Pub Date : 2024-04-23DOI: 10.1016/j.fuproc.2024.108090
Qing Li , Bo Tian , Lei Xu , Yu Wang
Co-firing NH3 with conventional hydrocarbon fuels is an important approach for reducing CO2 emissions in existing combustion systems. Besides CO2, the blending of NH3 would also notably affect soot formation and its oxidation behaviors. In the present study, we focus on the effects of NH3 on the nanostructure and oxidation characteristics of soot produced in diffusion flames of n-heptane/toluene mixtures. Two configurations of laminar co-flow diffusion flame, including both normal and inverse diffusion flames (NDF and IDFs), were used for investigation. High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy (Raman), and Thermogravimetric analysis (TGA) were employed for soot characterization. The HRTEM and Raman spectra showed that with the increase of NH3 blending ratio, the fringe length (La) and the degree of graphitization decreased while the microcrystal tortuosity (Tf) increased. The results are in consistent with TGA analysis which suggests the promoting effects of NH3 on the soot oxidation reactivity. Difference between NDF and IDF with respect to the soot nanostructure and oxidation activity were discussed. It is our hope that the present results could deepen our understanding on the effects of NH3 on soot nanostructure and oxidation behavior and benefit the design of particulate filters for combustion devices fueled with hydrocarbon/NH3 mixtures.
{"title":"Effects of ammonia addition on the soot nanostructure and oxidation reactivity in n-heptane/toluene diffusion flames","authors":"Qing Li , Bo Tian , Lei Xu , Yu Wang","doi":"10.1016/j.fuproc.2024.108090","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108090","url":null,"abstract":"<div><p>Co-firing NH<sub>3</sub> with conventional hydrocarbon fuels is an important approach for reducing CO<sub>2</sub> emissions in existing combustion systems. Besides CO<sub>2</sub>, the blending of NH<sub>3</sub> would also notably affect soot formation and its oxidation behaviors. In the present study, we focus on the effects of NH<sub>3</sub> on the nanostructure and oxidation characteristics of soot produced in diffusion flames of <em>n</em>-heptane/toluene mixtures. Two configurations of laminar co-flow diffusion flame, including both normal and inverse diffusion flames (NDF and IDFs), were used for investigation. High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy (Raman), and Thermogravimetric analysis (TGA) were employed for soot characterization. The HRTEM and Raman spectra showed that with the increase of NH<sub>3</sub> blending ratio, the fringe length (<em>L</em><sub>a</sub>) and the degree of graphitization decreased while the microcrystal tortuosity (<em>T</em><sub>f</sub>) increased. The results are in consistent with TGA analysis which suggests the promoting effects of NH<sub>3</sub> on the soot oxidation reactivity. Difference between NDF and IDF with respect to the soot nanostructure and oxidation activity were discussed. It is our hope that the present results could deepen our understanding on the effects of NH<sub>3</sub> on soot nanostructure and oxidation behavior and benefit the design of particulate filters for combustion devices fueled with hydrocarbon/NH<sub>3</sub> mixtures.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108090"},"PeriodicalIF":7.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000602/pdfft?md5=f61b089f767b1dfdcb543451374cd245&pid=1-s2.0-S0378382024000602-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.fuproc.2024.108088
Cahyani Windarto , Ocktaeck Lim
In the current study, we examined the impact of spark duration strategy on a large bore compression ignition engine fueled with propane direct injection. An artificial neural network also was used to forecast engine in-cylinder performance characteristics. A rapid compression and expansion machine (RCEM) with a spark plug was tested with a high-pressure direct injection propane of 200 bar. While the timing of the injection was set to 20 °CA bTDC, the spark duration can range from 0.7 to 5.0 milliseconds. Crank angle degree, pressure, ignition coil number and spark duration were used as input parameters in the ANN model to predict in-cylinder performance, while engine performance parameters such as heat release rate (HRR), turbulent kinetic energy (TKE), tumble ratio, indicated power, and combustion efficiency () were used as output parameters. The ANN model was created using the neural network toolbox and standard backpropagation with the Levenberg-Marquardt training algorithm was used with the learning rate and training epochs of the ANN model set to 0.001 and 1000, respectively. The accuracy of the model was validated by comparing the predicted datasets with the experimental data. The five projected parameters of heat release rate (HRR), turbulent kinetic energy (TKE), tumble ratio, indicated power, and combustion efficiency () showed values of 0.9833, 0.9860, 0.9728, 0.9807, 0.9052, and 0.9999, respectively, and values of 0.1419, 0.0023, 0.6428, 0.0106, 0.0050, and 0.0134. The of the validation dataset was nearly 0.98, which is close to that of the training dataset. The coefficients of determination () were greater than 0.9 in the projected results, and the was reasonably low, indicating that a predictive model based on ANN model could predict in-cylinder performance of a large bore compression ignition engine.
{"title":"A neural network approach on forecasting spark duration effect on in-cylinder performance of a large bore compression ignition engine fueled with propane direct injection","authors":"Cahyani Windarto , Ocktaeck Lim","doi":"10.1016/j.fuproc.2024.108088","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108088","url":null,"abstract":"<div><p>In the current study, we examined the impact of spark duration strategy on a large bore compression ignition engine fueled with propane direct injection. An artificial neural network also was used to forecast engine in-cylinder performance characteristics. A rapid compression and expansion machine (RCEM) with a spark plug was tested with a high-pressure direct injection propane of 200 bar. While the timing of the injection was set to 20 °CA bTDC, the spark duration can range from 0.7 to 5.0 milliseconds. Crank angle degree, pressure, ignition coil number and spark duration were used as input parameters in the ANN model to predict in-cylinder performance, while engine performance parameters such as heat release rate (HRR), turbulent kinetic energy (TKE), tumble ratio, indicated power, and combustion efficiency (<span><math><msub><mi>η</mi><mi>c</mi></msub></math></span>) were used as output parameters. The ANN model was created using the neural network toolbox and standard backpropagation with the Levenberg-Marquardt training algorithm was used with the learning rate and training epochs of the ANN model set to 0.001 and 1000, respectively. The accuracy of the model was validated by comparing the predicted datasets with the experimental data. The five projected parameters of heat release rate (HRR), turbulent kinetic energy (TKE), tumble ratio, indicated power, and combustion efficiency (<span><math><msub><mi>η</mi><mi>c</mi></msub></math></span>) showed <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> values of 0.9833, 0.9860, 0.9728, 0.9807, 0.9052, and 0.9999, respectively, and <span><math><mi>MSE</mi></math></span> values of 0.1419, 0.0023, 0.6428, 0.0106, 0.0050, and 0.0134. The <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> of the validation dataset was nearly 0.98, which is close to that of the training dataset. The coefficients of determination (<span><math><msup><mi>R</mi><mn>2</mn></msup></math></span>) were greater than 0.9 in the projected results, and the <span><math><mi>MSE</mi></math></span> was reasonably low, indicating that a predictive model based on ANN model could predict in-cylinder performance of a large bore compression ignition engine.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108088"},"PeriodicalIF":7.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000584/pdfft?md5=c972f3c6162025038b85108075a98a03&pid=1-s2.0-S0378382024000584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1016/j.fuproc.2024.108089
Mumtaj Shah , Mohammed K. Al Mesfer , Mohd Danish , Prasenjit Mondal , Hemant Goyal , Subhasis Das
In this study, Co-based catalysts supported over Ti-Al oxide and promoted with La, Ce, Mg, and K metals were assessed for CO2 reforming of methane reaction to produce syngas. Titania-alumina mixed oxide supports were prepared using the template-assisted-solvothermal method, and then Co and promotors were co-impregnated over the as-prepared support. Different characterizations of catalysts showed that variation in promotor metal impacts these catalysts' physical and chemical properties. The Ti-Al oxide support possessed the perfect hexagonal morphology. Potassium-promoted catalysts possessed the highest number of basic sites, whereas the La-promoted catalyst possessed the highest number of acidic sites. La promotion improved the Co dispersion, while Mg promotion enhanced the metal support integration. La-promoted catalysts are deactivated because of active metal oxidation and the generation of hard carbon. The carbon was deposited in all catalysts; however, the activity of the Mg-promoted catalyst was unaffected. The intermediate surface basicity and strong metal support interaction improved the Mg-promoted catalyst's stability. The La and Mg-promoted catalysts possessed lower apparent activation energies.
本研究评估了以钛铝氧化物为载体并以 La、Ce、Mg 和 K 金属为促进剂的 Co 基催化剂在二氧化碳重整甲烷反应生成合成气中的应用。采用模板辅助溶热法制备了钛铝混合氧化物载体,然后将 Co 和促进剂共同浸渍在制备好的载体上。催化剂的不同特性表明,促进剂金属的变化会影响催化剂的物理和化学特性。钛-铝氧化物载体具有完美的六边形形态。钾促进的催化剂具有最多的碱性位点,而喇促进的催化剂具有最多的酸性位点。La 促进改善了 Co 的分散,而 Mg 促进则提高了金属支撑的整合。由于活性金属氧化并生成硬碳,La 促进的催化剂失活。碳沉积在所有催化剂中;然而,镁促进催化剂的活性未受影响。中间表面碱性和强金属支撑相互作用提高了镁促进催化剂的稳定性。La 和 Mg 促进的催化剂具有较低的表观活化能。
{"title":"Study on the effect of promotors in CO2 utilization for syngas production via dry reforming of methane over Co-MOX/TiO2-Al2O3 (MOX = La, Ce, Mg, and K) catalysts","authors":"Mumtaj Shah , Mohammed K. Al Mesfer , Mohd Danish , Prasenjit Mondal , Hemant Goyal , Subhasis Das","doi":"10.1016/j.fuproc.2024.108089","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108089","url":null,"abstract":"<div><p>In this study, Co-based catalysts supported over Ti-Al oxide and promoted with La, Ce, Mg, and K metals were assessed for CO<sub>2</sub> reforming of methane reaction to produce syngas. Titania-alumina mixed oxide supports were prepared using the template-assisted-solvothermal method, and then Co and promotors were co-impregnated over the as-prepared support. Different characterizations of catalysts showed that variation in promotor metal impacts these catalysts' physical and chemical properties. The Ti-Al oxide support possessed the perfect hexagonal morphology. Potassium-promoted catalysts possessed the highest number of basic sites, whereas the La-promoted catalyst possessed the highest number of acidic sites. La promotion improved the Co dispersion, while Mg promotion enhanced the metal support integration. La-promoted catalysts are deactivated because of active metal oxidation and the generation of hard carbon. The carbon was deposited in all catalysts; however, the activity of the Mg-promoted catalyst was unaffected. The intermediate surface basicity and strong metal support interaction improved the Mg-promoted catalyst's stability. The La and Mg-promoted catalysts possessed lower apparent activation energies.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108089"},"PeriodicalIF":7.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000596/pdfft?md5=e7efe114b37183acd9f614bf796f55f6&pid=1-s2.0-S0378382024000596-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerous innovative low-carbon ironmaking technologies rely on the use of a high-temperature, highly reducing gas, with examples including the gas-based direct reduction approach, hydrogen-enriched blast furnace fuel injection, and hydrogen-rich carbon circulation oxygen blast furnaces. However, the process of obtaining high-temperature and highly reducing gases inevitably leads to carbon deposition, and effective methods for controlling carbon deposition have yet to be developed for practical applications. Thus, within the context of metallurgical process conditions, this article provides a comprehensive review of the advancements in carbon deposition research by integrating findings from the fields of fuel chemistry and carbon material synthesis. Initially, the thermodynamic fundamentals of the carbon deposition reactions are examined, and subsequently, the influences of temperature, H2, and catalysis on the carbon deposition reactions are discussed. In addition, the growth and erosion mechanisms of carbon on the surface of the medium are analyzed. Finally, this review consolidates the methods available for controlling carbon deposition, encompassing changes in the process conditions, the development of anti-carbon materials, and research into special processes. This article also identifies gaps in the literature and outlines future directions in related fields, notably proposing the application prospects of the sulfur passivation and thermal plasma reforming technologies in the reforming and heating of highly reducing gases.
{"title":"Advancements in the study of carbon deposition behavior during the metallurgical high-reductive potential gas reforming and heating processes","authors":"Xingjian Deng, Lianda Zhao, Tian Gao, Qingguo Xue, Jingsong Wang, Haibin Zuo","doi":"10.1016/j.fuproc.2024.108087","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108087","url":null,"abstract":"<div><p>Numerous innovative low-carbon ironmaking technologies rely on the use of a high-temperature, highly reducing gas, with examples including the gas-based direct reduction approach, hydrogen-enriched blast furnace fuel injection, and hydrogen-rich carbon circulation oxygen blast furnaces. However, the process of obtaining high-temperature and highly reducing gases inevitably leads to carbon deposition, and effective methods for controlling carbon deposition have yet to be developed for practical applications. Thus, within the context of metallurgical process conditions, this article provides a comprehensive review of the advancements in carbon deposition research by integrating findings from the fields of fuel chemistry and carbon material synthesis. Initially, the thermodynamic fundamentals of the carbon deposition reactions are examined, and subsequently, the influences of temperature, H<sub>2</sub>, and catalysis on the carbon deposition reactions are discussed. In addition, the growth and erosion mechanisms of carbon on the surface of the medium are analyzed. Finally, this review consolidates the methods available for controlling carbon deposition, encompassing changes in the process conditions, the development of anti-carbon materials, and research into special processes. This article also identifies gaps in the literature and outlines future directions in related fields, notably proposing the application prospects of the sulfur passivation and thermal plasma reforming technologies in the reforming and heating of highly reducing gases.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108087"},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000572/pdfft?md5=f7cb4b9ec15ba6fa6c2e79573920fe12&pid=1-s2.0-S0378382024000572-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high-value recycling of discarded phenol-formaldehyde resins (PF) remains an unresolved challenge. Herein, we propose a novel approach leveraging γ-Al2O3 to convert PF into high-value hexamethylbenzene at a low temperature using a one-pot method. This study explores the degradation capability of PF, methylation reaction efficiency, and hydrodeoxygenation capacity among various cost-effective commercial catalysts: γ-Al2O3, ZrO2, and TiO2. It reveals the influence of different reaction times on PF pyrolysis and product distribution, and it was found that high value-added hexamethylbenzene exhibited the highest yield (73.33 wt%) with selectivity (75.83%) using γ-Al2O3 at 350 °C and 2 h of reaction. Experiments using PF models demonstrate the crucial synergy between γ-Al2O3 and C(aryl)-OH in the cleavage of C(aryl)-C(alkyl) bonds and methylation reactions. A pathway for PF C-C/C-O bonds cleavage-methylation tandem reaction is proposed, based on 13C methanol isotope experiments. PF undergoes C(aryl)-C(alkyl) bond cleavage to produce phenolic intermediates, which were then methylated; this is accompanied by the cleavage of C(aryl)-OH and C(aryl)-OCH3, culminating in C-alkylation to form hexamethylbenzene. This research provides new insights into the high-value recycling of PF.
{"title":"Mechanistic understanding of the C-C/C-O bonds cleavage-methylation tandem reaction for the conversion of phenolic resins to hexamethylbenzene using γ-Al2O3","authors":"Gangqi Cheng , Xueru Chen , Ruizhe Chen , Jialiang Yang , Leilei Cheng , Jing Gu","doi":"10.1016/j.fuproc.2024.108086","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108086","url":null,"abstract":"<div><p>The high-value recycling of discarded phenol-formaldehyde resins (PF) remains an unresolved challenge. Herein, we propose a novel approach leveraging γ-Al<sub>2</sub>O<sub>3</sub> to convert PF into high-value hexamethylbenzene at a low temperature using a one-pot method. This study explores the degradation capability of PF, methylation reaction efficiency, and hydrodeoxygenation capacity among various cost-effective commercial catalysts: γ-Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, and TiO<sub>2</sub>. It reveals the influence of different reaction times on PF pyrolysis and product distribution, and it was found that high value-added hexamethylbenzene exhibited the highest yield (73.33 wt%) with selectivity (75.83%) using γ-Al<sub>2</sub>O<sub>3</sub> at 350 °C and 2 h of reaction. Experiments using PF models demonstrate the crucial synergy between γ-Al<sub>2</sub>O<sub>3</sub> and C(aryl)-OH in the cleavage of C(aryl)-C(alkyl) bonds and methylation reactions. A pathway for PF C-C/C-O bonds cleavage-methylation tandem reaction is proposed, based on <sup>13</sup>C methanol isotope experiments. PF undergoes C(aryl)-C(alkyl) bond cleavage to produce phenolic intermediates, which were then methylated; this is accompanied by the cleavage of C(aryl)-OH and C(aryl)-OCH<sub>3</sub>, culminating in C-alkylation to form hexamethylbenzene. This research provides new insights into the high-value recycling of PF.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"257 ","pages":"Article 108086"},"PeriodicalIF":7.5,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000560/pdfft?md5=bdaadfe3ab936f2557af35447ad3d494&pid=1-s2.0-S0378382024000560-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1016/j.fuproc.2024.108076
Yu Zhang, Chunmu Guo, Wei Wang, Chang Xu, Wei Wu
The hydroisomerization of long-chain n-alkanes proves to be an effective approach for the production of renewable second-generation biodiesel, and the development of bifunctional catalysts with synergistic effect between metal and acidic sites was the key to increase the yield of iso‐alkanes. Herein, novel hierarchical SAPO-31 nanoparticles (S31-Hi) were synthesized with varied amounts of the growth inhibitor 1-octyl-3-methylimidazolium chloride ionic liquid (OMIMCl IL) in a one-stage crystallization, and a proposed formation process was discussed. The 0.1Pd/S31-Hi bifunctional catalysts were prepared by loading only 0.1 wt% Pd based on the S31-Hi by wetness impregnation method and their catalytic performances were evaluated for the hydroisomerization of n-hexadecane. The catalytic performance of 0.1Pd/S31-H based on the S31-H synthesized by adding an appropriate amount of OMIMCl ILs was significantly improved, which can be attributed to the enhanced diffusion originating from its smaller crystal size, higher Pd dispersion, and larger CPd/CH+ value, which was beneficial for achieving synergistic catalysis. The iso‐hexadecane yield of 77.8% and proportion of multi-branched isomers of 51.5%, and catalytic stability within 100 h time on stream was obtained over the 0.1Pd/S31-H at n-hexadecane conversion of 89.3%. These catalysts have application potential for the production of second-generation clean biodiesel with excellent low temperature fluidity.
{"title":"Effect of diffusion and metal-acid synergy on catalytic behavior of the Pd/Hierarchical SAPO-31 nanoparticles for hydroisomerization of n-hexadecane","authors":"Yu Zhang, Chunmu Guo, Wei Wang, Chang Xu, Wei Wu","doi":"10.1016/j.fuproc.2024.108076","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108076","url":null,"abstract":"<div><p>The hydroisomerization of long-chain <em>n</em>-alkanes proves to be an effective approach for the production of renewable second-generation biodiesel, and the development of bifunctional catalysts with synergistic effect between metal and acidic sites was the key to increase the yield of <em>iso</em>‐alkanes. Herein, novel hierarchical SAPO-31 nanoparticles (S31-H<em>i</em>) were synthesized with varied amounts of the growth inhibitor 1-octyl-3-methylimidazolium chloride ionic liquid (OMIMCl IL) in a one-stage crystallization, and a proposed formation process was discussed. The 0.1Pd/S31-H<em>i</em> bifunctional catalysts were prepared by loading only 0.1 wt% Pd based on the S31-H<em>i</em> by wetness impregnation method and their catalytic performances were evaluated for the hydroisomerization of <em>n</em>-hexadecane. The catalytic performance of 0.1Pd/S31-H based on the S31-H synthesized by adding an appropriate amount of OMIMCl ILs was significantly improved, which can be attributed to the enhanced diffusion originating from its smaller crystal size, higher Pd dispersion, and larger C<sub>Pd</sub>/C<sub>H</sub><sub>+</sub> value, which was beneficial for achieving synergistic catalysis. The <em>iso</em>‐hexadecane yield of 77.8% and proportion of multi-branched isomers of 51.5%, and catalytic stability within 100 h time on stream was obtained over the 0.1Pd/S31-H at <em>n</em>-hexadecane conversion of 89.3%. These catalysts have application potential for the production of second-generation clean biodiesel with excellent low temperature fluidity.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108076"},"PeriodicalIF":7.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000468/pdfft?md5=6b8659cd3c3c4e0f27965ec41c1cba66&pid=1-s2.0-S0378382024000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.fuproc.2024.108077
Ali Bakhtyari , Adele Sakhayi , Mohammad Reza Rahimpour , Adolfo Iulianelli
A new strategy for the transformation of an intermediate of the lignin conversion process, namely cyclohexanone, to fuel-grade products is assessed in this study. In this regard, the conventional hydrodeoxygenation process (with pure hydrogen) was compared to an innovative one with a simulated lignin-derived syngas stream in a wide range of reaction conditions (300–400 °C, 1–15 bar, and small-to-large feed-to-catalyst ratios) and over commercial molybdenum-based (nickle‑molybdenum (NiMo) and cobalt‑molybdenum(CoMo)) catalysts. Cyclohexanone conversion, product distribution, deoxygenation efficacy, and heating value were compared in each case. Cyclohexanone was transformed into cyclohexane, cyclohexene, benzene, cresols, phenol, toluene, and bi-cyclic compounds, which are beneficial in jet-fuel processing. Increasing the reaction temperature and pressure intensified the conversion of cyclohexanone (up to 87.8% conversion at 400 °C and 15 bar over both NiMo and CoMo catalysts), whereas increasing the feed-to-catalyst ratio reduced it. Operating conditions and the reducing gas (pure hydrogen or syngas) had major impacts on the conversion of cyclohexanone, deoxygenation efficiency, product distribution, and the heating value of the final product blend. The results of this study claim that cyclohexanone conversion to fuel-grade hydrocarbons (up to 97.61% over NiMo and 74.71% over CoMo catalysts) is a beneficial route and the conventional hydrodeoxygenation process can be replaced with the syngas-assisted one with a small change in production capacity, still large positive impact on the sustainability and environmental footprints of lignin conversion to biofuels.
{"title":"Conversion of lignin-derived ketonic intermediate to biofuel products: Syngas-assisted vs. Conventional hydrotreating","authors":"Ali Bakhtyari , Adele Sakhayi , Mohammad Reza Rahimpour , Adolfo Iulianelli","doi":"10.1016/j.fuproc.2024.108077","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108077","url":null,"abstract":"<div><p>A new strategy for the transformation of an intermediate of the lignin conversion process, namely cyclohexanone, to fuel-grade products is assessed in this study. In this regard, the conventional hydrodeoxygenation process (with pure hydrogen) was compared to an innovative one with a simulated lignin-derived syngas stream in a wide range of reaction conditions (300–400 °C, 1–15 bar, and small-to-large feed-to-catalyst ratios) and over commercial molybdenum-based (nickle‑molybdenum (NiMo) and cobalt‑molybdenum(CoMo)) catalysts. Cyclohexanone conversion, product distribution, deoxygenation efficacy, and heating value were compared in each case. Cyclohexanone was transformed into cyclohexane, cyclohexene, benzene, cresols, phenol, toluene, and bi-cyclic compounds, which are beneficial in jet-fuel processing. Increasing the reaction temperature and pressure intensified the conversion of cyclohexanone (up to 87.8% conversion at 400 °C and 15 bar over both NiMo and CoMo catalysts), whereas increasing the feed-to-catalyst ratio reduced it. Operating conditions and the reducing gas (pure hydrogen or syngas) had major impacts on the conversion of cyclohexanone, deoxygenation efficiency, product distribution, and the heating value of the final product blend. The results of this study claim that cyclohexanone conversion to fuel-grade hydrocarbons (up to 97.61% over NiMo and 74.71% over CoMo catalysts) is a beneficial route and the conventional hydrodeoxygenation process can be replaced with the syngas-assisted one with a small change in production capacity, still large positive impact on the sustainability and environmental footprints of lignin conversion to biofuels.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108077"},"PeriodicalIF":7.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838202400047X/pdfft?md5=d1467e8b1b73d5420d1142739cab5f91&pid=1-s2.0-S037838202400047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1016/j.fuproc.2024.108074
Zhiqiang Han , Mingjie Hu , Lu Xu , Zinong Zuo , Jia Fang , Yi Wu , Yan Yan , Dong Zhang , Jie Min
In this study, a method was developed to calculate the radius of a spherical expanding flame, with the goal of mitigating the effects of the ignition electrode. This approach allows for a swift determination of the ignition electrode's influence on the spherical expanding flame. It also facilitates accurate computation of the flame radius and offers a systematic means to validate the derived laminar burning velocity. Using this method as a foundation, an evaluation system was established to examine factors that could impact the method's results. Findings suggest that the laminar burning velocity determined by this method aligns more closely with numerical simulations and experimental data from referenced studies. For spherical expanding flames with convex and concave contours near the ignition electrode, the mean flame radius decreases by 0.57% to 1.22% and increases by 1.37% to 2.95%, respectively.
{"title":"Method for calculating spherical expanding flame radius considering the ignition electrode's influence","authors":"Zhiqiang Han , Mingjie Hu , Lu Xu , Zinong Zuo , Jia Fang , Yi Wu , Yan Yan , Dong Zhang , Jie Min","doi":"10.1016/j.fuproc.2024.108074","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108074","url":null,"abstract":"<div><p>In this study, a method was developed to calculate the radius of a spherical expanding flame, with the goal of mitigating the effects of the ignition electrode. This approach allows for a swift determination of the ignition electrode's influence on the spherical expanding flame. It also facilitates accurate computation of the flame radius and offers a systematic means to validate the derived laminar burning velocity. Using this method as a foundation, an evaluation system was established to examine factors that could impact the method's results. Findings suggest that the laminar burning velocity determined by this method aligns more closely with numerical simulations and experimental data from referenced studies. For spherical expanding flames with convex and concave contours near the ignition electrode, the mean flame radius decreases by 0.57% to 1.22% and increases by 1.37% to 2.95%, respectively.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108074"},"PeriodicalIF":7.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000444/pdfft?md5=a03fbe30ddc92f0ea5fc6393a5b98fd1&pid=1-s2.0-S0378382024000444-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1016/j.fuproc.2024.108075
Jing Wang , Fuquan Huang , Xinyan Wang , Xi Zhuo Jiang , Kai H. Luo
Ammonia (NH3) has gained increasing recognition as a carbon-free fuel. To enhance NH3 combustion, reactive gases, like methane (CH4), are usually added to the combustion system. In this work, the role of CH4 in NH3 combustion is systematically studied. A series of reactive force field molecular dynamic (ReaxFF MD) simulations are implemented to investigate effects of CH4 addition on the consumption of NH3 and the yields of nitrogen oxides (NOx) from the atomic perspective: CH4 accelerates the consumption of NH3 by shortening the decomposition time of the first NH3 molecule and increasing the translational kinetic energy of the system; CH4 modifies the yield of NOx by complicating the elementary reactions and introducing additional intermediates. The fuel ratio of CH4 and NH3 between 0.5 and 1 is suggested for a cleaner and enhanced NH3 combustion. By summarising the findings from the latest publications and the present work, the role of CH4 in NH3 combustion is comprehensively analysed from the macroscale and microscale perspectives: CH4 accelerates the progress of NH3 combustion flame, activates chemical reactions, and aggravates NOx emissions at a low CH4 content. Taking the NH3/CH4 combustion as an example, this study provides an exclusive perspective to understand combustion phenomena from the microscale events to macroscale observations.
{"title":"Role of methane in ammonia combustion in air: From microscale to macroscale","authors":"Jing Wang , Fuquan Huang , Xinyan Wang , Xi Zhuo Jiang , Kai H. Luo","doi":"10.1016/j.fuproc.2024.108075","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108075","url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) has gained increasing recognition as a carbon-free fuel. To enhance NH<sub>3</sub> combustion, reactive gases, like methane (CH<sub>4</sub>), are usually added to the combustion system. In this work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is systematically studied. A series of reactive force field molecular dynamic (ReaxFF MD) simulations are implemented to investigate effects of CH<sub>4</sub> addition on the consumption of NH<sub>3</sub> and the yields of nitrogen oxides (NO<sub>x</sub>) from the atomic perspective: CH<sub>4</sub> accelerates the consumption of NH<sub>3</sub> by shortening the decomposition time of the first NH<sub>3</sub> molecule and increasing the translational kinetic energy of the system; CH<sub>4</sub> modifies the yield of NO<sub>x</sub> by complicating the elementary reactions and introducing additional intermediates. The fuel ratio of CH<sub>4</sub> and NH<sub>3</sub> between 0.5 and 1 is suggested for a cleaner and enhanced NH<sub>3</sub> combustion. By summarising the findings from the latest publications and the present work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is comprehensively analysed from the macroscale and microscale perspectives: CH<sub>4</sub> accelerates the progress of NH<sub>3</sub> combustion flame, activates chemical reactions, and aggravates NO<sub>x</sub> emissions at a low CH<sub>4</sub> content. Taking the NH<sub>3</sub>/CH<sub>4</sub> combustion as an example, this study provides an exclusive perspective to understand combustion phenomena from the microscale events to macroscale observations.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108075"},"PeriodicalIF":7.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000456/pdfft?md5=76f2c82de8aa124c480f6240811970e3&pid=1-s2.0-S0378382024000456-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrodeoxygenation (HDO) reactions are extensively employed in the conversion of biomass to advanced fuels, which rely heavily on bifunctional catalysts that contain both a metal component and an acidic component. A significant challenge in the development of HDO catalysts is the need to reduce costs while simultaneously enhancing catalytic efficiency. Here, a series of Ru@W/ZrO2 catalysts with an extremely low loading of Ru (0.5 wt%) were successfully synthesized using different Ru or W loading sequences and different Ru/W mass ratios. The catalysts were applied in the HDO reaction of lignin-derived phenols, and their physical and chemical characteristics were revealed by various characterization techniques, including XRD, H2-TPD, NH3-TPD, and XPS. The results suggest that the synthesis method with post-loading Ru leads to improved exposure and utilization of the low-loaded Ru, which effectively serves as the active sites for hydrogenation in catalytic reactions. Under the same reaction conditions, the bifunctional catalyst with post-loading of Ru achieved a complete conversion of phenol into cyclohexane, while the catalyst with simultaneous loading of Ru and W only yielded 42% of cyclohexane. In addition, the Ru/W ratios have also shown significant effects on the HDO performance of the catalyst. The catalyst exhibits the highest hydrogenation activity when the Ru/W ratio is 10, which is further supported by kinetic experiments. This study highlights the significance of the loading sequence of noble metals and the metal/acid ratio in the synthesis of highly active bifunctional catalysts, and also lays the groundwork for the efficient utilization of noble metals in biomass HDO conversion.
{"title":"Efficient conversion of lignin-derived phenols to cycloalkanes over bifunctional catalysts with low loading of ruthenium","authors":"Zhiyu Xiang, Weichen Wang, Fangyuan Zhou, Hongke Zhang, Yidan Wang, Wanbin Zhu, Hongliang Wang","doi":"10.1016/j.fuproc.2024.108073","DOIUrl":"https://doi.org/10.1016/j.fuproc.2024.108073","url":null,"abstract":"<div><p>Hydrodeoxygenation (HDO) reactions are extensively employed in the conversion of biomass to advanced fuels, which rely heavily on bifunctional catalysts that contain both a metal component and an acidic component. A significant challenge in the development of HDO catalysts is the need to reduce costs while simultaneously enhancing catalytic efficiency. Here, a series of Ru@W/ZrO<sub>2</sub> catalysts with an extremely low loading of Ru (0.5 wt%) were successfully synthesized using different Ru or W loading sequences and different Ru/W mass ratios. The catalysts were applied in the HDO reaction of lignin-derived phenols, and their physical and chemical characteristics were revealed by various characterization techniques, including XRD, H<sub>2</sub>-TPD, NH<sub>3</sub>-TPD, and XPS. The results suggest that the synthesis method with post-loading Ru leads to improved exposure and utilization of the low-loaded Ru, which effectively serves as the active sites for hydrogenation in catalytic reactions. Under the same reaction conditions, the bifunctional catalyst with post-loading of Ru achieved a complete conversion of phenol into cyclohexane, while the catalyst with simultaneous loading of Ru and W only yielded 42% of cyclohexane. In addition, the Ru/W ratios have also shown significant effects on the HDO performance of the catalyst. The catalyst exhibits the highest hydrogenation activity when the Ru/W ratio is 10, which is further supported by kinetic experiments. This study highlights the significance of the loading sequence of noble metals and the metal/acid ratio in the synthesis of highly active bifunctional catalysts, and also lays the groundwork for the efficient utilization of noble metals in biomass HDO conversion.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108073"},"PeriodicalIF":7.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000432/pdfft?md5=463d8e92390744fc92861efb568cf33e&pid=1-s2.0-S0378382024000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140122804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}