Pub Date : 2024-07-14DOI: 10.1016/j.envsoft.2024.106143
Thorsten Gökpinar, Thomas Heinze
Temperature can be a valuable indicator for the identification and quantification of water fluxes in surface and subsurface water bodies. Therefore, the measurement and analysis of vertical temperature profiles is an important part of the characterization of a water body. Besides its easy application and widespread use, the analysis of temperature profiles can be complex due to its nature as a non-stationary measurement in a dynamic system. This work presents a data-based algorithm to process and segment vertical water temperature profiles avoiding subjectivity in the quantitative analysis of these profiles. Special emphasis is given to studying the reproducibility and precision of the method from data acquisition to data processing and analysis. The presented method provides a blueprint for adjacent applications and showcases the explanatory power of vertical profiles of water temperature to study water fluxes.
{"title":"Algorithm-based segmentation of temperature-depth profiles: Examples from a mine","authors":"Thorsten Gökpinar, Thomas Heinze","doi":"10.1016/j.envsoft.2024.106143","DOIUrl":"10.1016/j.envsoft.2024.106143","url":null,"abstract":"<div><p>Temperature can be a valuable indicator for the identification and quantification of water fluxes in surface and subsurface water bodies. Therefore, the measurement and analysis of vertical temperature profiles is an important part of the characterization of a water body. Besides its easy application and widespread use, the analysis of temperature profiles can be complex due to its nature as a non-stationary measurement in a dynamic system. This work presents a data-based algorithm to process and segment vertical water temperature profiles avoiding subjectivity in the quantitative analysis of these profiles. Special emphasis is given to studying the reproducibility and precision of the method from data acquisition to data processing and analysis. The presented method provides a blueprint for adjacent applications and showcases the explanatory power of vertical profiles of water temperature to study water fluxes.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106143"},"PeriodicalIF":4.8,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002044/pdfft?md5=c422f8cfd3a91dde8cb80be726446bdc&pid=1-s2.0-S1364815224002044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1016/j.envsoft.2024.106142
Kai Xu , Min Chen , Songshan Yue , Fengyuan Zhang , Jin Wang , Yongning Wen , Guonian Lü
With the development of geographic simulation methods in recent decades, a great deal of resources have accumulated to support their implementation. These resources can be divided into model resources for analyzing or predicting geographic phenomena or processes, data resources for representing the characteristics of real or simulated environment, and computing resources for supporting simulation tasks. These resources are characterized by geospatial distribution and are difficult to discover and reuse. OpenGMS has carried out a series of fundamental research to sharing and collaborating distributed resources on the web. On this basis, this paper presents the concept of the OpenGMS open portal. The portal adopts FAIR principles and supports resources sharing and reuse to facilitate collaboration and exchange between resource contributors and users. This paper takes applications of the portal in resource sharing and reuse case and online training courses as examples to illustrate how the portal can bridge contributors and users of resources.
{"title":"The portal of OpenGMS: Bridging the contributors and users of geographic simulation resources","authors":"Kai Xu , Min Chen , Songshan Yue , Fengyuan Zhang , Jin Wang , Yongning Wen , Guonian Lü","doi":"10.1016/j.envsoft.2024.106142","DOIUrl":"10.1016/j.envsoft.2024.106142","url":null,"abstract":"<div><p>With the development of geographic simulation methods in recent decades, a great deal of resources have accumulated to support their implementation. These resources can be divided into model resources for analyzing or predicting geographic phenomena or processes, data resources for representing the characteristics of real or simulated environment, and computing resources for supporting simulation tasks. These resources are characterized by geospatial distribution and are difficult to discover and reuse. OpenGMS has carried out a series of fundamental research to sharing and collaborating distributed resources on the web. On this basis, this paper presents the concept of the OpenGMS open portal. The portal adopts FAIR principles and supports resources sharing and reuse to facilitate collaboration and exchange between resource contributors and users. This paper takes applications of the portal in resource sharing and reuse case and online training courses as examples to illustrate how the portal can bridge contributors and users of resources.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106142"},"PeriodicalIF":4.8,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study develops a toolkit for implementing the WA + framework, integrating observational data and global databases to enhance data collection for water accounting assessment. By addressing data gaps, updating processes, and coverage issues through automated systems, it compiles key variables like precipitation, evapotranspiration, and groundwater fluctuations, leveraging GLDAS (Global Land Data Assimilation System), GLEAM (Global Land Evaporation Amsterdam Model), and GRACE (Gravity Recovery and Climate Experiment) datasets. The toolkit, named NWBWAS (National Web Based Water Accounting System), automates water accounting components' calculation, providing comprehensive reports and indicators. Using the Tashk-Bakhtegan watershed as a case study, NWBWAS demonstrated significant advancements, offering a robust, efficient solution for rapid, cost-effective initial water accounting assessments, marking a substantial improvement over previous approaches.
{"title":"Toolkit for assessing water accounting in data-scarce river basins using global databases","authors":"Sobhan Rostami , Majid Delavar , Shokri Kuchak Vahid , Majid Mirzaei","doi":"10.1016/j.envsoft.2024.106140","DOIUrl":"10.1016/j.envsoft.2024.106140","url":null,"abstract":"<div><p>This study develops a toolkit for implementing the WA + framework, integrating observational data and global databases to enhance data collection for water accounting assessment. By addressing data gaps, updating processes, and coverage issues through automated systems, it compiles key variables like precipitation, evapotranspiration, and groundwater fluctuations, leveraging GLDAS (Global Land Data Assimilation System), GLEAM (Global Land Evaporation Amsterdam Model), and GRACE (Gravity Recovery and Climate Experiment) datasets. The toolkit, named NWBWAS (National Web Based Water Accounting System), automates water accounting components' calculation, providing comprehensive reports and indicators. Using the Tashk-Bakhtegan watershed as a case study, NWBWAS demonstrated significant advancements, offering a robust, efficient solution for rapid, cost-effective initial water accounting assessments, marking a substantial improvement over previous approaches.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106140"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.envsoft.2024.106135
Parisa Khorsandi Kuhanestani, Anouk Bomers, Martijn J. Booij, Jord J. Warmink, Suzanne J.M.H. Hulscher
2D hydraulic models are one of the tools to simulate water levels for effective river management. Mesh resolution in 2D models directly impacts the discretization of the bathymetry, the discharge capacity, and consequently, the accuracy of simulated water levels. The objective of this study is to develop a modified mesh setup that corresponds with the cross-sectional flow volume of the measured cross-section but with a low resolution for the entire discharge range. An algorithm is developed to vertically adjust mesh nodes within a limited range to achieve this objective. Subsequently, the D-Flow-FM software is utilized to model four hypothetical 100-kilometer river reaches to evaluate the modified mesh setup. The findings reveal that the water level using the modified low-resolution mesh is up to 90% closer to the high resolution mesh compared to the original low-resolution mesh for all discharges. Additionally, the simulation of the low-resolution mesh runs approximately 12.5 times faster than their high-resolution counterparts.
{"title":"Increasing the water level accuracy in hydraulic river simulation by adapting mesh level elevation","authors":"Parisa Khorsandi Kuhanestani, Anouk Bomers, Martijn J. Booij, Jord J. Warmink, Suzanne J.M.H. Hulscher","doi":"10.1016/j.envsoft.2024.106135","DOIUrl":"10.1016/j.envsoft.2024.106135","url":null,"abstract":"<div><p>2D hydraulic models are one of the tools to simulate water levels for effective river management. Mesh resolution in 2D models directly impacts the discretization of the bathymetry, the discharge capacity, and consequently, the accuracy of simulated water levels. The objective of this study is to develop a modified mesh setup that corresponds with the cross-sectional flow volume of the measured cross-section but with a low resolution for the entire discharge range. An algorithm is developed to vertically adjust mesh nodes within a limited range to achieve this objective. Subsequently, the D-Flow-FM software is utilized to model four hypothetical 100-kilometer river reaches to evaluate the modified mesh setup. The findings reveal that the water level using the modified low-resolution mesh is up to 90% closer to the high resolution mesh compared to the original low-resolution mesh for all discharges. Additionally, the simulation of the low-resolution mesh runs approximately 12.5 times faster than their high-resolution counterparts.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106135"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001968/pdfft?md5=7c257e863c5db96b293767cfe6dd6df9&pid=1-s2.0-S1364815224001968-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.envsoft.2024.106139
Virginia Cabrera , Rubén López-Vizcaíno, Ángel Yustres, Vicente Navarro
Currently, the deep geological repository approach for spent nuclear fuel is regarded as the most dependable and secure method for permanently disposing of this kind of waste. Among its key safety components is an engineered barrier made from compacted bentonite, which isolates the encapsulated waste from the surrounding host rock. As a result, understanding how bentonites react to varying compositions of groundwater is crucial. This is where numerical modelling becomes essential.
It is generally approved by the scientific community to idealise bentonite as a material structured under a double porosity system composed of the macro and microstructure. In this context, this paper illustrates the capabilities of a double-porosity reactive transport model for bentonites fully implemented in the multiphysics COMSOL platform. For this purpose, different experimental tests were simulated based on the evaluation of diffusive ion transport, mineral dissolution and cation exchange processes in MX-80 bentonite, obtaining very satisfactory results.
{"title":"Qualification of a double porosity reactive transport model for MX-80 bentonite in deep geological repositories for nuclear wastes","authors":"Virginia Cabrera , Rubén López-Vizcaíno, Ángel Yustres, Vicente Navarro","doi":"10.1016/j.envsoft.2024.106139","DOIUrl":"https://doi.org/10.1016/j.envsoft.2024.106139","url":null,"abstract":"<div><p>Currently, the deep geological repository approach for spent nuclear fuel is regarded as the most dependable and secure method for permanently disposing of this kind of waste. Among its key safety components is an engineered barrier made from compacted bentonite, which isolates the encapsulated waste from the surrounding host rock. As a result, understanding how bentonites react to varying compositions of groundwater is crucial. This is where numerical modelling becomes essential.</p><p>It is generally approved by the scientific community to idealise bentonite as a material structured under a double porosity system composed of the macro and microstructure. In this context, this paper illustrates the capabilities of a double-porosity reactive transport model for bentonites fully implemented in the multiphysics COMSOL platform. For this purpose, different experimental tests were simulated based on the evaluation of diffusive ion transport, mineral dissolution and cation exchange processes in MX-80 bentonite, obtaining very satisfactory results.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"179 ","pages":"Article 106139"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002007/pdfft?md5=cc9c5351e2cdf0c26ab47d78655fb08b&pid=1-s2.0-S1364815224002007-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate representation of river channel geometry is important for hydrologic and hydraulic modeling of fluvial systems. Often, channel geometry is estimated using simple rating curves that can be applied across various spatial scales. However, such methods are limited to power law relations that do not employ many potentially relevant catchment and river attributes. This paper introduce a new dataset, IFMHA (Inventory of Field Measurement of Hydraulic Attributes), to enable research studies on channel geometry and streamflow characteristics. IFMHA is derived from the National Water Information System (NWIS) site inventory for surface water field measurements and stream attributes from the National Hydrography Dataset (NHD). IFMHA includes 2,802,532 records from 10,050 sites (NWIS streamgaging stations). The dataset utility is demonstrated here by presenting a series of conceptual models for estimating channel geometry parameters (i.e., channel mean depth, channel maximum depth, wetted perimeter, and roughness) based on the available field attributes within IFMHA. Such a dataset and attributed channel geometry parameters can enhance the performance of operational flood forecasting frameworks (e.g. National Water Model) by providing more accurate initial conditions used in hydrologic and hydraulic routing models.
{"title":"A large dataset of fluvial hydraulic and geometry attributes derived from USGS field measurement records","authors":"Seyed Mohammad Hassan Erfani , Mahdi Erfani , Sagy Cohen , Austin R.J. Downey , Erfan Goharian","doi":"10.1016/j.envsoft.2024.106136","DOIUrl":"10.1016/j.envsoft.2024.106136","url":null,"abstract":"<div><p>Accurate representation of river channel geometry is important for hydrologic and hydraulic modeling of fluvial systems. Often, channel geometry is estimated using simple rating curves that can be applied across various spatial scales. However, such methods are limited to power law relations that do not employ many potentially relevant catchment and river attributes. This paper introduce a new dataset, IFMHA (Inventory of Field Measurement of Hydraulic Attributes), to enable research studies on channel geometry and streamflow characteristics. IFMHA is derived from the National Water Information System (NWIS) site inventory for surface water field measurements and stream attributes from the National Hydrography Dataset (NHD). IFMHA includes 2,802,532 records from 10,050 sites (NWIS streamgaging stations). The dataset utility is demonstrated here by presenting a series of conceptual models for estimating channel geometry parameters (i.e., channel mean depth, channel maximum depth, wetted perimeter, and roughness) based on the available field attributes within IFMHA. Such a dataset and attributed channel geometry parameters can enhance the performance of operational flood forecasting frameworks (e.g. National Water Model) by providing more accurate initial conditions used in hydrologic and hydraulic routing models.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106136"},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1016/j.envsoft.2024.106137
Travis Adrian Dantzer, Branko Kerkez
Wireless sensor networks support decision-making in diverse environmental contexts. Adoption of these networks has increased dramatically due to technological advances that have increased value while lowering cost. However, real-time information only allows for reactive management. As most interventions take time, predictions across these sensor networks enable better planning and decision making. Prediction models across large water level and discharge sensor networks do exist. However, they have limitations in their accessibility, automaticity, and data requirements. We present an open-source method for automatically generating computationally cheap rainfall-runoff models for any depth or discharge sensor given only its measurements and location. We characterize reliability in a real-world case study across 200,000 km, evaluate long-term accuracy, and assess sensitivity to measurement noise and errors in catchment delineation. The method’s accuracy, computational efficiency, and automaticity make it a valuable asset to support operational decision making for diverse stakeholders including bridge inspectors and utilities.
{"title":"Automated hydrologic forecasting using open-source sensors: Predicting stream depths across 200,000 km2","authors":"Travis Adrian Dantzer, Branko Kerkez","doi":"10.1016/j.envsoft.2024.106137","DOIUrl":"10.1016/j.envsoft.2024.106137","url":null,"abstract":"<div><p>Wireless sensor networks support decision-making in diverse environmental contexts. Adoption of these networks has increased dramatically due to technological advances that have increased value while lowering cost. However, real-time information only allows for reactive management. As most interventions take time, predictions across these sensor networks enable better planning and decision making. Prediction models across large water level and discharge sensor networks do exist. However, they have limitations in their accessibility, automaticity, and data requirements. We present an open-source method for automatically generating computationally cheap rainfall-runoff models for any depth or discharge sensor given only its measurements and location. We characterize reliability in a real-world case study across 200,000 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, evaluate long-term accuracy, and assess sensitivity to measurement noise and errors in catchment delineation. The method’s accuracy, computational efficiency, and automaticity make it a valuable asset to support operational decision making for diverse stakeholders including bridge inspectors and utilities.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106137"},"PeriodicalIF":4.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.envsoft.2024.106134
Kar'retta Venable , John M. Johnston , Stephen D. LeDuc , Lourdes Prieto
Wildfires in western US forests increased over the last two decades, resulting in elevated solid and nutrient loadings to streams, and occasionally threatening drinking water supplies. We demonstrated that a linked LANDIS (LANDscape DIsturbance and Succession)-VELMA (Visualizing Ecosystem Land Management Assessments) modeling approach can simulate wildland fire effects on water quality using the 2002 Colorado Hayman Fire. Utilizing LANDIS-II's forest landscape model to simulate forest composition and VELMA's eco-hydrologic model to simulate pre- and post-fire water quantity and quality, the best calibration performance yielded a Nash-Sutcliffe Efficiency (NSE) of 0.621 during 2000–2006 (most optimal annual - 0.921) in comparison to North American Land Data Assimilation System (NLDAS) runoff. Pre-fire modeled runoff, nitrate, and surface water temperature (SWT) correlated with observations. Simulated post-fire runoff (229%) and SWT (20.6%) were elevated relative to pre-fire, with nitrate concentrations 34 times greater than the aquatic life threshold (0.01 mg N/L).
{"title":"Model linkage to assess forest disturbance impacts on water quality: A wildfire case study using LANDIS(II)-VELMA","authors":"Kar'retta Venable , John M. Johnston , Stephen D. LeDuc , Lourdes Prieto","doi":"10.1016/j.envsoft.2024.106134","DOIUrl":"10.1016/j.envsoft.2024.106134","url":null,"abstract":"<div><p>Wildfires in western US forests increased over the last two decades, resulting in elevated solid and nutrient loadings to streams, and occasionally threatening drinking water supplies. We demonstrated that a linked LANDIS (LANDscape DIsturbance and Succession)-VELMA (Visualizing Ecosystem Land Management Assessments) modeling approach can simulate wildland fire effects on water quality using the 2002 Colorado Hayman Fire. Utilizing LANDIS-II's forest landscape model to simulate forest composition and VELMA's eco-hydrologic model to simulate pre- and post-fire water quantity and quality, the best calibration performance yielded a Nash-Sutcliffe Efficiency (NSE) of 0.621 during 2000–2006 (most optimal annual - 0.921) in comparison to North American Land Data Assimilation System (NLDAS) runoff. Pre-fire modeled runoff, nitrate, and surface water temperature (SWT) correlated with observations. Simulated post-fire runoff (229%) and SWT (20.6%) were elevated relative to pre-fire, with nitrate concentrations 34 times greater than the aquatic life threshold (0.01 mg N/L).</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106134"},"PeriodicalIF":4.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001956/pdfft?md5=39d2d4d78237a329429a0a2da3804f17&pid=1-s2.0-S1364815224001956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141716355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.envsoft.2024.106131
Liam J. Berrisford , Ronaldo Menezes
Ambient air pollution is a pervasive issue with wide-ranging effects on human health, ecosystem vitality, and economic structures. Utilizing data on ambient air pollution concentrations, researchers can perform comprehensive analyses to uncover the multifaceted impacts of air pollution across society. To this end, we introduce Environmental Insights, an open-source Python package designed to democratize access to air pollution concentration data. This tool enables users to easily retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions. Moreover, Environmental Insights includes a suite of tools aimed at facilitating the dissemination of analytical findings and enhancing user engagement through dynamic visualizations. This comprehensive approach ensures that the package caters to the diverse needs of individuals looking to explore and understand air pollution trends and their implications.
{"title":"Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics with an open-source Python package","authors":"Liam J. Berrisford , Ronaldo Menezes","doi":"10.1016/j.envsoft.2024.106131","DOIUrl":"https://doi.org/10.1016/j.envsoft.2024.106131","url":null,"abstract":"<div><p>Ambient air pollution is a pervasive issue with wide-ranging effects on human health, ecosystem vitality, and economic structures. Utilizing data on ambient air pollution concentrations, researchers can perform comprehensive analyses to uncover the multifaceted impacts of air pollution across society. To this end, we introduce Environmen<em>tal Insights</em>, an open-source Python package designed to democratize access to air pollution concentration data. This tool enables users to easily retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions. Moreover, <em>Environmental Insights</em> includes a suite of tools aimed at facilitating the dissemination of analytical findings and enhancing user engagement through dynamic visualizations. This comprehensive approach ensures that the package caters to the diverse needs of individuals looking to explore and understand air pollution trends and their implications.</p></div><div><h3>Code repository clickable link</h3><p>Environmental Insights Github Home Page.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"179 ","pages":"Article 106131"},"PeriodicalIF":4.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001920/pdfft?md5=0108b9188d301463478666426cb7d925&pid=1-s2.0-S1364815224001920-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.envsoft.2024.106132
Vinh Ngoc Tran , Jongho Kim
The Urban Inundation-Drainage Simulator (UIDS) is a new coupled model for simulating urban flooding dynamics, developed as an open-source, MATLAB-based platform. It integrates a rainfall-runoff model with a two-dimensional overland flow model (OFM) and a one-dimensional sewer flow model (SFM). Unlike conventional models limited to either rainfall-induced or sewer surcharge-induced flooding, UIDS captures bidirectional surface-underground interactions to simulate both processes simultaneously. The OFM employs an explicit time-stepping scheme and robust wet-dry front treatment, while a weir equation describes roof-to-ground flow exchange for numerical stability. Timing synchronization facilitates continuous OFM-SFM coupling. Benchmarking and case studies of Gangnam flood events demonstrate UIDS's ability to accurately simulate urban flooding, particularly subcritical flows. The open-source nature of UIDS allows user flexibility in accessing and modifying the MATLAB code. Ultimately, UIDS is expected to serve as an accessible and adaptable tool for urban flood modeling and risk assessment.
{"title":"UIDS: A Matlab-based urban flood model considering rainfall-induced and surcharge-induced inundations","authors":"Vinh Ngoc Tran , Jongho Kim","doi":"10.1016/j.envsoft.2024.106132","DOIUrl":"https://doi.org/10.1016/j.envsoft.2024.106132","url":null,"abstract":"<div><p>The Urban Inundation-Drainage Simulator (UIDS) is a new coupled model for simulating urban flooding dynamics, developed as an open-source, MATLAB-based platform. It integrates a rainfall-runoff model with a two-dimensional overland flow model (OFM) and a one-dimensional sewer flow model (SFM). Unlike conventional models limited to either rainfall-induced or sewer surcharge-induced flooding, UIDS captures bidirectional surface-underground interactions to simulate both processes simultaneously. The OFM employs an explicit time-stepping scheme and robust wet-dry front treatment, while a weir equation describes roof-to-ground flow exchange for numerical stability. Timing synchronization facilitates continuous OFM-SFM coupling. Benchmarking and case studies of Gangnam flood events demonstrate UIDS's ability to accurately simulate urban flooding, particularly subcritical flows. The open-source nature of UIDS allows user flexibility in accessing and modifying the MATLAB code. Ultimately, UIDS is expected to serve as an accessible and adaptable tool for urban flood modeling and risk assessment.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"179 ","pages":"Article 106132"},"PeriodicalIF":4.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}