首页 > 最新文献

Environmental Modelling & Software最新文献

英文 中文
Towards Democratized Flood Risk Management: An Advanced AI Assistant Enabled by GPT-4 for Enhanced Interpretability and Public Engagement 走向民主化的洪水风险管理:由GPT-4支持的高级人工智能助手,以增强可解释性和公众参与
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-12 DOI: 10.1016/j.envsoft.2025.106821
Rafaela Martelo, Kimia Ahmadiyehyazdi, Ruo-Qian Wang
{"title":"Towards Democratized Flood Risk Management: An Advanced AI Assistant Enabled by GPT-4 for Enhanced Interpretability and Public Engagement","authors":"Rafaela Martelo, Kimia Ahmadiyehyazdi, Ruo-Qian Wang","doi":"10.1016/j.envsoft.2025.106821","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106821","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"42 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Generalization, Language, Interpretability and the Future of Geo-Scientific Machine Learning 论地球科学机器学习的泛化、语言、可解释性和未来
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-12 DOI: 10.1016/j.envsoft.2025.106834
Hoshin V. Gupta
{"title":"On Generalization, Language, Interpretability and the Future of Geo-Scientific Machine Learning","authors":"Hoshin V. Gupta","doi":"10.1016/j.envsoft.2025.106834","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106834","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"21 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating field surveys and visual interpretation to enhance CSLE model of soil erosion response to LUCC in Southwest China 结合野外调查和目视解译改进西南地区土地利用变化对土壤侵蚀响应的CSLE模型
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-11 DOI: 10.1016/j.envsoft.2025.106831
Rui Tan, Geng Guo, Kaiwen Huang, Zicheng Liu, Chaorui Wang, Jie Lin, Yizhong Huang
{"title":"Integrating field surveys and visual interpretation to enhance CSLE model of soil erosion response to LUCC in Southwest China","authors":"Rui Tan, Geng Guo, Kaiwen Huang, Zicheng Liu, Chaorui Wang, Jie Lin, Yizhong Huang","doi":"10.1016/j.envsoft.2025.106831","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106831","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"15 1","pages":"106831"},"PeriodicalIF":4.9,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FloodTransformer: Efficient real-time high-resolution flood forecasting 洪水变压器:高效的实时高分辨率洪水预报
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-11 DOI: 10.1016/j.envsoft.2025.106832
Zhanzhong Gu, Jiachen Kang, Wenzheng Jin, Feifei Tong, Y. Jay Guo, Wenjing Jia
{"title":"FloodTransformer: Efficient real-time high-resolution flood forecasting","authors":"Zhanzhong Gu, Jiachen Kang, Wenzheng Jin, Feifei Tong, Y. Jay Guo, Wenjing Jia","doi":"10.1016/j.envsoft.2025.106832","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106832","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"13 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Self-Supervised Deep Learning Framework for Chlorophyll-a Retrieval in Data-Scarce Inland Waters 数据稀缺内陆水域叶绿素a检索的自监督深度学习框架开发
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-10 DOI: 10.1016/j.envsoft.2025.106817
Bongseok Jeong, Jihoon Shin, YoonKyung Cha
{"title":"Development of a Self-Supervised Deep Learning Framework for Chlorophyll-a Retrieval in Data-Scarce Inland Waters","authors":"Bongseok Jeong, Jihoon Shin, YoonKyung Cha","doi":"10.1016/j.envsoft.2025.106817","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106817","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"75 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital-twin tool for a drinking water distribution system using augmented reality and EPANET 使用增强现实和EPANET的饮用水分配系统的数字孪生工具
IF 4.9 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-10 DOI: 10.1016/j.envsoft.2025.106829
Ji-Ye Park, Kwang-Ju Kim, Minhyuk Jeung, In-Su Jang, Jung-Won Yu, Mi-Seon Kang, Hyun-Su Bae, Changyoon Jeong, Sang-Soo Baek
{"title":"Digital-twin tool for a drinking water distribution system using augmented reality and EPANET","authors":"Ji-Ye Park, Kwang-Ju Kim, Minhyuk Jeung, In-Su Jang, Jung-Won Yu, Mi-Seon Kang, Hyun-Su Bae, Changyoon Jeong, Sang-Soo Baek","doi":"10.1016/j.envsoft.2025.106829","DOIUrl":"https://doi.org/10.1016/j.envsoft.2025.106829","url":null,"abstract":"","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a web-based No coding machine learning platform for hydrology and environmental management - MoolML 开发基于web的水文和环境管理无编码机器学习平台- MoolML
IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-09 DOI: 10.1016/j.envsoft.2025.106830
Sangjoon Bak , Jeongho Han , Gwanjae Lee , Naehyeon Nam , Joo Hyun Bae , Yeonji Jeong , Hyungjin Shin , Kyoung Jae Lim , Seoro Lee
Developing data-driven models for hydrology and environmental management is challenging for non-experts, such as field engineers and environmental practitioners, due to limited coding experience and the complexity of model training and validation. To address this, we developed MoolML, a free, web-based, no-coding machine learning platform for simplified regression and classification modeling. The name MoolML is derived from the Korean word “물” (mool), meaning “water,” combined with Machine Learning (ML). MoolML integrates key functions such as data preprocessing, model training and prediction, hyperparameter tuning, cross-validation, feature importance analysis, and weather data collection, along with visualization tools for intuitive result presentation. The platform enables users to manage the entire modeling process without coding expertise while supporting data sharing and collaboration. The applicability and efficiency of developing ML models through the platform were tested using hydrological and environmental datasets from South Korea, and it is expected to support comprehensive watershed management.
由于编码经验有限以及模型训练和验证的复杂性,开发水文和环境管理的数据驱动模型对于非专家(如现场工程师和环境从业人员)来说是具有挑战性的。为了解决这个问题,我们开发了MoolML,这是一个免费的、基于web的、无编码的机器学习平台,用于简化回归和分类建模。“MoolML”这个名字是韩语“水”的意思“月光”和机器学习(ML)结合而成的。MoolML集成了数据预处理、模型训练和预测、超参数调优、交叉验证、特征重要性分析和天气数据收集等关键功能,以及用于直观结果呈现的可视化工具。该平台使用户无需编码专业知识即可管理整个建模过程,同时支持数据共享和协作。利用韩国的水文和环境数据集测试了通过该平台开发ML模型的适用性和效率,预计将支持综合流域管理。
{"title":"Development of a web-based No coding machine learning platform for hydrology and environmental management - MoolML","authors":"Sangjoon Bak ,&nbsp;Jeongho Han ,&nbsp;Gwanjae Lee ,&nbsp;Naehyeon Nam ,&nbsp;Joo Hyun Bae ,&nbsp;Yeonji Jeong ,&nbsp;Hyungjin Shin ,&nbsp;Kyoung Jae Lim ,&nbsp;Seoro Lee","doi":"10.1016/j.envsoft.2025.106830","DOIUrl":"10.1016/j.envsoft.2025.106830","url":null,"abstract":"<div><div>Developing data-driven models for hydrology and environmental management is challenging for non-experts, such as field engineers and environmental practitioners, due to limited coding experience and the complexity of model training and validation. To address this, we developed <strong>MoolML</strong>, a free, web-based, no-coding machine learning platform for simplified regression and classification modeling. The name MoolML is derived from the Korean word “물” (mool), meaning “water,” combined with Machine Learning (ML). MoolML integrates key functions such as data preprocessing, model training and prediction, hyperparameter tuning, cross-validation, feature importance analysis, and weather data collection, along with visualization tools for intuitive result presentation. The platform enables users to manage the entire modeling process without coding expertise while supporting data sharing and collaboration. The applicability and efficiency of developing ML models through the platform were tested using hydrological and environmental datasets from South Korea, and it is expected to support comprehensive watershed management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"197 ","pages":"Article 106830"},"PeriodicalIF":4.6,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence enhanced litter pollution mapping: Integrating citizen science with geospatial and social data 人工智能增强了垃圾污染制图:将公民科学与地理空间和社会数据相结合
IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-09 DOI: 10.1016/j.envsoft.2025.106823
Hadiseh Rezaei , Keiron. P. Roberts , Farzad Arabikhan , Steve Fletcher , Antaya March , Fay Couceiro , David Bacon , David. J. Hutchinson , John. B. Williams
Citizen science provides extensive litter data, but inconsistent recording limits its use in environmental modelling and decision making. We present a scalable AI-assisted framework that harmonises two major UK datasets, Marine Debris Tracker and Litterati, into a unified, spatially detailed resource. Over 460,000 records (2015–2024) were standardised through a rules-to-embeddings-to-LLM cascade (schema-constrained Llama 3.1) for material classification. Items were clustered by material using K-means at a validated 200 m scale and linked to OpenStreetMap amenities within 500 m to identify accumulation hotspots and contextual features such as parks or transport hubs. Plastic dominated nationally, accounting for 71 percent of entries, while integration with UK Census 2021 data enabled demographic and health analyses where plastic remained highest (68.9 percent). This reproducible framework demonstrates how artificial intelligence can harmonise citizen-science data and enhance spatial modelling to inform targeted pollution prevention and sustainable waste-management strategies.
公民科学提供了大量的垃圾数据,但是不一致的记录限制了它在环境建模和决策中的应用。我们提出了一个可扩展的人工智能辅助框架,该框架将两个主要的英国数据集(海洋碎片跟踪器和Litterati)协调成一个统一的、空间详细的资源。通过规则-嵌入- llm级联(模式约束Llama 3.1)进行材料分类,超过460,000条记录(2015-2024)被标准化。在经过验证的200米尺度上,使用K-means将项目按材料聚类,并与500米范围内的OpenStreetMap设施相关联,以确定积累热点和环境特征,如公园或交通枢纽。塑料在全国占主导地位,占71%,而与英国2021年人口普查数据相结合,实现了人口和健康分析,其中塑料仍然最高(68.9%)。这个可复制的框架展示了人工智能如何协调公民科学数据并增强空间建模,从而为有针对性的污染预防和可持续废物管理战略提供信息。
{"title":"Artificial intelligence enhanced litter pollution mapping: Integrating citizen science with geospatial and social data","authors":"Hadiseh Rezaei ,&nbsp;Keiron. P. Roberts ,&nbsp;Farzad Arabikhan ,&nbsp;Steve Fletcher ,&nbsp;Antaya March ,&nbsp;Fay Couceiro ,&nbsp;David Bacon ,&nbsp;David. J. Hutchinson ,&nbsp;John. B. Williams","doi":"10.1016/j.envsoft.2025.106823","DOIUrl":"10.1016/j.envsoft.2025.106823","url":null,"abstract":"<div><div>Citizen science provides extensive litter data, but inconsistent recording limits its use in environmental modelling and decision making. We present a scalable AI-assisted framework that harmonises two major UK datasets, Marine Debris Tracker and Litterati, into a unified, spatially detailed resource. Over 460,000 records (2015–2024) were standardised through a rules-to-embeddings-to-LLM cascade (schema-constrained Llama 3.1) for material classification. Items were clustered by material using K-means at a validated 200 m scale and linked to OpenStreetMap amenities within 500 m to identify accumulation hotspots and contextual features such as parks or transport hubs. Plastic dominated nationally, accounting for 71 percent of entries, while integration with UK Census 2021 data enabled demographic and health analyses where plastic remained highest (68.9 percent). This reproducible framework demonstrates how artificial intelligence can harmonise citizen-science data and enhance spatial modelling to inform targeted pollution prevention and sustainable waste-management strategies.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"197 ","pages":"Article 106823"},"PeriodicalIF":4.6,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalized user-friendly method for fusing observational data and chemical transport model (Gen-Friberg V1.0: GF-1) 一种融合观测数据和化学输运模型的通用用户友好方法(Gen-Friberg V1.0: GF-1)
IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-06 DOI: 10.1016/j.envsoft.2025.106827
Zongrun Li , Abiola S. Lawal , Bingqing Zhang , Kamal J. Maji , Pengfei Liu , Yongtao Hu , Armistead G. Russell , M. Talat Odman
A generalized, user-friendly data fusion method (Gen-Friberg) to reduce differences between chemical transport models (CTMs) and observational data is implemented to be compatible with widely used CTMs such as CMAQ, GEOS-Chem, and WRF-Chem. Key source code improvements included encapsulating the data fusion algorithm within a single function and enabling parallel processing to minimize runtime for long simulations. We applied the data fusion method to CMAQ outputs and observations from 2010 to 2019 to evaluate the method's performance. After data fusion, pollutant concentration fields showed improved performance. Additionally, we assessed the generalizability of the data fusion method by demonstrating its effectiveness in reducing bias in the GEOS-Chem and WRF-Chem concentration fields using evaluations based on 2017 simulations. Comparisons across CMAQ, GEOS-Chem, and WRF-Chem with and without data fusion demonstrate that data fusion reduces inter-model discrepancies, yielding more consistent concentration fields for use in health and policy assessments.
实现了一种通用的、用户友好的数据融合方法(Gen-Friberg),以减少化学输运模型(CTMs)与观测数据之间的差异,从而与CMAQ、GEOS-Chem和WRF-Chem等广泛使用的CTMs兼容。关键的源代码改进包括将数据融合算法封装在单个函数中,并支持并行处理以最大限度地减少长时间模拟的运行时间。我们将数据融合方法应用于2010年至2019年的CMAQ输出和观测,以评估该方法的性能。数据融合后,污染物浓度场的性能得到改善。此外,我们还评估了数据融合方法的通用性,通过基于2017年模拟的评估来证明其在减少GEOS-Chem和WRF-Chem浓度场偏差方面的有效性。在CMAQ、GEOS-Chem和WRF-Chem之间进行数据融合和不进行数据融合的比较表明,数据融合减少了模型间的差异,产生了更一致的浓度场,可用于卫生和政策评估。
{"title":"A generalized user-friendly method for fusing observational data and chemical transport model (Gen-Friberg V1.0: GF-1)","authors":"Zongrun Li ,&nbsp;Abiola S. Lawal ,&nbsp;Bingqing Zhang ,&nbsp;Kamal J. Maji ,&nbsp;Pengfei Liu ,&nbsp;Yongtao Hu ,&nbsp;Armistead G. Russell ,&nbsp;M. Talat Odman","doi":"10.1016/j.envsoft.2025.106827","DOIUrl":"10.1016/j.envsoft.2025.106827","url":null,"abstract":"<div><div>A generalized, user-friendly data fusion method (Gen-Friberg) to reduce differences between chemical transport models (CTMs) and observational data is implemented to be compatible with widely used CTMs such as CMAQ, GEOS-Chem, and WRF-Chem. Key source code improvements included encapsulating the data fusion algorithm within a single function and enabling parallel processing to minimize runtime for long simulations. We applied the data fusion method to CMAQ outputs and observations from 2010 to 2019 to evaluate the method's performance. After data fusion, pollutant concentration fields showed improved performance. Additionally, we assessed the generalizability of the data fusion method by demonstrating its effectiveness in reducing bias in the GEOS-Chem and WRF-Chem concentration fields using evaluations based on 2017 simulations. Comparisons across CMAQ, GEOS-Chem, and WRF-Chem with and without data fusion demonstrate that data fusion reduces inter-model discrepancies, yielding more consistent concentration fields for use in health and policy assessments.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"197 ","pages":"Article 106827"},"PeriodicalIF":4.6,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling near-surface ice content and midwinter melt events in mineral soils 模拟矿物土壤近地表冰含量和冬至融化事件
IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-05 DOI: 10.1016/j.envsoft.2025.106816
Élise G. Devoie , Renato Pardo Lara , Aaron Berg , William L. Quinton , James R. Craig
Over winter freeze–thaw events are notoriously difficult to represent in hydrologic models and have serious implications for the hydrologic function of intermittently freezing regions. Changing climate is leading to more frequent mid-winter thaw events. Midwinter thaw events are often the cause of flooding due to the combined impacts of snowmelt, precipitation, and limited soil infiltrability. A numerically efficient, semi-analytical coupled thermal and mass transport model is presented that represents the ice content of near-surface soil, and reports the depth of freezing/thawing. The model tracks pore ice formation and mean soil temperature in terms of enthalpy. It is tested against data collected in Southern Saskatchewan and is shown to capably reproduce field observations of frozen, thawed or transitioning soils. This numerically efficient model can be incorporated into regional hydrologic models where it is expected to improve predictions of soil ice content, leading to improved estimates of over-winter streamflow and flood potential.
众所周知,冬季的冻融事件在水文模型中难以表示,并且对间歇性冻结地区的水文功能具有严重影响。不断变化的气候导致冬季中期解冻事件更加频繁。由于融雪、降水和有限的土壤渗透性的综合影响,冬至解冻事件往往是洪水的原因。提出了一种数值高效的半解析耦合热质输运模型,该模型反映了近地表土壤的冰含量,并报告了冻结/融化的深度。该模型用焓来跟踪孔隙冰的形成和平均土壤温度。根据在萨斯喀彻温省南部收集的数据对它进行了测试,结果表明它能够再现冰冻、解冻或过渡土壤的实地观测结果。这种数值上有效的模式可以被纳入区域水文模式,从而有望改善对土壤冰含量的预测,从而改善对越冬河流流量和洪水潜力的估计。
{"title":"Modelling near-surface ice content and midwinter melt events in mineral soils","authors":"Élise G. Devoie ,&nbsp;Renato Pardo Lara ,&nbsp;Aaron Berg ,&nbsp;William L. Quinton ,&nbsp;James R. Craig","doi":"10.1016/j.envsoft.2025.106816","DOIUrl":"10.1016/j.envsoft.2025.106816","url":null,"abstract":"<div><div>Over winter freeze–thaw events are notoriously difficult to represent in hydrologic models and have serious implications for the hydrologic function of intermittently freezing regions. Changing climate is leading to more frequent mid-winter thaw events. Midwinter thaw events are often the cause of flooding due to the combined impacts of snowmelt, precipitation, and limited soil infiltrability. A numerically efficient, semi-analytical coupled thermal and mass transport model is presented that represents the ice content of near-surface soil, and reports the depth of freezing/thawing. The model tracks pore ice formation and mean soil temperature in terms of enthalpy. It is tested against data collected in Southern Saskatchewan and is shown to capably reproduce field observations of frozen, thawed or transitioning soils. This numerically efficient model can be incorporated into regional hydrologic models where it is expected to improve predictions of soil ice content, leading to improved estimates of over-winter streamflow and flood potential.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"197 ","pages":"Article 106816"},"PeriodicalIF":4.6,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Modelling & Software
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1