首页 > 最新文献

Fuel Processing Technology最新文献

英文 中文
A review of chemical viscosity reducers for heavy oil: Advances and application strategies
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-02-08 DOI: 10.1016/j.fuproc.2025.108185
Chenhao Gao, Ruiying Xiong, Jixiang Guo, Wyclif Kiyingi, Hanxuan Song, Li Wang, Wenlong Zhang, Xiangwei Chen
The proportion of heavy oil in oil production will be higher and higher, but the high viscosity of heavy oil limits the development of heavy oil. In order to avoid the problems of high energy consumption and carbon emission caused by thermal recovery of heavy oil, this paper reviews and puts forward the application strategy of viscous reducers. By summarizing the thickening mechanism of heavy oil, the viscosity reducing principle, classification, advantages and disadvantages and application range of different viscosity reducers were clarified. The research and development ideas of each viscosity reducers to achieve green circulation were emphatically reviewed. Secondly, the application ideas of wellbore and formation viscosity reduction are given. Finally, from the thickening mechanism of heavy oil and the development, cost and post-treatment of viscosity reducer, the future development direction of viscosity reducer is forecasted.
{"title":"A review of chemical viscosity reducers for heavy oil: Advances and application strategies","authors":"Chenhao Gao,&nbsp;Ruiying Xiong,&nbsp;Jixiang Guo,&nbsp;Wyclif Kiyingi,&nbsp;Hanxuan Song,&nbsp;Li Wang,&nbsp;Wenlong Zhang,&nbsp;Xiangwei Chen","doi":"10.1016/j.fuproc.2025.108185","DOIUrl":"10.1016/j.fuproc.2025.108185","url":null,"abstract":"<div><div>The proportion of heavy oil in oil production will be higher and higher, but the high viscosity of heavy oil limits the development of heavy oil. In order to avoid the problems of high energy consumption and carbon emission caused by thermal recovery of heavy oil, this paper reviews and puts forward the application strategy of viscous reducers. By summarizing the thickening mechanism of heavy oil, the viscosity reducing principle, classification, advantages and disadvantages and application range of different viscosity reducers were clarified. The research and development ideas of each viscosity reducers to achieve green circulation were emphatically reviewed. Secondly, the application ideas of wellbore and formation viscosity reduction are given. Finally, from the thickening mechanism of heavy oil and the development, cost and post-treatment of viscosity reducer, the future development direction of viscosity reducer is forecasted.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"269 ","pages":"Article 108185"},"PeriodicalIF":7.2,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight in the phenomena included in loss of the activation of industrial hydrotreating catalyst through an innovative accelerated deactivation procedure and kinetic modeling
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-02-05 DOI: 10.1016/j.fuproc.2025.108186
Abbas Roshanaei , Sorood Zahedi Abghari , Sepehr Sadighi , Seyed Reza Seif Mohaddecy
An innovative accelerated experimental procedure was developed to study the activity loss of a bifunctional gasoil hydrotreating (GHT) catalyst in a Bench-Scale fixed bed reactor system. This procedure aimed to estimate the impact of coke formation throughout the catalyst's lifespan, from fresh to fully deactivated. Experiments were conducted over 3500 h using a NiMo catalyst to measure the conversion decrease of sulfuric, nitrogenic, and aromatic compounds, indicating catalyst activity loss in hydrotreating reactions. The initial study examined how temperature, pressure, liquid hourly space velocity (LHSV), and hydrogen-to-hydrocarbon ratio affected catalyst deactivation. Results showed that hydrodenitrogenation (HDN) was most impacted by deactivation, while hydrodesulfurization (HDS) was affected to a lesser extent (about one-third of HDN), and hydrodearomatization (HDA) exhibited an intermediate effect. Thermo-Gravimetric Analysis (TGA) revealed that about 20 % of the coke on the deactivated catalyst consisted of volatile matter trapped in the pores. Approximately 60 % of the coke decomposed between 300 °C and 660 °C, while the remaining residue decomposed at higher temperatures. To identify key operating variables affecting catalyst activation loss, intrinsic and apparent kinetic models together with different deactivation functions were developed and fine-tuned. Statistical analysis confirmed that accumulated feed flow rate was the most significant factor in catalyst deactivation.
{"title":"Insight in the phenomena included in loss of the activation of industrial hydrotreating catalyst through an innovative accelerated deactivation procedure and kinetic modeling","authors":"Abbas Roshanaei ,&nbsp;Sorood Zahedi Abghari ,&nbsp;Sepehr Sadighi ,&nbsp;Seyed Reza Seif Mohaddecy","doi":"10.1016/j.fuproc.2025.108186","DOIUrl":"10.1016/j.fuproc.2025.108186","url":null,"abstract":"<div><div>An innovative accelerated experimental procedure was developed to study the activity loss of a bifunctional gasoil hydrotreating (GHT) catalyst in a Bench-Scale fixed bed reactor system. This procedure aimed to estimate the impact of coke formation throughout the catalyst's lifespan, from fresh to fully deactivated. Experiments were conducted over 3500 h using a NiMo catalyst to measure the conversion decrease of sulfuric, nitrogenic, and aromatic compounds, indicating catalyst activity loss in hydrotreating reactions. The initial study examined how temperature, pressure, liquid hourly space velocity (LHSV), and hydrogen-to-hydrocarbon ratio affected catalyst deactivation. Results showed that hydrodenitrogenation (HDN) was most impacted by deactivation, while hydrodesulfurization (HDS) was affected to a lesser extent (about one-third of HDN), and hydrodearomatization (HDA) exhibited an intermediate effect. Thermo-Gravimetric Analysis (TGA) revealed that about 20 % of the coke on the deactivated catalyst consisted of volatile matter trapped in the pores. Approximately 60 % of the coke decomposed between 300 °C and 660 °C, while the remaining residue decomposed at higher temperatures. To identify key operating variables affecting catalyst activation loss, intrinsic and apparent kinetic models together with different deactivation functions were developed and fine-tuned. Statistical analysis confirmed that accumulated feed flow rate was the most significant factor in catalyst deactivation.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"269 ","pages":"Article 108186"},"PeriodicalIF":7.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-carbon composite for supercapacitor electrodes: Harnessing hydrochar frameworks and bio-tar polymerization
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-02-05 DOI: 10.1016/j.fuproc.2025.108178
Jixiu Jia , Yuxuan Sun , Lili Huo , Lixin Zhao , Ziyun Liu , Zhidan Liu , Kang Kang , Shuaishuai Zhang , Teng Xie , Yanan Zhao , Zonglu Yao
Bio-tar, a promising renewable carbon precursor, has garnered significant attention for its potential in supercapacitor electrode applications. However, the polymerization of bio-tar into carbon presents challenges, particularly in achieving a dense, interconnected pore structure essential for optimal electrochemical performance. This study introduced an innovative approach using hydrochar as a framework combined with bio-tar as the carbon source to synthesize bio-carbon composite. The results showed that the prepared bio-carbon exhibited a stable morphological structure in which the hydrochar skeleton supported the wrapping of bio-tar originated carbon, specifically at a hydrochar to bio-tar ratio of 1:6. And it also showed a maximum specific surface area of 2714.27 m2/g, with a mesopore ratio of 68.79 % at an activation temperature of 800 °C. The optimal electrochemical properties were observed at the highest specific capacitance of 340.4 F/g in a three-electrode system under a current density of 0.5 A/g. When assembled into a supercapacitor, the single-pole specific capacitance reached 213.3 F/g at 0.5 A/g. The structure-property relationship suggested that the water contact angle is a key factor influencing the specific capacitance, particularly at high specific surface areas. This study demonstrated an innovative way to prepare sustainable composite bio-carbon material with excellent electrochemical performance.
{"title":"Bio-carbon composite for supercapacitor electrodes: Harnessing hydrochar frameworks and bio-tar polymerization","authors":"Jixiu Jia ,&nbsp;Yuxuan Sun ,&nbsp;Lili Huo ,&nbsp;Lixin Zhao ,&nbsp;Ziyun Liu ,&nbsp;Zhidan Liu ,&nbsp;Kang Kang ,&nbsp;Shuaishuai Zhang ,&nbsp;Teng Xie ,&nbsp;Yanan Zhao ,&nbsp;Zonglu Yao","doi":"10.1016/j.fuproc.2025.108178","DOIUrl":"10.1016/j.fuproc.2025.108178","url":null,"abstract":"<div><div>Bio-tar, a promising renewable carbon precursor, has garnered significant attention for its potential in supercapacitor electrode applications. However, the polymerization of bio-tar into carbon presents challenges, particularly in achieving a dense, interconnected pore structure essential for optimal electrochemical performance. This study introduced an innovative approach using hydrochar as a framework combined with bio-tar as the carbon source to synthesize bio-carbon composite. The results showed that the prepared bio-carbon exhibited a stable morphological structure in which the hydrochar skeleton supported the wrapping of bio-tar originated carbon, specifically at a hydrochar to bio-tar ratio of 1:6. And it also showed a maximum specific surface area of 2714.27 m<sup>2</sup>/g, with a mesopore ratio of 68.79 % at an activation temperature of 800 °C. The optimal electrochemical properties were observed at the highest specific capacitance of 340.4 F/g in a three-electrode system under a current density of 0.5 A/g. When assembled into a supercapacitor, the single-pole specific capacitance reached 213.3 F/g at 0.5 A/g. The structure-property relationship suggested that the water contact angle is a key factor influencing the specific capacitance, particularly at high specific surface areas. This study demonstrated an innovative way to prepare sustainable composite bio-carbon material with excellent electrochemical performance.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"269 ","pages":"Article 108178"},"PeriodicalIF":7.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the sulfurization procedure to decrease by-product formation for one-step catalytic synthesis of sulfur-containing chemicals
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-30 DOI: 10.1016/j.fuproc.2025.108184
ZhiZhi Xu , Jian Fang , Min Luo , Dedong He , Dingkai Chen , Jichang Lu , Yongming Luo
The one-step synthesis of sulfur-containing chemicals, methanethiol (CH3SH), from syngas and hydrogen sullfide (H2S) mixtures shows the enormous potential for extending the application of both C1 chemistry and sulfur resource recycling and utilization. However, directionally regulating the reaction pathway for synthesizing target sulfur-containing chemicals remain challenging owing to the presence of multiple reactants and the following various competitive side reactions. Herein, we propose a facile and simple sulfurization procedure-dependent strategies to regulate the Mo-S(O) bond strength of K-MoS2 catalysts for highly selective CO-to-CH3SH catalysis. The activity tests, the characterization results and in situ DRIFTS technique demonstrate that a slower sulfurization heating rate and abundant-reduced sulfurization atmosphere facilitate the formation of K-intercalated 1 T-MoS2 phase, which possesses a weaker Mo-S(O) bond than that of CO bond in CO molecules. This weakened bonding pattern is advantageous to the CO non-dissociative activation to from COS species, and the further hydrogenation of adsorbed COS and CHxS species to main product of CH3SH. Otherwise, the strong bonding of Mo-S(O) bond with CO molecule over K-decorated 2H-MoS2 phase can lead to the breakage of CO bond, promoting the formation of CHx species and the occurrence of methanation side reaction. This strategy could provide the useful guidance for the fine regulation of the main and side reaction pathway for producing important chemicals from carbon and sulfur basic materials.
{"title":"Modulating the sulfurization procedure to decrease by-product formation for one-step catalytic synthesis of sulfur-containing chemicals","authors":"ZhiZhi Xu ,&nbsp;Jian Fang ,&nbsp;Min Luo ,&nbsp;Dedong He ,&nbsp;Dingkai Chen ,&nbsp;Jichang Lu ,&nbsp;Yongming Luo","doi":"10.1016/j.fuproc.2025.108184","DOIUrl":"10.1016/j.fuproc.2025.108184","url":null,"abstract":"<div><div>The one-step synthesis of sulfur-containing chemicals, methanethiol (CH<sub>3</sub>SH), from syngas and hydrogen sullfide (H<sub>2</sub>S) mixtures shows the enormous potential for extending the application of both C<sub>1</sub> chemistry and sulfur resource recycling and utilization. However, directionally regulating the reaction pathway for synthesizing target sulfur-containing chemicals remain challenging owing to the presence of multiple reactants and the following various competitive side reactions. Herein, we propose a facile and simple sulfurization procedure-dependent strategies to regulate the Mo-S(<img>O) bond strength of K-MoS<sub>2</sub> catalysts for highly selective CO-to-CH<sub>3</sub>SH catalysis. The activity tests, the characterization results and in situ DRIFTS technique demonstrate that a slower sulfurization heating rate and abundant-reduced sulfurization atmosphere facilitate the formation of K-intercalated 1 T-MoS<sub>2</sub> phase, which possesses a weaker Mo-S(<img>O) bond than that of C<img>O bond in CO molecules. This weakened bonding pattern is advantageous to the CO non-dissociative activation to from <sup>⁎</sup>COS species, and the further hydrogenation of adsorbed <sup>⁎</sup>COS and <sup>⁎</sup>CH<sub>x</sub>S species to main product of CH<sub>3</sub>SH. Otherwise, the strong bonding of Mo-S(<img>O) bond with CO molecule over K-decorated 2H-MoS<sub>2</sub> phase can lead to the breakage of C<img>O bond, promoting the formation of CH<sub>x</sub> species and the occurrence of methanation side reaction. This strategy could provide the useful guidance for the fine regulation of the main and side reaction pathway for producing important chemicals from carbon and sulfur basic materials.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108184"},"PeriodicalIF":7.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An artificial intelligence optimization of NOx conversion efficiency under dual catalytic mechanism reaction based on multi-objective gray wolf algorithm
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-22 DOI: 10.1016/j.fuproc.2025.108182
Zhiqing Zhang , Zicheng He , Yuguo Wang , Feng Jiang , Weihuang Zhong , Bin Zhang , Yanshuai Ye , Zibin Yin , Dongli Tan
In the era of industry 4.0, artificial intelligence (AI) offers new perspectives for researching the complex sustainable chemical reactions in selective catalytic reduction (SCR). This aims to further improve the utilization and efficiency of SCR. In this study, a fuzzy gray relational analysis coupled with random forest (RF) and back propagation artificial neural network (BP-ANN) model was developed. This model was trained based on the Langmuir-Hinshelwood and Eley-Rideal coupled mechanism for SCR reaction mechanism, and had good fitting effect on the heat transfer rate, catalytic efficiency and ammonia (NH3) slip rate of the catalytic reaction under loading conditions. And this was used as a guiding method to direct the multi-objective gray wolf optimization algorithm to optimize the basic parameters. The optimization results showed that the NH3 slip rate of the SCR was slightly improved and the denitrification efficiency was increased up to 28 % under different loads, which had guiding significance for the lightweighting and thermal control of industrial equipment.
{"title":"An artificial intelligence optimization of NOx conversion efficiency under dual catalytic mechanism reaction based on multi-objective gray wolf algorithm","authors":"Zhiqing Zhang ,&nbsp;Zicheng He ,&nbsp;Yuguo Wang ,&nbsp;Feng Jiang ,&nbsp;Weihuang Zhong ,&nbsp;Bin Zhang ,&nbsp;Yanshuai Ye ,&nbsp;Zibin Yin ,&nbsp;Dongli Tan","doi":"10.1016/j.fuproc.2025.108182","DOIUrl":"10.1016/j.fuproc.2025.108182","url":null,"abstract":"<div><div>In the era of industry 4.0, artificial intelligence (AI) offers new perspectives for researching the complex sustainable chemical reactions in selective catalytic reduction (SCR). This aims to further improve the utilization and efficiency of SCR. In this study, a fuzzy gray relational analysis coupled with random forest (RF) and back propagation artificial neural network (BP-ANN) model was developed. This model was trained based on the Langmuir-Hinshelwood and Eley-Rideal coupled mechanism for SCR reaction mechanism, and had good fitting effect on the heat transfer rate, catalytic efficiency and ammonia (NH<sub>3</sub>) slip rate of the catalytic reaction under loading conditions. And this was used as a guiding method to direct the multi-objective gray wolf optimization algorithm to optimize the basic parameters. The optimization results showed that the NH<sub>3</sub> slip rate of the SCR was slightly improved and the denitrification efficiency was increased up to 28 % under different loads, which had guiding significance for the lightweighting and thermal control of industrial equipment.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108182"},"PeriodicalIF":7.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural evolution characteristics of sulfur in coal during gold-tube thermal simulation
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-21 DOI: 10.1016/j.fuproc.2025.108183
Liping Xue , Yuegang Tang , Shuo Gao
This study used a gold tube thermal simulation experiment to investigate the release of gases, the formation of free sulfur-containing compounds, and the evolution of coal macromolecules and organic sulfur structures. Results indicate that at Easy%Ro = 0.71, the drying coefficient (C1/ΣC15) of high-organic‑sulfur coal is significantly higher than that of low-organic‑sulfur coal. When Easy%Ro ≥ 3.64, the organic sulfur content in coal significantly promotes methane generation. At Easy%Ro = 1.75, small molecules of free organic sulfur are most abundant in coal. At Easy%Ro ≥ 3.64, low and high-organic‑sulfur coals produce elemental sulfur S8 and ester sulfate compounds. FTIR analysis reveals that high-organic‑sulfur coal contains more aliphatic hydrocarbon structures, resulting in lower aromaticity parameter I than low-organic‑sulfur coal at the same coalification level. In contrast, the hydrocarbon generation potential factor “A” is higher, indicating that organic sulfur inhibits coal aromatization, and high-organic‑sulfur coal has a higher hydrocarbon generation potential. XPS analysis shows that thiophene and sulfoxide are relatively more abundant in high-organic‑sulfur coal, with the highest reaching 91.24 % in SHOS coal. The aromaticity of organic sulfur rapidly increases when Easy%Ro < 1.75, followed by possible inhibition of thiophenic sulfur production by sulfones and sulfoxides in coal, resulting in decreased aromaticity.
{"title":"Structural evolution characteristics of sulfur in coal during gold-tube thermal simulation","authors":"Liping Xue ,&nbsp;Yuegang Tang ,&nbsp;Shuo Gao","doi":"10.1016/j.fuproc.2025.108183","DOIUrl":"10.1016/j.fuproc.2025.108183","url":null,"abstract":"<div><div>This study used a gold tube thermal simulation experiment to investigate the release of gases, the formation of free sulfur-containing compounds, and the evolution of coal macromolecules and organic sulfur structures. Results indicate that at Easy%R<sub>o</sub> = 0.71, the drying coefficient (C<sub>1</sub>/ΣC<sub>1</sub><sub>–</sub><sub>5</sub>) of high-organic‑sulfur coal is significantly higher than that of low-organic‑sulfur coal. When Easy%R<sub>o</sub> ≥ 3.64, the organic sulfur content in coal significantly promotes methane generation. At Easy%R<sub>o</sub> = 1.75, small molecules of free organic sulfur are most abundant in coal. At Easy%R<sub>o</sub> ≥ 3.64, low and high-organic‑sulfur coals produce elemental sulfur S<sub>8</sub> and ester sulfate compounds. FTIR analysis reveals that high-organic‑sulfur coal contains more aliphatic hydrocarbon structures, resulting in lower aromaticity parameter I than low-organic‑sulfur coal at the same coalification level. In contrast, the hydrocarbon generation potential factor “A” is higher, indicating that organic sulfur inhibits coal aromatization, and high-organic‑sulfur coal has a higher hydrocarbon generation potential. XPS analysis shows that thiophene and sulfoxide are relatively more abundant in high-organic‑sulfur coal, with the highest reaching 91.24 % in SHOS coal. The aromaticity of organic sulfur rapidly increases when Easy%R<sub>o</sub> &lt; 1.75, followed by possible inhibition of thiophenic sulfur production by sulfones and sulfoxides in coal, resulting in decreased aromaticity.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108183"},"PeriodicalIF":7.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in pyrolysis behavior and volatiles of tar-rich coal with various origins
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-17 DOI: 10.1016/j.fuproc.2025.108181
Qingmin Shi , Xinyue Zhao , Shuangming Wang , Hongchao Zhao , Ruijun Ji , Chunhao Li , Bingyang Kou , Jun Zhao
Abundant in northwest China, tar-rich coal exhibits significantly diverse pyrolysis behaviors depending on its origins. For low-temperature pyrolysis experiments, three coal-forming environments were selected: limno-telmatic (Sample S-1), wet forest swamp (Sample O-1), and dry forest swamp (Sample O-2). The pyrolysis behavior and the molecular structure evolution were analyzed through thermogravimetric, Fourier transform infrared spectroscopy, gas chromatography, and gas chromatography-mass spectrometer. The findings revealed three stages of pyrolysis behavior in tar-rich coal. Compared to others, S-1, formed in a stronger reducing environment, had a 17 °C lower initial pyrolysis temperature, a 5 °C lower peak reaction temperature, and a 20 % higher weight loss. The reason for S-1 had more bonds with lower energies, accounting for 76 % of the total fragmented bonds, which was 10 % higher than others. Moreover, S-1 contained more highly reactive molecular structures and exhibited higher thermal decomposition. The variations in molecular structure and pyrolysis behavior were reflected in the pyrolysis products, with S-1 showing higher yields of tar, gas, and water, but lower semi-coke. Specifically, it had 2 % higher aliphatics and aromatics and 4 % fewer oxygenated compounds, along with higher levels of CO and CO2, and lower amounts of H2, CH4, and CnHm in volatiles.
{"title":"Differences in pyrolysis behavior and volatiles of tar-rich coal with various origins","authors":"Qingmin Shi ,&nbsp;Xinyue Zhao ,&nbsp;Shuangming Wang ,&nbsp;Hongchao Zhao ,&nbsp;Ruijun Ji ,&nbsp;Chunhao Li ,&nbsp;Bingyang Kou ,&nbsp;Jun Zhao","doi":"10.1016/j.fuproc.2025.108181","DOIUrl":"10.1016/j.fuproc.2025.108181","url":null,"abstract":"<div><div>Abundant in northwest China, tar-rich coal exhibits significantly diverse pyrolysis behaviors depending on its origins. For low-temperature pyrolysis experiments, three coal-forming environments were selected: limno-telmatic (Sample S-1), wet forest swamp (Sample O-1), and dry forest swamp (Sample O-2). The pyrolysis behavior and the molecular structure evolution were analyzed through thermogravimetric, Fourier transform infrared spectroscopy, gas chromatography, and gas chromatography-mass spectrometer. The findings revealed three stages of pyrolysis behavior in tar-rich coal. Compared to others, S-1, formed in a stronger reducing environment, had a 17 °C lower initial pyrolysis temperature, a 5 °C lower peak reaction temperature, and a 20 % higher weight loss. The reason for S-1 had more bonds with lower energies, accounting for 76 % of the total fragmented bonds, which was 10 % higher than others. Moreover, S-1 contained more highly reactive molecular structures and exhibited higher thermal decomposition. The variations in molecular structure and pyrolysis behavior were reflected in the pyrolysis products, with S-1 showing higher yields of tar, gas, and water, but lower semi-coke. Specifically, it had 2 % higher aliphatics and aromatics and 4 % fewer oxygenated compounds, along with higher levels of CO and CO<sub>2</sub>, and lower amounts of H<sub>2</sub>, CH<sub>4</sub>, and C<sub>n</sub>H<sub>m</sub> in volatiles.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108181"},"PeriodicalIF":7.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of methanol and formaldehyde emissions from methanol-fueled engines
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-16 DOI: 10.1016/j.fuproc.2025.108177
Fangjie Liu, Hengrui Guo, Xinguo Zheng, Haizhao Li, Xin Wang
Methanol, as a low-carbon fuel, has broad application prospects in engines. The mechanism of methanol and formaldehyde was investigated respectively in a methanol premixed combustion test bench (PCTB) and a 304 stainless-steel flow reactor (SFR). The results of PCTB indicate that methanol cannot escape from the flame surface to form unburned methanol emissions. Methanol was partially oxidized to formaldehyde in the exhaust system when methanol gas is fed into the upstream exhaust. The results of SFR indicate that the onset temperature of methanol oxidation is approximately 628 K. The methanol concentration decreases rapidly with increasing temperature from 628 to 950 K. Formaldehyde increases firstly and then decreases with increasing temperature. The concentration of formaldehyde reaches the maximum at the critical temperature. At flow velocities of 8, 12, 16, 20 and 24 m/s, the critical temperature is 812, 823.4, 830, 845.5 and 850 K, respectively. This work investigates the mechanism of methanol and formaldehyde at different temperatures, flow velocities, and oxygen concentrations, and provides valuable insights into the control of methanol and formaldehyde emissions from methanol engines.
{"title":"Mechanism of methanol and formaldehyde emissions from methanol-fueled engines","authors":"Fangjie Liu,&nbsp;Hengrui Guo,&nbsp;Xinguo Zheng,&nbsp;Haizhao Li,&nbsp;Xin Wang","doi":"10.1016/j.fuproc.2025.108177","DOIUrl":"10.1016/j.fuproc.2025.108177","url":null,"abstract":"<div><div>Methanol, as a low-carbon fuel, has broad application prospects in engines. The mechanism of methanol and formaldehyde was investigated respectively in a methanol premixed combustion test bench (PCTB) and a 304 stainless-steel flow reactor (SFR). The results of PCTB indicate that methanol cannot escape from the flame surface to form unburned methanol emissions. Methanol was partially oxidized to formaldehyde in the exhaust system when methanol gas is fed into the upstream exhaust. The results of SFR indicate that the onset temperature of methanol oxidation is approximately 628 K. The methanol concentration decreases rapidly with increasing temperature from 628 to 950 K. Formaldehyde increases firstly and then decreases with increasing temperature. The concentration of formaldehyde reaches the maximum at the critical temperature. At flow velocities of 8, 12, 16, 20 and 24 m/s, the critical temperature is 812, 823.4, 830, 845.5 and 850 K, respectively. This work investigates the mechanism of methanol and formaldehyde at different temperatures, flow velocities, and oxygen concentrations, and provides valuable insights into the control of methanol and formaldehyde emissions from methanol engines.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108177"},"PeriodicalIF":7.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastics pyrolysis: The impact of pyrolysis temperature on ethylene production and direct carbon dioxide footprint
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-02 DOI: 10.1016/j.fuproc.2024.108148
Ruben J. de Korte, Melissa N. Dunkle, Ramon van Belzen, Alessandro Battistella, George Bellos
An attempt to estimate the energy and emissions for chemically recycling polyethylene is presented. The workflow includes an experimental section to generate pyrolysis decomposition data, and a process model to simulate the process. Pyrolysis coupled to gas chromatographic separation with mass spectrometric and flame ionization detection (Pyr-GC–MS/FID) was carried out at different temperatures, ranging from 600 to 800 °C on both low-density polyethylene (LDPE) pellets and linear low-density (LLDPE) pellets. The hydrocarbon composition of the pyrolyzed materials was determined using the MS data, while quantification was performed using the FID data. The quantified hydrocarbon composition was then used as the input data for modeling the pyrolysis reactor and separations process in Aspen Plus. The direct CO2 emissions were estimated for downstream chemical processes, such as pyrolysis oil hydroprocessing, steam cracking, and polymerization. The process analysis included the evaluation of scenarios where the pyrolysis plant was located in a stand-alone site and integrated with surrounding chemical plants. It was shown that higher pyrolysis temperatures create the possibility for collocating a pyrolysis plant with the steam cracker process.
{"title":"Plastics pyrolysis: The impact of pyrolysis temperature on ethylene production and direct carbon dioxide footprint","authors":"Ruben J. de Korte,&nbsp;Melissa N. Dunkle,&nbsp;Ramon van Belzen,&nbsp;Alessandro Battistella,&nbsp;George Bellos","doi":"10.1016/j.fuproc.2024.108148","DOIUrl":"10.1016/j.fuproc.2024.108148","url":null,"abstract":"<div><div>An attempt to estimate the energy and emissions for chemically recycling polyethylene is presented. The workflow includes an experimental section to generate pyrolysis decomposition data, and a process model to simulate the process. Pyrolysis coupled to gas chromatographic separation with mass spectrometric and flame ionization detection (Pyr-GC–MS/FID) was carried out at different temperatures, ranging from 600 to 800 °C on both low-density polyethylene (LDPE) pellets and linear low-density (LLDPE) pellets. The hydrocarbon composition of the pyrolyzed materials was determined using the MS data, while quantification was performed using the FID data. The quantified hydrocarbon composition was then used as the input data for modeling the pyrolysis reactor and separations process in Aspen Plus. The direct CO<sub>2</sub> emissions were estimated for downstream chemical processes, such as pyrolysis oil hydroprocessing, steam cracking, and polymerization. The process analysis included the evaluation of scenarios where the pyrolysis plant was located in a stand-alone site and integrated with surrounding chemical plants. It was shown that higher pyrolysis temperatures create the possibility for collocating a pyrolysis plant with the steam cracker process.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108148"},"PeriodicalIF":7.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing of propane oxidative-dehydrogenation catalysts to deoxygenation of vegetable oils for green diesel production
IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-30 DOI: 10.1016/j.fuproc.2024.108173
S. Lucantonio , G. Di Vito Nolfi , C. Courson , K. Gallucci , A. Di Giuliano , L. Rossi
The market for diesel fuel will grow in the next years. Green diesel – alkanes produced through deoxygenation (DO) with H2 of triglyceride-based biomasses – can help cover this demand sustainably. Repurposing non-noble-metals catalysts is a faster affordable route to spread DO at larger scales. NiCoMo and ZnCoMo catalysts were previously proposed in the literature for oxidative-dehydrogenation of propane and unprecedentedly repurposed for DO in this work. DO tests on NiCoMo and ZnCoMo were performed according to an unreplicated 23 factorial Design of Experiment (DoE) with three replications at center point. Temperature (T), catalyst-to-oil ratio (γ), DO duration (t) were the design-factors, at levels: 280–320 °C; 4–10 %w/w; 2–6 h. Both catalysts performed promisingly(NiCoMo and ZnCoMo best conversion of 100 %, NiCoMo and ZnCoMo best diesel yields of 73 % and 68 %, respectively). Analysis of Variance was performed on main effects and factor interactions of all measured quantities and performance parameters, obtaining surface responses equations. Additionally, NiCoMo and ZnCoMo underwent recycling tests (four DO cycles) to evaluate reusability at 320 °C-10 %w/w-2 h: catalysts ensured for four cycles stable 100 % conversion of triglycerides and slightly growing diesel yield (NiCoMo: 67 % to 72 %; ZnCoMo: 64 % to 74 %). Overall, the selected dehydrogenation catalysts were successfully repurposed for DO at laboratory-scale. Although further evaluations should be performed for a balanced perspective regarding the industrial potential and sustainability of DO by repurposed NiCoMo and ZnCoMo (e.g., catalyst synthesis scalability, switch from batch to continuous production), the ease (cost-effectiveness) of the catalytic synthesis and process performances seem promising for their scalability.
{"title":"Repurposing of propane oxidative-dehydrogenation catalysts to deoxygenation of vegetable oils for green diesel production","authors":"S. Lucantonio ,&nbsp;G. Di Vito Nolfi ,&nbsp;C. Courson ,&nbsp;K. Gallucci ,&nbsp;A. Di Giuliano ,&nbsp;L. Rossi","doi":"10.1016/j.fuproc.2024.108173","DOIUrl":"10.1016/j.fuproc.2024.108173","url":null,"abstract":"<div><div>The market for diesel fuel will grow in the next years. Green diesel – alkanes produced through deoxygenation (DO) with H<sub>2</sub> of triglyceride-based biomasses – can help cover this demand sustainably. Repurposing non-noble-metals catalysts is a faster affordable route to spread DO at larger scales. NiCoMo and ZnCoMo catalysts were previously proposed in the literature for oxidative-dehydrogenation of propane and unprecedentedly repurposed for DO in this work. DO tests on NiCoMo and ZnCoMo were performed according to an unreplicated 2<sup>3</sup> factorial Design of Experiment (DoE) with three replications at center point. Temperature (<em>T</em>), catalyst-to-oil ratio (<em>γ</em>), DO duration (<em>t</em>) were the design-factors, at levels: 280–320 °C; 4–10 %<sub><em>w</em>/w</sub>; 2–6 h. Both catalysts performed promisingly(NiCoMo and ZnCoMo best conversion of 100 %, NiCoMo and ZnCoMo best diesel yields of 73 % and 68 %, respectively). Analysis of Variance was performed on main effects and factor interactions of all measured quantities and performance parameters, obtaining surface responses equations. Additionally, NiCoMo and ZnCoMo underwent recycling tests (four DO cycles) to evaluate reusability at 320 °C-10 %<sub><em>w</em>/w</sub>-2 h: catalysts ensured for four cycles stable 100 % conversion of triglycerides and slightly growing diesel yield (NiCoMo: 67 % to 72 %; ZnCoMo: 64 % to 74 %). Overall, the selected dehydrogenation catalysts were successfully repurposed for DO at laboratory-scale. Although further evaluations should be performed for a balanced perspective regarding the industrial potential and sustainability of DO by repurposed NiCoMo and ZnCoMo (e.g., catalyst synthesis scalability, switch from batch to continuous production), the ease (cost-effectiveness) of the catalytic synthesis and process performances seem promising for their scalability.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108173"},"PeriodicalIF":7.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fuel Processing Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1