首页 > 最新文献

Environmental Modelling & Software最新文献

英文 中文
Texture2Par: A texture-driven tool for estimating subsurface hydraulic properties
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-11 DOI: 10.1016/j.envsoft.2025.106372
Leland Scantlebury , Vivek Bedekar , Matthew J. Tonkin , Marinko Karanovic , Thomas Harter
Subsurface hydraulic properties, critical in the development of groundwater models, are often inferred from aquifer tests and complemented by geologic information. In alluvial aquifers in particular, well and boring logs can provide a three-dimensional distribution of the presence of coarse-grained and fine-grained sediment (texture) as an important mapping of heterogeneity often correlated with hydraulic properties. Texture2Par was developed to incorporate texture data in the estimation of aquifer parameters for groundwater models. The software aggregates and interpolates texture data to a model grid, calculates hydraulic conductivity and storage parameters, and writes input files for the MODFLOW and IWFM simulation codes. Texture2Par includes options to represent a depth-dependent decrease in hydraulic conductivity, hydrostratigraphic units representing different depositional environments, and pilot points to represent relationships between texture and aquifer properties that may vary throughout groundwater flow systems. The paper presents the underlying methods and the application of Texture2Par using synthetic and real-world examples.
{"title":"Texture2Par: A texture-driven tool for estimating subsurface hydraulic properties","authors":"Leland Scantlebury ,&nbsp;Vivek Bedekar ,&nbsp;Matthew J. Tonkin ,&nbsp;Marinko Karanovic ,&nbsp;Thomas Harter","doi":"10.1016/j.envsoft.2025.106372","DOIUrl":"10.1016/j.envsoft.2025.106372","url":null,"abstract":"<div><div>Subsurface hydraulic properties, critical in the development of groundwater models, are often inferred from aquifer tests and complemented by geologic information. In alluvial aquifers in particular, well and boring logs can provide a three-dimensional distribution of the presence of coarse-grained and fine-grained sediment (texture) as an important mapping of heterogeneity often correlated with hydraulic properties. Texture2Par was developed to incorporate texture data in the estimation of aquifer parameters for groundwater models. The software aggregates and interpolates texture data to a model grid, calculates hydraulic conductivity and storage parameters, and writes input files for the MODFLOW and IWFM simulation codes. Texture2Par includes options to represent a depth-dependent decrease in hydraulic conductivity, hydrostratigraphic units representing different depositional environments, and pilot points to represent relationships between texture and aquifer properties that may vary throughout groundwater flow systems. The paper presents the underlying methods and the application of Texture2Par using synthetic and real-world examples.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"187 ","pages":"Article 106372"},"PeriodicalIF":4.8,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring a hybrid ensemble–variational data assimilation technique (4DEnVar) with a simple ecosystem carbon model
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-10 DOI: 10.1016/j.envsoft.2025.106361
Natalie Douglas, Tristan Quaife, Ross Bannister
The study presented here evaluates the ability of the 4DEnVar data assimilation technique to estimate the parameters from synthetically generated observations from a simple carbon model. The method is particularly attractive in its speed and ease of use, and its avoidance in construction of adjoint or tangent linear model code. Additionally, the assimilation analysis step can be performed independently of ensemble generation; there is no need to integrate the 4DEnVar code with that of the underlying model, assuming parameters are static in time. The 4DEnVar method is capable of closely estimating the model parameters with increased certainty given that the ensemble produces a sufficient number of trajectories exhibiting behaviour seen in the observations. We find that the root mean squared error between trajectories and observations is significantly reduced when compared with the prior — in one case a 96% and 99% reduction in the biomass and soil pools respectively.
{"title":"Exploring a hybrid ensemble–variational data assimilation technique (4DEnVar) with a simple ecosystem carbon model","authors":"Natalie Douglas,&nbsp;Tristan Quaife,&nbsp;Ross Bannister","doi":"10.1016/j.envsoft.2025.106361","DOIUrl":"10.1016/j.envsoft.2025.106361","url":null,"abstract":"<div><div>The study presented here evaluates the ability of the 4DEnVar data assimilation technique to estimate the parameters from synthetically generated observations from a simple carbon model. The method is particularly attractive in its speed and ease of use, and its avoidance in construction of adjoint or tangent linear model code. Additionally, the assimilation analysis step can be performed independently of ensemble generation; there is no need to integrate the 4DEnVar code with that of the underlying model, assuming parameters are static in time. The 4DEnVar method is capable of closely estimating the model parameters with increased certainty given that the ensemble produces a sufficient number of trajectories exhibiting behaviour seen in the observations. We find that the root mean squared error between trajectories and observations is significantly reduced when compared with the prior — in one case a 96% and 99% reduction in the biomass and soil pools respectively.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106361"},"PeriodicalIF":4.8,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid cellular automata-based air pollution model for traffic scenario microsimulations
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-07 DOI: 10.1016/j.envsoft.2025.106356
Tabea S. Sonnenschein , Zhendong Yuan , Jibran Khan , Jules Kerckhoffs , Roel C.H. Vermeulen , Simon Scheider
Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (i.e. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).
{"title":"Hybrid cellular automata-based air pollution model for traffic scenario microsimulations","authors":"Tabea S. Sonnenschein ,&nbsp;Zhendong Yuan ,&nbsp;Jibran Khan ,&nbsp;Jules Kerckhoffs ,&nbsp;Roel C.H. Vermeulen ,&nbsp;Simon Scheider","doi":"10.1016/j.envsoft.2025.106356","DOIUrl":"10.1016/j.envsoft.2025.106356","url":null,"abstract":"<div><div>Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (<em>i.e</em>. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106356"},"PeriodicalIF":4.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-07 DOI: 10.1016/j.envsoft.2025.106367
Zizheng Guo , Haojie Wang , Jun He , Da Huang , Yixiang Song , Tengfei Wang , Yuanbo Liu , Joaquin V. Ferrer
Accurate landslide susceptibility assessments (LSA) are crucial for civil protection and land use planning. This study introduces PSLSA v2.0 as an open-source Python package that can conduct LSA automatically. It integrates six sophisticated machine learning algorithms (C5.0, SVM, LR, RF, MLP, XGBoost), and allows arbitrary combinations of influencing factors to generate landslide susceptibility index (LSI). We demonstrate how factor contribution and hyperparameter optimization as additional outputs can enhance the model interpretability. We apply PSLSA to a case study focused from Linzhi City in the Tibetan Plateau of China, that has undergone significant engineering modifications on its slopes. The results reveal that slope and aspect are the dominant factors in determining landslide susceptibility. All the six algorithms have an accuracy of over 80%. Although the distribution patterns of LSI vary, the C5.0 model is set apart with the best performance. PSLSA provides a powerful tool for stakeholders especially the non-geohazard professionals.
{"title":"PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment","authors":"Zizheng Guo ,&nbsp;Haojie Wang ,&nbsp;Jun He ,&nbsp;Da Huang ,&nbsp;Yixiang Song ,&nbsp;Tengfei Wang ,&nbsp;Yuanbo Liu ,&nbsp;Joaquin V. Ferrer","doi":"10.1016/j.envsoft.2025.106367","DOIUrl":"10.1016/j.envsoft.2025.106367","url":null,"abstract":"<div><div>Accurate landslide susceptibility assessments (LSA) are crucial for civil protection and land use planning. This study introduces PSLSA v2.0 as an open-source Python package that can conduct LSA automatically. It integrates six sophisticated machine learning algorithms (C5.0, SVM, LR, RF, MLP, XGBoost), and allows arbitrary combinations of influencing factors to generate landslide susceptibility index (LSI). We demonstrate how factor contribution and hyperparameter optimization as additional outputs can enhance the model interpretability. We apply PSLSA to a case study focused from Linzhi City in the Tibetan Plateau of China, that has undergone significant engineering modifications on its slopes. The results reveal that slope and aspect are the dominant factors in determining landslide susceptibility. All the six algorithms have an accuracy of over 80%. Although the distribution patterns of LSI vary, the C5.0 model is set apart with the best performance. PSLSA provides a powerful tool for stakeholders especially the non-geohazard professionals.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106367"},"PeriodicalIF":4.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-06 DOI: 10.1016/j.envsoft.2025.106357
Fransiskus Serfian Jogo , Hanum Khairana Fatmah , Aufaclav Zatu Kusuma Frisky
{"title":"","authors":"Fransiskus Serfian Jogo ,&nbsp;Hanum Khairana Fatmah ,&nbsp;Aufaclav Zatu Kusuma Frisky","doi":"10.1016/j.envsoft.2025.106357","DOIUrl":"10.1016/j.envsoft.2025.106357","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106357"},"PeriodicalIF":4.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an advanced numerical simulation program considering debris flow and driftwood behavior
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-06 DOI: 10.1016/j.envsoft.2025.106366
T. Kang , S. Lee , H. An , M. Kim , I. Kimura
This study introduces Deb2D, an advanced predictive model that combines Eulerian flow dynamics with Lagrangian driftwood movement to accurately simulate debris flows. It enhances the existing Deb2D framework (An et al., 2019) by integrating a driftwood dynamics module rewritten in C++ (Kang et al., 2020) and a user-friendly Graphical User Interface developed with QtCreator for setup and visualization of simulations. This improvement enables precise two-way interactions between driftwood and debris flows, ensuring detailed visualization of their dynamics. When applied to the 2011 Mt. Umyeon debris flow in South Korea, the model demonstrated high accuracy in replicating observed phenomena. Future developments will focus on adapting this model into a QGIS plugin to broaden its applicability and user base.
{"title":"Development of an advanced numerical simulation program considering debris flow and driftwood behavior","authors":"T. Kang ,&nbsp;S. Lee ,&nbsp;H. An ,&nbsp;M. Kim ,&nbsp;I. Kimura","doi":"10.1016/j.envsoft.2025.106366","DOIUrl":"10.1016/j.envsoft.2025.106366","url":null,"abstract":"<div><div>This study introduces Deb2D, an advanced predictive model that combines Eulerian flow dynamics with Lagrangian driftwood movement to accurately simulate debris flows. It enhances the existing Deb2D framework (An et al., 2019) by integrating a driftwood dynamics module rewritten in C++ (Kang et al., 2020) and a user-friendly Graphical User Interface developed with QtCreator for setup and visualization of simulations. This improvement enables precise two-way interactions between driftwood and debris flows, ensuring detailed visualization of their dynamics. When applied to the 2011 Mt. Umyeon debris flow in South Korea, the model demonstrated high accuracy in replicating observed phenomena. Future developments will focus on adapting this model into a QGIS plugin to broaden its applicability and user base.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106366"},"PeriodicalIF":4.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal PM2.5 forecasting via dynamic geographical Graph Neural Network
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-06 DOI: 10.1016/j.envsoft.2025.106351
Qin Zhao , Jiajun Liu , Xinwen Yang , Hongda Qi , Jie Lian
With the growing interest in data-driven methods, Graph Neural Networks (GNNs) have demonstrated strong performance in PM2.5 forecasting as a deep learning architecture. However, GNN-based methods typically construct the graph based solely on the distance between stations, and few methods introduce geographical factors that significantly affect the spatial dispersion of PM2.5, leading to performance bottlenecks. Additionally, these methods often fail to process the dynamic wind–field data comprehensively, resulting in inaccurate PM2.5 dispersion graph construction. These shortcomings greatly limit the interpretability of GNN models in forecasting air pollution. To address these issues, we propose a deep learning method that combines Graph Convolution Network (GCN) with Long Short-Term Memory (LSTM), leveraging geographical information within a dynamic graph. The model captures spatial dependencies between PM2.5 monitoring stations using a dynamic directional graph derived from the wind–field data and a static graph to represent inherent geographical relationships. The combination of GCN and LSTM enables the extraction of both spatial and temporal correlations. The results of experiments suggest that our proposed model, which offers great interpretability, outperforms state-of-the-art methods, especially in 24, 30, and 36 hours forecasts.
{"title":"Spatiotemporal PM2.5 forecasting via dynamic geographical Graph Neural Network","authors":"Qin Zhao ,&nbsp;Jiajun Liu ,&nbsp;Xinwen Yang ,&nbsp;Hongda Qi ,&nbsp;Jie Lian","doi":"10.1016/j.envsoft.2025.106351","DOIUrl":"10.1016/j.envsoft.2025.106351","url":null,"abstract":"<div><div>With the growing interest in data-driven methods, Graph Neural Networks (GNNs) have demonstrated strong performance in <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> forecasting as a deep learning architecture. However, GNN-based methods typically construct the graph based solely on the distance between stations, and few methods introduce geographical factors that significantly affect the spatial dispersion of <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>, leading to performance bottlenecks. Additionally, these methods often fail to process the dynamic wind–field data comprehensively, resulting in inaccurate <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> dispersion graph construction. These shortcomings greatly limit the interpretability of GNN models in forecasting air pollution. To address these issues, we propose a deep learning method that combines Graph Convolution Network (GCN) with Long Short-Term Memory (LSTM), leveraging geographical information within a dynamic graph. The model captures spatial dependencies between <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> monitoring stations using a dynamic directional graph derived from the wind–field data and a static graph to represent inherent geographical relationships. The combination of GCN and LSTM enables the extraction of both spatial and temporal correlations. The results of experiments suggest that our proposed model, which offers great interpretability, outperforms state-of-the-art methods, especially in 24, 30, and 36 hours forecasts.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106351"},"PeriodicalIF":4.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143336705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ExMAD (Expert-based Multitemporal AI Detector): An open-source methodological framework for remote and field landslide inventory
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-04 DOI: 10.1016/j.envsoft.2025.106363
Michele Licata, Stefano Faga , Giandomenico Fubelli
Landslides threaten lives and infrastructure, making accurate inventories crucial for risk management. This study combines expert methods with machine learning to automate and validate landslide detection and timing using Sentinel-2 satellite imagery. We developed ExMAD (Expert-based Multi-temporal AI Detector), an open-source methodological framework (https://github.com/NewGeoProjects/ExMAD) to integrate artificial intelligence with human expertise to detect occurrence timing of a targeted landslide. A U-Net neural network was chosen to effectively test ExMAD in landslide detection over Sentinel-2 worldwide multitemporal satellite imagery sequences, and the model was tested through five evaluations. ExMAD was able to effectively extract timing of target landslides on Sentinel-2 images and was able to correctly detect the presence/absence of landslide, proving the suitability of AI systems in landslide temporal mapping task.
This research proves the potential of hybrid AI-human approaches for landslide risk assessment, integrate human expertise with machine learning offers promising advancements for remote and field mapping of landslide. Furthermore, the ExMAD methodology adheres to the European Union's Artificial Intelligence Act, stressing human oversight in high-risk AI applications to enhance trust, control, and efficiency in landslide inventory creation and risk management.
{"title":"ExMAD (Expert-based Multitemporal AI Detector): An open-source methodological framework for remote and field landslide inventory","authors":"Michele Licata,&nbsp;Stefano Faga ,&nbsp;Giandomenico Fubelli","doi":"10.1016/j.envsoft.2025.106363","DOIUrl":"10.1016/j.envsoft.2025.106363","url":null,"abstract":"<div><div>Landslides threaten lives and infrastructure, making accurate inventories crucial for risk management. This study combines expert methods with machine learning to automate and validate landslide detection and timing using Sentinel-2 satellite imagery. We developed ExMAD (Expert-based Multi-temporal AI Detector), an open-source methodological framework (<span><span>https://github.com/NewGeoProjects/ExMAD</span><svg><path></path></svg></span>) to integrate artificial intelligence with human expertise to detect occurrence timing of a targeted landslide. A U-Net neural network was chosen to effectively test ExMAD in landslide detection over Sentinel-2 worldwide multitemporal satellite imagery sequences, and the model was tested through five evaluations. ExMAD was able to effectively extract timing of target landslides on Sentinel-2 images and was able to correctly detect the presence/absence of landslide, proving the suitability of AI systems in landslide temporal mapping task.</div><div>This research proves the potential of hybrid AI-human approaches for landslide risk assessment, integrate human expertise with machine learning offers promising advancements for remote and field mapping of landslide. Furthermore, the ExMAD methodology adheres to the European Union's Artificial Intelligence Act, stressing human oversight in high-risk AI applications to enhance trust, control, and efficiency in landslide inventory creation and risk management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106363"},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SWMManywhere: A workflow for generation and sensitivity analysis of synthetic urban drainage models, anywhere
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-02 DOI: 10.1016/j.envsoft.2025.106358
Barnaby Dobson , Tijana Jovanovic , Diego Alonso-Álvarez , Taher Chegini
Improvements in public geospatial datasets provide opportunities for deriving urban drainage networks and simulation models of these networks (UDMs). We present SWMManywhere, which leverages such datasets for generating synthetic UDMs and creating a Storm Water Management Model for any urban area globally. SWMManywhere's modular and parameterised approach enables customisation to explore hydraulicly feasible network configurations. Key novelties of our workflow are in network topology derivation that accounts for combined effects of impervious area and pipe slope. We assess SWMManywhere by comparing pluvial flooding, drainage network outflows, and design with known networks. The results demonstrate high quality simulations are achievable with a synthetic approach even for large networks. Our sensitivity analysis shows that manholes locations, outfalls, and underlying street network are the most sensitive parameters. We find widespread sensitivity across all parameters without clearly defined values that they should take, thus, recommending an uncertainty driven approach to synthetic drainage network modelling.
{"title":"SWMManywhere: A workflow for generation and sensitivity analysis of synthetic urban drainage models, anywhere","authors":"Barnaby Dobson ,&nbsp;Tijana Jovanovic ,&nbsp;Diego Alonso-Álvarez ,&nbsp;Taher Chegini","doi":"10.1016/j.envsoft.2025.106358","DOIUrl":"10.1016/j.envsoft.2025.106358","url":null,"abstract":"<div><div>Improvements in public geospatial datasets provide opportunities for deriving urban drainage networks and simulation models of these networks (UDMs). We present SWMManywhere, which leverages such datasets for generating synthetic UDMs and creating a Storm Water Management Model for any urban area globally. SWMManywhere's modular and parameterised approach enables customisation to explore hydraulicly feasible network configurations. Key novelties of our workflow are in network topology derivation that accounts for combined effects of impervious area and pipe slope. We assess SWMManywhere by comparing pluvial flooding, drainage network outflows, and design with known networks. The results demonstrate high quality simulations are achievable with a synthetic approach even for large networks. Our sensitivity analysis shows that manholes locations, outfalls, and underlying street network are the most sensitive parameters. We find widespread sensitivity across all parameters without clearly defined values that they should take, thus, recommending an uncertainty driven approach to synthetic drainage network modelling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106358"},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explicit robust optimization framework for multipurpose cascade reservoir operation considering inflow uncertainty 考虑流入量不确定性的多用途梯级水库运行显式稳健优化框架
IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-01 DOI: 10.1016/j.envsoft.2024.106301
Shaokun He , YiBo Wang , Dimitri Solomatine , Xiao Li
Long-term water resource management involving multipurpose coordination requires robust decision-making in water infrastructure cases to cope with various types of uncertainties. Traditional robust optimization methods generally do not explicitly propagate input or parametric uncertainties into estimates of the robustness of solutions, which limits their ability to address uncertainty comprehensively across solution spaces. In this study, we introduce an explicit robust decision-making framework that blends multiobjective search, probabilistic analysis of robustness, and diagnostic verification tools to identify robust optimal solutions to external uncertainty. The proposed framework is illustrated on four diverse robustness formulations, which capture a wide variety of stakeholder attitudes from highly risk-averse to risk-neutral, for the primary operating objectives (hydropower production, water diversion, and hydrological alteration degree) in China's Hanjiang cascade reservoir system. By analyzing the Pareto front propagated from inflow uncertainty, it is found that optimal robust policies with a significantly higher degree of hydrological alteration are preferred in most formulations to achieve relatively lower joint uncertainty of hydropower and water diversion. These policies also yield sufficiently stable model performance in the case of an out-of-sample streamflow set during diagnostic verification. Furthermore, a comparative analysis of four different formulations suggests that a composite normalized robustness indicator (NRI) developed in this study to integrate various robustness metrics can achieve an effective balance for all considered objectives. These findings highlight the benefits of explicit robust optimization for managing hydrological uncertainties in multipurpose cascade reservoirs.
涉及多用途协调的长期水资源管理要求在水利基础设施案例中进行稳健决策,以应对各种类型的不确定性。传统的稳健优化方法一般不会明确地将输入或参数的不确定性传播到对解决方案稳健性的估计中,这限制了其在解决方案空间中全面应对不确定性的能力。在本研究中,我们引入了一个明确的稳健决策框架,该框架融合了多目标搜索、稳健性概率分析和诊断验证工具,可识别外部不确定性的稳健最优解。针对中国汉江梯级水库系统的主要运行目标(水电生产、引水和水文变化程度),提出了四种不同的稳健性公式,反映了从高度规避风险到风险中性的各种利益相关者态度。通过分析流入量不确定性所传播的帕累托前沿,发现在大多数公式中,水文改变程度明显较高的最优稳健政策更受青睐,从而实现相对较低的水电和引水联合不确定性。在诊断验证过程中出现样本外流量集的情况下,这些策略也能产生足够稳定的模型性能。此外,对四种不同方案的比较分析表明,本研究开发的综合归一化鲁棒性指标(NRI)整合了各种鲁棒性指标,可以有效平衡所有考虑的目标。这些发现凸显了显式鲁棒性优化在管理多用途梯级水库水文不确定性方面的优势。
{"title":"An explicit robust optimization framework for multipurpose cascade reservoir operation considering inflow uncertainty","authors":"Shaokun He ,&nbsp;YiBo Wang ,&nbsp;Dimitri Solomatine ,&nbsp;Xiao Li","doi":"10.1016/j.envsoft.2024.106301","DOIUrl":"10.1016/j.envsoft.2024.106301","url":null,"abstract":"<div><div>Long-term water resource management involving multipurpose coordination requires robust decision-making in water infrastructure cases to cope with various types of uncertainties. Traditional robust optimization methods generally do not explicitly propagate input or parametric uncertainties into estimates of the robustness of solutions, which limits their ability to address uncertainty comprehensively across solution spaces. In this study, we introduce an explicit robust decision-making framework that blends multiobjective search, probabilistic analysis of robustness, and diagnostic verification tools to identify robust optimal solutions to external uncertainty. The proposed framework is illustrated on four diverse robustness formulations, which capture a wide variety of stakeholder attitudes from highly risk-averse to risk-neutral, for the primary operating objectives (hydropower production, water diversion, and hydrological alteration degree) in China's Hanjiang cascade reservoir system. By analyzing the Pareto front propagated from inflow uncertainty, it is found that optimal robust policies with a significantly higher degree of hydrological alteration are preferred in most formulations to achieve relatively lower joint uncertainty of hydropower and water diversion. These policies also yield sufficiently stable model performance in the case of an out-of-sample streamflow set during diagnostic verification. Furthermore, a comparative analysis of four different formulations suggests that a composite normalized robustness indicator (<em>NRI</em>) developed in this study to integrate various robustness metrics can achieve an effective balance for all considered objectives. These findings highlight the benefits of explicit robust optimization for managing hydrological uncertainties in multipurpose cascade reservoirs.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106301"},"PeriodicalIF":4.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Modelling & Software
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1