于cof的催化的未来提出了我们的观点。
{"title":"Microenvironment effect of covalent organic frameworks on chemical catalysis","authors":"Qingyan Pan ,&nbsp;Zepeng Lei ,&nbsp;Yingjie Zhao ,&nbsp;Wei Zhang","doi":"10.1016/j.enchem.2023.100107","DOIUrl":"10.1016/j.enchem.2023.100107","url":null,"abstract":"<div><p>Inspired by enzymatic catalysis, a variety of covalent organic frameworks (COFs), which have precisely engineered microenvironments enabled by the well-defined porous channels and cavities with catalytically active sites built in, have been developed to mimic the catalytic process of enzymes. The structure diversity and customizability of COFs make them an ideal platform for studying the catalyst structure-activity relationship in heterogeneous catalysis and obtaining a thorough understanding of the catalytic mechanisms. In this review, we summarize the recent progress in the development of COF materials for catalysis applications, with a particular focus on their microenvironment effects. Representative examples of organocatalysis, asymmetric organocatalysis, and metal-supported catalysis utilizing the microenvironment effect enabled by diversified COF materials are discussed. Finally, we outline the key fundamental issues to be addressed and provide our perspectives on the future of COF-based catalysis.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100107"},"PeriodicalIF":25.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Killing two birds with one stone: State-of-the-art progress in dual-functional photoredox catalysis for solar fuel conversion and selective organic transformation 一石二鸟:太阳能燃料转化和选择性有机转化双功能光氧化还原催化的最新进展
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-11-01 DOI: 10.1016/j.enchem.2023.100112
Feng Niu , Wenguang Tu , Yong Zhou , Rong Xu , Zhigang Zou

Using solar energy to couple the photoinduced reductive half-reaction with a matched oxidative half-reaction has received increasing attention in recent years. Such a process represents an alternative artificial photosynthetic route for energy storage and chemical synthesis, like killing two birds with one stone. This review article concisely summarizes and highlights the state-of-the-art progresses of semiconductor-based dual-functional photoredox catalysis that couples the reductive half-reaction such as the proton (H+) reduction into H2, CO2 reduction, and O2 reduction to H2O2 with a matched oxidative organic transformation reaction including alcohol oxidation, C-C/-C-O coupling, -C-N coupling, biomass or plastics photoreforming, and other reactions, which can make full use of the electrons and holes generated from the semiconductors to realize the solar fuel conversion and selective organic transformation into valuable chemicals simultaneously. The challenges and prospects for future development of semiconductor-based dual-functional photoredox catalysis are also presented.

利用太阳能耦合光致还原半反应与相应的氧化半反应,近年来受到越来越多的关注。这一过程代表了另一种能量储存和化学合成的人工光合作用途径,就像一石二鸟一样。本文简要总结和重点介绍了半导体双功能光氧化还原催化的最新进展,该催化将质子(H+)还原成H2、CO2还原、O2还原成H2O2等还原性半反应与相匹配的氧化有机转化反应(醇氧化、C-C/-C-O偶联、-C-N偶联、生物质或塑料光转化等反应耦合在一起。它可以充分利用半导体产生的电子和空穴,同时实现太阳能燃料转化和选择性有机转化为有价值的化学品。展望了半导体双功能光氧化还原催化的发展前景和面临的挑战。
{"title":"Killing two birds with one stone: State-of-the-art progress in dual-functional photoredox catalysis for solar fuel conversion and selective organic transformation","authors":"Feng Niu ,&nbsp;Wenguang Tu ,&nbsp;Yong Zhou ,&nbsp;Rong Xu ,&nbsp;Zhigang Zou","doi":"10.1016/j.enchem.2023.100112","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100112","url":null,"abstract":"<div><p>Using solar energy to couple the photoinduced reductive half-reaction with a matched oxidative half-reaction has received increasing attention in recent years. Such a process represents an alternative artificial photosynthetic route for energy storage and chemical synthesis, like killing two birds with one stone. This review article concisely summarizes and highlights the state-of-the-art progresses of semiconductor-based dual-functional photoredox catalysis that couples the reductive half-reaction such as the proton (H<sup>+</sup>) reduction into H<sub>2</sub>, CO<sub>2</sub> reduction, and O<sub>2</sub> reduction to H<sub>2</sub>O<sub>2</sub> with a matched oxidative organic transformation reaction including alcohol oxidation, C-C/-C-O coupling, -C-N coupling, biomass or plastics photoreforming, and other reactions, which can make full use of the electrons and holes generated from the semiconductors to realize the solar fuel conversion and selective organic transformation into valuable chemicals simultaneously. The challenges and prospects for future development of semiconductor-based dual-functional photoredox catalysis are also presented.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100112"},"PeriodicalIF":25.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138480404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paired electrosynthesis design strategy for sustainable CO2 conversion and product upgrading 可持续CO2转化与产品升级的配对电合成设计策略
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-11-01 DOI: 10.1016/j.enchem.2023.100111
Mengyao Gong , Changsheng Cao , Qi-Long Zhu

CO2 electrolysis technology powered by renewable electricity is a sustainable strategy to reduce anthropogenic carbon emissions while producing valuable chemicals. Unfortunately, compared with CO2 reduction reaction (CO2RR) in cathode, the sluggish-kinetics and low value-added product (i.e., O2) of anodic oxygen evolution reaction (OER) during CO2 electrolysis will seriously drag down the whole efficiency and economic benefits. Alternatively, replacing OER with some thermodynamically more favorable oxidation reactions is promising to reduce energy input while producing high value-added products. Therefore, coupling CO2RR with these oxidation reactions to construct paired electrosynthesis systems is more meaningful for future applications, which has gained some far-reaching achievements in recent years. In this review, we summarize recent progress in construction of paired electrosynthesis systems involving CO2RR and propose possible future research directions. We start with fundamentals about traditional CO2 electrolysis. Then we propose the definition and classification of paired electrolysis, especially those involving CO2RR. Subsequently, we emphatically discuss the selection of various oxidation reactions coupled with CO2RR in the proposed paired electrolysis systems. Finally, from our point of view, the current challenges and corresponding perspectives on the development of paired electrolysis involving CO2RR are presented to inspire possible future research directions.

以可再生电力为动力的二氧化碳电解技术是一种可持续的战略,可以在生产有价值的化学品的同时减少人为碳排放。遗憾的是,与阴极的CO2还原反应(CO2RR)相比,CO2电解过程中阳极析氧反应(OER)的动力学慢、附加值低(即O2),将严重拖累整体效率和经济效益。或者,用一些热力学上更有利的氧化反应代替OER,有望在生产高附加值产品的同时减少能量输入。因此,将CO2RR与这些氧化反应偶联构建成对电合成体系更具有未来应用意义,近年来取得了一些影响深远的成果。本文综述了近年来CO2RR配对电合成体系的研究进展,并提出了未来可能的研究方向。我们从传统二氧化碳电解的基本原理开始。然后,我们提出了配对电解的定义和分类,特别是涉及到CO2RR的配对电解。随后,我们着重讨论了在提出的配对电解系统中与CO2RR耦合的各种氧化反应的选择。最后,从我们的角度提出了涉及CO2RR的配对电解发展的当前挑战和相应的观点,以启发未来可能的研究方向。
{"title":"Paired electrosynthesis design strategy for sustainable CO2 conversion and product upgrading","authors":"Mengyao Gong ,&nbsp;Changsheng Cao ,&nbsp;Qi-Long Zhu","doi":"10.1016/j.enchem.2023.100111","DOIUrl":"10.1016/j.enchem.2023.100111","url":null,"abstract":"<div><p>CO<sub>2</sub> electrolysis technology powered by renewable electricity is a sustainable strategy to reduce anthropogenic carbon emissions while producing valuable chemicals. Unfortunately, compared with CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) in cathode, the sluggish-kinetics and low value-added product (<em>i.e.</em>, O<sub>2</sub>) of anodic oxygen evolution reaction (OER) during CO<sub>2</sub> electrolysis will seriously drag down the whole efficiency and economic benefits. Alternatively, replacing OER with some thermodynamically more favorable oxidation reactions is promising to reduce energy input while producing high value-added products. Therefore, coupling CO<sub>2</sub>RR with these oxidation reactions to construct paired electrosynthesis systems is more meaningful for future applications, which has gained some far-reaching achievements in recent years. In this review, we summarize recent progress in construction of paired electrosynthesis systems involving CO<sub>2</sub>RR and propose possible future research directions. We start with fundamentals about traditional CO<sub>2</sub> electrolysis. Then we propose the definition and classification of paired electrolysis, especially those involving CO<sub>2</sub>RR. Subsequently, we emphatically discuss the selection of various oxidation reactions coupled with CO<sub>2</sub>RR in the proposed paired electrolysis systems. Finally, from our point of view, the current challenges and corresponding perspectives on the development of paired electrolysis involving CO<sub>2</sub>RR are presented to inspire possible future research directions.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100111"},"PeriodicalIF":25.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-powered triboelectric functional devices and microsystems in health-care applications: An energy perspective 医疗保健应用中的自供电摩擦电功能装置和微系统:能源视角
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-11-01 DOI: 10.1016/j.enchem.2023.100109
Keren Dai , Zheng-Yang Huo , Xuyi Miao , Peixun Xiong , He Zhang , Xiaofeng Wang , Zheng You , Sang-Woo Kim

Health care is one of the most promising applications for triboelectric nanogenerators (TENGs). In this review, we summarize recent advances in the three most popular health care-related applications of TENGs: microbial disinfection, interventional therapy and implantable microsystems. Furthermore, we discuss the evolution of important common technologies of TENGs in these three applications, which covers energy harvesting, energy storage and energy-efficient functional design. For these three promising applications, this paper explores their future technical roadmap and reveals a trend towards smaller, stronger, more effective and more controllable triboelectric devices and systems.

医疗保健是摩擦电纳米发电机(TENGs)最有前途的应用之一。本文综述了TENGs在微生物消毒、介入治疗和植入式微系统这三个最受欢迎的医疗相关应用领域的最新进展。此外,我们还讨论了在这三种应用中重要的通用技术的演变,包括能量收集、能量存储和节能功能设计。对于这三种有前景的应用,本文探讨了它们未来的技术路线图,并揭示了更小、更强、更有效和更可控的摩擦电设备和系统的趋势。
{"title":"Self-powered triboelectric functional devices and microsystems in health-care applications: An energy perspective","authors":"Keren Dai ,&nbsp;Zheng-Yang Huo ,&nbsp;Xuyi Miao ,&nbsp;Peixun Xiong ,&nbsp;He Zhang ,&nbsp;Xiaofeng Wang ,&nbsp;Zheng You ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.enchem.2023.100109","DOIUrl":"10.1016/j.enchem.2023.100109","url":null,"abstract":"<div><p>Health care is one of the most promising applications for triboelectric nanogenerators (TENGs). In this review, we summarize recent advances in the three most popular health care-related applications of TENGs: microbial disinfection, interventional therapy and implantable microsystems. Furthermore, we discuss the evolution of important common technologies of TENGs in these three applications, which covers energy harvesting, energy storage and energy-efficient functional design. For these three promising applications, this paper explores their future technical roadmap and reveals a trend towards smaller, stronger, more effective and more controllable triboelectric devices and systems.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100109"},"PeriodicalIF":25.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-dose transmission electron microscopy study on halide perovskites: Application and challenges 卤化物钙钛矿的低剂量透射电镜研究:应用与挑战
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-09-01 DOI: 10.1016/j.enchem.2023.100105
Libing Yao , Liuwen Tian , Shaochen Zhang , Yuan Tian , Jingjing Xue , Siying Peng , Rui Wang

Transmission electron microscopy (TEM) is widely used in the materials science community because of its high spatial, temporal and energy resolution. However, for electron beam-sensitive halide perovskites (HPs), the achievements offered by TEM are still in their infancy due to the nonnegligible structural damage caused by the incident electron beams to the fragile structure. Despite these challenges, the potential for TEM to provide unique insights into the microstructure and phase evolution of HPs at the atomic scale, to track the dynamic ion migration behaviors, and to explore the effects of lattice defects on physicochemical properties is still fascinating. In this review, we summarize recent achievements in HPs through advanced analytical methods embedded in the TEM, including high-resolution/scanning TEM (HRTEM/STEM) imaging, electron diffraction (ED) analysis, X-ray energy dispersive spectroscopy (EDS), and electron energy-loss spectroscopy (EELS) measurement, and in-situ TEM observation, with the aim of providing a multi-dimensional and multi-scale understanding of the intrinsic properties of HPs that have not yet been discovered. In addition, we delve into the inherent beam-damage mechanisms affecting the delicate HPs crystal, thereby emphasizing the significant hurdles associated with employing TEM in HPs research. Finally, we present a number of effective strategies that may be beneficial in reducing the damage caused by beams. In particular, the introduction of a direct-detection electron-counting (DDEC) camera has contributed significantly to the advancement of low-dose imaging and the suppression of beam damage to the intrinsic structure of HPs. With the improvement of low-dose imaging technology, TEM characterization is expected to promote a comprehensive understanding of the intrinsic properties of HPs in terms of structure-property-performance and to expand the wide range of applications of HPs in optoelectronic devices.

透射电子显微镜(TEM)由于具有较高的空间、时间和能量分辨率,在材料科学界得到了广泛的应用。然而,对于电子束敏感的卤化物钙钛矿(HPs),由于入射电子束对脆弱结构造成不可忽略的结构损伤,透射电镜所提供的成果仍处于起步阶段。尽管存在这些挑战,但透射电镜在原子尺度上为hp的微观结构和相演化提供独特见解,跟踪动态离子迁移行为,以及探索晶格缺陷对物理化学性质的影响方面的潜力仍然令人着迷。在本文中,我们通过TEM中嵌入的先进分析方法,包括高分辨率/扫描TEM (HRTEM/STEM)成像,电子衍射(ED)分析,x射线能量色散谱(EDS)和电子能量损失谱(EELS)测量以及原位TEM观测,总结了近年来在hp方面取得的进展,旨在为hp尚未发现的内在性质提供一个多角度和多尺度的理解。此外,我们还深入研究了影响精细HPs晶体的固有光束损伤机制,从而强调了在HPs研究中使用TEM的重大障碍。最后,我们提出了一些有效的策略,可能有利于减少梁造成的损伤。特别是,直接探测电子计数(DDEC)相机的引入对低剂量成像的进步和抑制光束对hp固有结构的损伤做出了重大贡献。随着低剂量成像技术的进步,透射电镜表征有望促进人们从结构-性能-性能方面全面了解高分子材料的内在特性,并扩大高分子材料在光电器件中的广泛应用。
{"title":"Low-dose transmission electron microscopy study on halide perovskites: Application and challenges","authors":"Libing Yao ,&nbsp;Liuwen Tian ,&nbsp;Shaochen Zhang ,&nbsp;Yuan Tian ,&nbsp;Jingjing Xue ,&nbsp;Siying Peng ,&nbsp;Rui Wang","doi":"10.1016/j.enchem.2023.100105","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100105","url":null,"abstract":"<div><p>Transmission electron microscopy (TEM) is widely used in the materials science community because of its high spatial, temporal and energy resolution. However, for electron beam-sensitive halide perovskites (HPs), the achievements offered by TEM are still in their infancy due to the nonnegligible structural damage caused by the incident electron beams to the fragile structure. Despite these challenges, the potential for TEM to provide unique insights into the microstructure and phase evolution of HPs at the atomic scale, to track the dynamic ion migration behaviors, and to explore the effects of lattice defects on physicochemical properties is still fascinating. In this review, we summarize recent achievements in HPs through advanced analytical methods embedded in the TEM, including high-resolution/scanning TEM (HRTEM/STEM) imaging, electron diffraction (ED) analysis, X-ray energy dispersive spectroscopy (EDS), and electron energy-loss spectroscopy (EELS) measurement, and <em>in-situ</em> TEM observation, with the aim of providing a multi-dimensional and multi-scale understanding of the intrinsic properties of HPs that have not yet been discovered. In addition, we delve into the inherent beam-damage mechanisms affecting the delicate HPs crystal, thereby emphasizing the significant hurdles associated with employing TEM in HPs research. Finally, we present a number of effective strategies that may be beneficial in reducing the damage caused by beams. In particular, the introduction of a direct-detection electron-counting (DDEC) camera has contributed significantly to the advancement of low-dose imaging and the suppression of beam damage to the intrinsic structure of HPs. With the improvement of low-dose imaging technology, TEM characterization is expected to promote a comprehensive understanding of the intrinsic properties of HPs in terms of structure-property-performance and to expand the wide range of applications of HPs in optoelectronic devices.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100105"},"PeriodicalIF":25.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries 锂离子电池用富镍层状氧化物阴极降解机理及研究进展综述
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-09-01 DOI: 10.1016/j.enchem.2023.100103
Qingmeng Gan , Ning Qin , Huimin Yuan , Li Lu , Zhenghe Xu , Zhouguang Lu

Ni-rich layered transition metal oxides possess remarkably high capacity and thus are very competitive cathode materials in high-energy lithium-ion batteries (LIBs) for electric vehicles, but encounter the critical problems of fast degradation caused by the highly reactive nickel component. Here in this review we intensively summarize thedegradation mechanism of Ni-rich cathode materials including e.g., residual lithium species, cation mixing, gas generation, surface structure reconstruction, crack, thermal instability, and transition metal dissolution. Furthermore, the state-of-art strategies e.g., new preparation methods, single-crystal, doping, structure design, coating and new binders, to tackle these degradation problem are accounted. This review might be inspiring for better understanding the degradation mechanism and relevant coping approaches of high-energy cathode materials for lithium ion batteries.

富镍层状过渡金属氧化物具有非常高的容量,是电动汽车高能锂离子电池极具竞争力的正极材料,但由于其高活性的镍成分而面临快速降解的关键问题。本文综述了富镍正极材料的降解机理,包括锂残留、阳离子混合、气体生成、表面结构重构、裂纹、热不稳定性和过渡金属溶解等。此外,还介绍了解决这些降解问题的最新策略,如新的制备方法、单晶、掺杂、结构设计、涂层和新型粘合剂等。本文的研究对进一步认识高能锂离子电池正极材料的降解机理及相应的应对方法具有一定的启发意义。
{"title":"Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries","authors":"Qingmeng Gan ,&nbsp;Ning Qin ,&nbsp;Huimin Yuan ,&nbsp;Li Lu ,&nbsp;Zhenghe Xu ,&nbsp;Zhouguang Lu","doi":"10.1016/j.enchem.2023.100103","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100103","url":null,"abstract":"<div><p>Ni-rich layered transition metal oxides possess remarkably high capacity and thus are very competitive cathode materials in high-energy lithium-ion batteries (LIBs) for electric vehicles, but encounter the critical problems of fast degradation caused by the highly reactive nickel component. Here in this review we intensively summarize thedegradation mechanism of Ni-rich cathode materials including e.g., residual lithium species, cation mixing, gas generation, surface structure reconstruction, crack, thermal instability, and transition metal dissolution. Furthermore, the state-of-art strategies e.g., new preparation methods, single-crystal, doping, structure design, coating and new binders, to tackle these degradation problem are accounted. This review might be inspiring for better understanding the degradation mechanism and relevant coping approaches of high-energy cathode materials for lithium ion batteries.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100103"},"PeriodicalIF":25.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Recent advances and challenges of anodes for aqueous alkaline batteries 碱性电池阳极的研究进展与挑战
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-09-01 DOI: 10.1016/j.enchem.2023.100102
Lijun Zhou , Jinhao Xie , Diyu Xu , Yanxia Yu , Xingyuan Gao , Xihong Lu

The ongoing surge in demand for energy conversion and storage spurs the development of high-efficiency batteries. In recent decades, aqueous alkaline batteries (AABs) have been the focus point owing to the high safety, low cost, environmental benefits, impressive output voltage and theoretical energy density. However, the large-scale application of AABs is hindered by the poor cyclability and insufficient capacity utilization, especially in anodes. To circumvent the issues, great research efforts have been dedicated to the electrode design and electrolyte optimization. In this review, reaction mechanisms, modification strategies, application feasibility and existing challenges are systematically summarized and highlighted. Additionally, insightful perspectives and research orientations are proposed for further development of AABs anodes.

能源转换和存储需求的持续激增刺激了高效电池的发展。近几十年来,水碱性电池(AABs)因其高安全性、低成本、环保效益、高输出电压和理论能量密度而成为研究的热点。然而,AABs的大规模应用受到循环性差和容量利用率不足的阻碍,特别是在阳极方面。为了解决这些问题,人们在电极设计和电解质优化方面进行了大量的研究。本文对反应机理、改性策略、应用可行性和存在的挑战进行了系统的总结和强调。此外,还对AABs阳极的进一步发展提出了有见地的观点和研究方向。
{"title":"Recent advances and challenges of anodes for aqueous alkaline batteries","authors":"Lijun Zhou ,&nbsp;Jinhao Xie ,&nbsp;Diyu Xu ,&nbsp;Yanxia Yu ,&nbsp;Xingyuan Gao ,&nbsp;Xihong Lu","doi":"10.1016/j.enchem.2023.100102","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100102","url":null,"abstract":"<div><p>The ongoing surge in demand for energy conversion and storage spurs the development of high-efficiency batteries. In recent decades, aqueous alkaline batteries (AABs) have been the focus point owing to the high safety, low cost, environmental benefits, impressive output voltage and theoretical energy density. However, the large-scale application of AABs is hindered by the poor cyclability and insufficient capacity utilization, especially in anodes. To circumvent the issues, great research efforts have been dedicated to the electrode design and electrolyte optimization. In this review, reaction mechanisms, modification strategies, application feasibility and existing challenges are systematically summarized and highlighted. Additionally, insightful perspectives and research orientations are proposed for further development of AABs anodes.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100102"},"PeriodicalIF":25.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design strategies of electrocatalysts for acidic oxygen evolution reaction 酸性析氧反应电催化剂的设计策略
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-09-01 DOI: 10.1016/j.enchem.2023.100104
Shubham Kaushik, Xin Xiao, Qiang Xu

Electrochemical water splitting, especially in acidic media, is a promising technology for hydrogen production and sustainable energy conversion. However, it remains a challenge to synthesize suitable acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity and long-term stability according to the industrial standards. Up to date, quite few reviews provide a systematic summarization of the strategies and approaches to improve the electrocatalytic performances of the catalysts in acidic electrolytes. Herein, we analyze the electrochemical behavior of the reported state-of-the-art OER catalysts and provide a comprehensive review of the systematic strategies for preparing high-performance electrocatalysts. First, we introduce some fundamentals of OER mechanism to give readers a deeper understanding of this field. Then, we summarize and discuss various design strategies, including electronic state modulation, structural manipulation, etc. Finally, the challenges, opportunities, and future outlook regarding acidic OER electrocatalysts are delivered. This review will serve as a useful guiding resource for researchers seeking in-depth understanding of the OER mechanism in acidic media as well as learning approaches for synthesizing highly efficient and cost-effective OER electrocatalysts.

电化学水分解是一种很有前途的制氢和可持续能源转换技术,特别是在酸性介质中。然而,如何合成符合工业标准、具有高活性和长期稳定性的酸性析氧反应(OER)电催化剂仍然是一个挑战。目前,国内外对提高催化剂在酸性电解质中的电催化性能的策略和方法进行了较为系统的综述。在此,我们分析了目前报道的最先进的OER催化剂的电化学行为,并对制备高性能电催化剂的系统策略进行了全面的综述。首先,我们将介绍OER机制的一些基本原理,以便读者对该领域有更深入的了解。然后,我们总结和讨论了各种设计策略,包括电子状态调制,结构操纵等。最后,介绍了酸性OER电催化剂的挑战、机遇和未来展望。本文将为研究人员深入了解酸性介质中OER的机理以及合成高效、经济的OER电催化剂提供有益的指导资源。
{"title":"Design strategies of electrocatalysts for acidic oxygen evolution reaction","authors":"Shubham Kaushik,&nbsp;Xin Xiao,&nbsp;Qiang Xu","doi":"10.1016/j.enchem.2023.100104","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100104","url":null,"abstract":"<div><p>Electrochemical water splitting, especially in acidic media, is a promising technology for hydrogen production and sustainable energy conversion. However, it remains a challenge to synthesize suitable acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity and long-term stability according to the industrial standards. Up to date, quite few reviews provide a systematic summarization of the strategies and approaches to improve the electrocatalytic performances of the catalysts in acidic electrolytes. Herein, we analyze the electrochemical behavior of the reported state-of-the-art OER catalysts and provide a comprehensive review of the systematic strategies for preparing high-performance electrocatalysts. First, we introduce some fundamentals of OER mechanism to give readers a deeper understanding of this field. Then, we summarize and discuss various design strategies, including electronic state modulation, structural manipulation, etc. Finally, the challenges, opportunities, and future outlook regarding acidic OER electrocatalysts are delivered. This review will serve as a useful guiding resource for researchers seeking in-depth understanding of the OER mechanism in acidic media as well as learning approaches for synthesizing highly efficient and cost-effective OER electrocatalysts.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100104"},"PeriodicalIF":25.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthetic porous carbons for clean energy storage and conversion 用于清洁能源储存和转化的合成多孔碳
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-07-01 DOI: 10.1016/j.enchem.2023.100099
Xiao-Ling Dong, Lu Hou, Xu Hu, Yu-Tai Wu, Ling-Yu Dong, Xiao-Fei Yu, Guang-Ping Hao, An-Hui Lu

Synthetic porous carbons (SPCs) are important materials in fundamental research and industrial applications due to their diverse structures at different dimensions, intriguing physio-chemical properties, exceptional thermal and chemical stability, etc. In particular, the features including high electron conductivity, accessible active surface/interface, and developed porosity warrant their superior performances in clean energy storage and conversion. In this review, we summarize the latest advances in SPCs, serving as electrodes for this ever-increasing energy storage and conversion-related directions, e.g., supercapacitors, rechargeable batteries, fuel cells, etc. We emphasized rational design and targeted synthesis of SPCs based on bottom-up strategy, the effective methods for precise tuning of their core parameters, and the disclosure of their structure-performance correlations. The challenges of fine-tuning surface chemistry by doping heteroatoms, engineering defective sites, and optimizing compositions are discussed, which could endow the SPCs with new functions and potential applications. Finally, we outlined the developing trend and design principle of the new generation of SPCs for clean energy storage and conversion. We expect that this review could inspire interdisciplinary activities between the synthesis, physical and chemical studies of SPCs and other potential applications in addition to energy storage and conversion.

合成多孔碳(SPCs)具有不同尺寸的结构、独特的物理化学性质、优异的热稳定性和化学稳定性等特点,是基础研究和工业应用的重要材料。特别是高电子导电性、易接近的活性表面/界面和发达的孔隙度等特点,保证了其在清洁能源存储和转换方面的优越性能。在这篇综述中,我们总结了SPCs的最新进展,作为电极在这个日益增长的能量存储和转换相关的方向,如超级电容器,可充电电池,燃料电池等。我们强调了基于自底向上策略的SPCs的合理设计和有针对性的合成,精确调整其核心参数的有效方法,以及揭示其结构-性能相关性。讨论了通过杂原子掺杂、缺陷位点工程和优化组成来微调表面化学的挑战,这将赋予SPCs新的功能和潜在的应用前景。最后,我们概述了用于清洁能源存储和转换的新一代SPCs的发展趋势和设计原则。我们希望这篇综述能够激发SPCs的合成、物理和化学研究之间的跨学科活动,以及除能量存储和转换之外的其他潜在应用。
{"title":"Synthetic porous carbons for clean energy storage and conversion","authors":"Xiao-Ling Dong,&nbsp;Lu Hou,&nbsp;Xu Hu,&nbsp;Yu-Tai Wu,&nbsp;Ling-Yu Dong,&nbsp;Xiao-Fei Yu,&nbsp;Guang-Ping Hao,&nbsp;An-Hui Lu","doi":"10.1016/j.enchem.2023.100099","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100099","url":null,"abstract":"<div><p>Synthetic porous carbons (SPCs) are important materials in fundamental research and industrial applications due to their diverse structures at different dimensions, intriguing physio-chemical properties, exceptional thermal and chemical stability, etc. In particular, the features including high electron conductivity, accessible active surface/interface, and developed porosity warrant their superior performances in clean energy storage and conversion. In this review, we summarize the latest advances in SPCs, serving as electrodes for this ever-increasing energy storage and conversion-related directions, e.g., supercapacitors, rechargeable batteries, fuel cells, etc. We emphasized rational design and targeted synthesis of SPCs based on bottom-up strategy, the effective methods for precise tuning of their core parameters, and the disclosure of their structure-performance correlations. The challenges of fine-tuning surface chemistry by doping heteroatoms, engineering defective sites, and optimizing compositions are discussed, which could endow the SPCs with new functions and potential applications. Finally, we outlined the developing trend and design principle of the new generation of SPCs for clean energy storage and conversion. We expect that this review could inspire interdisciplinary activities between the synthesis, physical and chemical studies of SPCs and other potential applications in addition to energy storage and conversion.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 4","pages":"Article 100099"},"PeriodicalIF":25.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3140264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Advanced porous adsorbents for radionuclides elimination 用于消除放射性核素的先进多孔吸附剂
IF 25.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-07-01 DOI: 10.1016/j.enchem.2023.100101
Mengjie Hao , Yanfang Liu , Weijin Wu , Shiyu Wang , Xinyi Yang , Zhongshan Chen , Zhenwu Tang , Qifei Huang , Suhua Wang , Hui Yang , Xiangke Wang

With the rapid development of nuclear industry, effective management of nuclear waste and oversight of nuclear fuel cycle are critical. Radionuclides such as uranium (U), plutonium (Pu), neptunium (Np), americium (Am), curium (Cm), technetium (Tc), rhenium (Re), iodine (I), selenium (Se), thorium (Th), cesium (Cs), and strontium (Sr) transferred into environment are dangerous. It is crucial to design the corresponding materials to exhibit high adsorption capacity and selectivity among competing species in nuclear waste. Herein, this review comprehensively summarizes the application of advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and amorphous porous organic polymers (POPs) as porous adsorbents for radionuclides removal. These porous materials feature uniform composition, large porosity, and good stability, which lay a good foundation for various applications. The tunable pore sizes, high specific surface areas, exchangeable sites, and functional groups are designed as accessible platforms for nuclides diffusion and adsorption. Specific binding mechanisms toward various radionuclides, such as complexation, electrostatic interaction, and ion exchange are presented. Beyond traditional adsorbents, the superior capacity, kinetics, selectivity, and reusability of COFs, MOFs, and POPs make them broad application prospects in radionuclides removal, providing a way for effective applications in environmental remediation.

随着核工业的快速发展,有效的核废料管理和对核燃料循环的监督至关重要。铀(U)、钚(Pu)、镎(Np)、镅(Am)、锔(Cm)、锝(Tc)、铼(Re)、碘(I)、硒(Se)、钍(Th)、铯(Cs)和锶(Sr)等放射性核素转移到环境中是危险的。设计相应的材料,使其在核废料的竞争物种中具有较高的吸附能力和选择性是至关重要的。本文综述了金属有机骨架(MOFs)、共价有机骨架(COFs)和无定形多孔有机聚合物(pop)等先进多孔材料在放射性核素去除中的应用。这些多孔材料成分均匀,孔隙率大,稳定性好,为各种应用奠定了良好的基础。可调孔径,高比表面积,交换位点和官能团被设计为核素扩散和吸附的可访问平台。介绍了与各种放射性核素的特殊结合机制,如络合、静电相互作用和离子交换。在传统吸附剂的基础上,COFs、mof和POPs具有优良的吸附能力、动力学、选择性和可重复使用性,在放射性核素去除方面具有广阔的应用前景,为其在环境修复中的有效应用提供了途径。
{"title":"Advanced porous adsorbents for radionuclides elimination","authors":"Mengjie Hao ,&nbsp;Yanfang Liu ,&nbsp;Weijin Wu ,&nbsp;Shiyu Wang ,&nbsp;Xinyi Yang ,&nbsp;Zhongshan Chen ,&nbsp;Zhenwu Tang ,&nbsp;Qifei Huang ,&nbsp;Suhua Wang ,&nbsp;Hui Yang ,&nbsp;Xiangke Wang","doi":"10.1016/j.enchem.2023.100101","DOIUrl":"https://doi.org/10.1016/j.enchem.2023.100101","url":null,"abstract":"<div><p>With the rapid development of nuclear industry, effective management of nuclear waste and oversight of nuclear fuel cycle are critical. Radionuclides such as uranium (U), plutonium (Pu), neptunium (Np), americium (Am), curium (Cm), technetium (Tc), rhenium (Re), iodine (I), selenium (Se), thorium (Th), cesium (Cs), and strontium (Sr) transferred into environment are dangerous. It is crucial to design the corresponding materials to exhibit high adsorption capacity and selectivity among competing species in nuclear waste. Herein, this review comprehensively summarizes the application of advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and amorphous porous organic polymers (POPs) as porous adsorbents for radionuclides removal. These porous materials feature uniform composition, large porosity, and good stability, which lay a good foundation for various applications. The tunable pore sizes, high specific surface areas, exchangeable sites, and functional groups are designed as accessible platforms for nuclides diffusion and adsorption. Specific binding mechanisms toward various radionuclides, such as complexation, electrostatic interaction, and ion exchange are presented. Beyond traditional adsorbents, the superior capacity, kinetics, selectivity, and reusability of COFs, MOFs, and POPs make them broad application prospects in radionuclides removal, providing a way for effective applications in environmental remediation.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 4","pages":"Article 100101"},"PeriodicalIF":25.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3140265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
期刊
EnergyChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1