Pub Date : 2024-11-27DOI: 10.1016/j.fuproc.2024.108164
Sung Woo Lee , Marcel Jonathan Hidajat , Seung Hyeok Cha , Gwang-Nam Yun , Dong Won Hwang
In this study, the oligomerization of 1-octene was investigated using various zeolites through both experimental and machine learning (ML) approaches. The structural characteristics of the zeolites and experimental conditions were used as input parameters to analyze the feature importance of each key factor on the oligomerization of 1-octene. By quantifying these influences, the reaction mechanism was elucidated, and a methodology for maximizing the oligomerization reaction was developed. The ML methods employed in this study were SHapley Additive exPlanations (SHAP) and Sure Independence Screening and Sparsifying Operator (SISSO). While the SHAP method is a well-validated conventional approach, it has limitations due to its high data requirements. Therefore, the SISSO method was applied, as it requires fewer data points and offers a transparent computational process. SISSO provided results in the form of human-interpretable equations, allowing for an analysis of these equations to deepen insights into the reaction mechanism.
本研究通过实验和机器学习(ML)方法研究了使用各种沸石的 1-辛烯的低聚过程。以沸石的结构特征和实验条件为输入参数,分析了各关键因素对 1-辛烯低聚的重要特征。通过量化这些影响因素,阐明了反应机理,并开发了最大化低聚反应的方法。本研究中采用的 ML 方法是 SHapley Additive exPlanations(SHAP)和 Sure Independence Screening and Sparsifying Operator(SISSO)。虽然 SHAP 方法是一种经过充分验证的传统方法,但由于其数据要求较高而存在局限性。因此,我们采用了 SISSO 方法,因为它需要的数据点较少,而且计算过程透明。SISSO 以人类可理解的方程形式提供结果,通过对这些方程进行分析,可以加深对反应机理的了解。
{"title":"Data-driven analysis in the selective oligomerization of long-chain linear alpha olefin on zeolite catalysts: A machine learning-based parameter study","authors":"Sung Woo Lee , Marcel Jonathan Hidajat , Seung Hyeok Cha , Gwang-Nam Yun , Dong Won Hwang","doi":"10.1016/j.fuproc.2024.108164","DOIUrl":"10.1016/j.fuproc.2024.108164","url":null,"abstract":"<div><div>In this study, the oligomerization of 1-octene was investigated using various zeolites through both experimental and machine learning (ML) approaches. The structural characteristics of the zeolites and experimental conditions were used as input parameters to analyze the feature importance of each key factor on the oligomerization of 1-octene. By quantifying these influences, the reaction mechanism was elucidated, and a methodology for maximizing the oligomerization reaction was developed. The ML methods employed in this study were SHapley Additive exPlanations (SHAP) and Sure Independence Screening and Sparsifying Operator (SISSO). While the SHAP method is a well-validated conventional approach, it has limitations due to its high data requirements. Therefore, the SISSO method was applied, as it requires fewer data points and offers a transparent computational process. SISSO provided results in the form of human-interpretable equations, allowing for an analysis of these equations to deepen insights into the reaction mechanism.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108164"},"PeriodicalIF":7.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.fuproc.2024.108159
Hai-Tao Zeng , Wei-Wei Kang , Bao-Lin Xing , Guang-Xu Huang , Qiang Li , Han Hu , Fang-Le Su , Jian-Bo Jia , Chuan-Xiang Zhang
Widely sourced precursors for hard carbon with high performances are still a major challenge for industrializing sodium-ion batteries. Herein, long-flame coal was adopted as the precursors to prepare hard carbon by carbonization at different temperatures, and the influences of carbonization temperatures on the microstructure together with electrochemical properties of hard carbon were systematically investigated. With elevating carbonization temperature, carbon layer spacing, defect concentration and C − O, CO functional groups of hard carbon all gradually decrease. The hard carbon prepared at 1500 °C (BHC-1500) demonstrates 38 % of the pseudo-graphite carbon with an average carbon layer spacing of 0.360 nm, a specific surface area of 31.2 m2/g and appropriate defect concentration (ID1/IG of 1.50). As anode active materials, BHC-1500 possesses a specific capacity of 254 mAh/g at 20 mA/g with initial coulombic efficiency of 79 %, a rate performance of 24.8% in 20-1000 mA/g, a capacity retention of 72 % after 1000 cycles at 500 mA/g, suggesting the excellent electrochemical sodium storage performances, which may be concerned with the highest proportion of pseudo-graphite carbon, appropriate carbon layer spacing, functional groups and defect concentration. The ex-situ XRD test confirms sodium storage mechanism of “adsorption-intercalation/filling” in hard carbon. This work can provide new ideas for clean utilization of long-flame coal and developing high performances anode active materials for SIBs.
{"title":"Microstructure modulation of hard carbon derived from long-flame coal to improve electrochemical sodium storage performances","authors":"Hai-Tao Zeng , Wei-Wei Kang , Bao-Lin Xing , Guang-Xu Huang , Qiang Li , Han Hu , Fang-Le Su , Jian-Bo Jia , Chuan-Xiang Zhang","doi":"10.1016/j.fuproc.2024.108159","DOIUrl":"10.1016/j.fuproc.2024.108159","url":null,"abstract":"<div><div>Widely sourced precursors for hard carbon with high performances are still a major challenge for industrializing sodium-ion batteries. Herein, long-flame coal was adopted as the precursors to prepare hard carbon by carbonization at different temperatures, and the influences of carbonization temperatures on the microstructure together with electrochemical properties of hard carbon were systematically investigated. With elevating carbonization temperature, carbon layer spacing, defect concentration and C <strong>−</strong> O, C<img>O functional groups of hard carbon all gradually decrease. The hard carbon prepared at 1500 °C (BHC-1500) demonstrates 38 % of the pseudo-graphite carbon with an average carbon layer spacing of 0.360 nm, a specific surface area of 31.2 m<sup>2</sup>/g and appropriate defect concentration (I<sub>D1</sub>/I<sub>G</sub> of 1.50). As anode active materials, BHC-1500 possesses a specific capacity of 254 mAh/g at 20 mA/g with initial coulombic efficiency of 79 %, a rate performance of 24.8% in 20-1000 mA/g, a capacity retention of 72 % after 1000 cycles at 500 mA/g, suggesting the excellent electrochemical sodium storage performances, which may be concerned with the highest proportion of pseudo-graphite carbon, appropriate carbon layer spacing, functional groups and defect concentration. The ex-situ XRD test confirms sodium storage mechanism of “adsorption-intercalation/filling” in hard carbon. This work can provide new ideas for clean utilization of long-flame coal and developing high performances anode active materials for SIBs.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108159"},"PeriodicalIF":7.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.fuproc.2024.108156
M. Kresta , D. Gurtner , L. Nohel , A. Hofmann , C. Pfeifer
Biomass gasification has increased due to its ability to provide high-temperature heat, making it promising for the decarbonisation of industrial processes. The economic and technical challenges of large-scale operations need to be addressed by focusing on small-sized gasifiers, while the use of low-grade biomass, is essential to increase the flexibility and sustainability of the plant. However, the utilisation of low-grade biomass is hindered by challenges stemming from variations in the particle distribution and shape, which significantly impact the fluidisation process and overall. In this research, the gasification of shredded municipal waste wood in a pilot-scale bubbling fluidised bed reactor was demonstrated, and the fluid-dynamics and gas production were assessed. The gasification process was yielding a gas with a lower heating value between 3.5 MJNm−3 and 3.9 MJNm−3 and a cold gas efficiency (CGE) of 46.4 %–48.6 %. Notably, these CGE values are consistent with pilot-scale setups, where CGE values above 50 % are typically not achievable because of poor insulation standards. The reactor's conical shape facilitated dynamic fluid regime transitions, ensuring efficient gas-solid interactions. This design allowed optimisation of fluidisation by accommodating particles of varying sizes throughout the reactor's height, thereby promoting efficient gasification suitable for industrial applications with diverse biomass feedstocks.
{"title":"Experimental study and characterisation of a novel two stage bubbling fluidised bed gasification process utilising municipal waste wood","authors":"M. Kresta , D. Gurtner , L. Nohel , A. Hofmann , C. Pfeifer","doi":"10.1016/j.fuproc.2024.108156","DOIUrl":"10.1016/j.fuproc.2024.108156","url":null,"abstract":"<div><div>Biomass gasification has increased due to its ability to provide high-temperature heat, making it promising for the decarbonisation of industrial processes. The economic and technical challenges of large-scale operations need to be addressed by focusing on small-sized gasifiers, while the use of low-grade biomass, is essential to increase the flexibility and sustainability of the plant. However, the utilisation of low-grade biomass is hindered by challenges stemming from variations in the particle distribution and shape, which significantly impact the fluidisation process and overall. In this research, the gasification of shredded municipal waste wood in a pilot-scale bubbling fluidised bed reactor was demonstrated, and the fluid-dynamics and gas production were assessed. The gasification process was yielding a gas with a lower heating value between 3.5<!--> <!-->MJNm<sup>−3</sup> and 3.9<!--> <!-->MJNm<sup>−3</sup> and a cold gas efficiency (CGE) of 46.4 %–48.6 %. Notably, these CGE values are consistent with pilot-scale setups, where CGE values above 50 % are typically not achievable because of poor insulation standards. The reactor's conical shape facilitated dynamic fluid regime transitions, ensuring efficient gas-solid interactions. This design allowed optimisation of fluidisation by accommodating particles of varying sizes throughout the reactor's height, thereby promoting efficient gasification suitable for industrial applications with diverse biomass feedstocks.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108156"},"PeriodicalIF":7.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.fuproc.2024.108162
Meixi Zhu, Yi Zhang
This study proposed an integrated intelligent control system in one municipal solid waste incineration power plant to improve the system's control accuracy, economic performance and environmental impact, including the intelligent combustion, intelligent denitrification, intelligent desulfurization and intelligent soot-blowing control subsystems. The precise detection and adjustment of the key operational parameters was achieved by integrating these modules into the existing distributed control system. A comparative analysis of the operation data between pre-optimization and post-optimization states was conducted to assess the changes in the key operational and economic parameters. The results indicate that the introduction of the intelligent control module can significantly improve the system stability and parameter control accuracy, thereby enhancing the economic efficiency of the waste incineration power plant and reducing the operation workload and the pollutants emissions. Specifically, the standard deviations of main steam flowrate and pressure decreased by 45.1 % and 60.7 %, respectively. Furthermore, the consumptions of the ammonia water and lime slurry were reduced by 38.2 % and 23.2 %, respectively, while the auxiliary power consumption rate declined by two percentage points, and the power generation per ton of waste increased by 4.2 %. These improvements not only strengthen the economic benefits but also effectively reduce the pollutants emissions.
{"title":"Intelligent control system and operational performance optimization of a municipal solid waste incineration power plant","authors":"Meixi Zhu, Yi Zhang","doi":"10.1016/j.fuproc.2024.108162","DOIUrl":"10.1016/j.fuproc.2024.108162","url":null,"abstract":"<div><div>This study proposed an integrated intelligent control system in one municipal solid waste incineration power plant to improve the system's control accuracy, economic performance and environmental impact, including the intelligent combustion, intelligent denitrification, intelligent desulfurization and intelligent soot-blowing control subsystems. The precise detection and adjustment of the key operational parameters was achieved by integrating these modules into the existing distributed control system. A comparative analysis of the operation data between pre-optimization and post-optimization states was conducted to assess the changes in the key operational and economic parameters. The results indicate that the introduction of the intelligent control module can significantly improve the system stability and parameter control accuracy, thereby enhancing the economic efficiency of the waste incineration power plant and reducing the operation workload and the pollutants emissions. Specifically, the standard deviations of main steam flowrate and pressure decreased by 45.1 % and 60.7 %, respectively. Furthermore, the consumptions of the ammonia water and lime slurry were reduced by 38.2 % and 23.2 %, respectively, while the auxiliary power consumption rate declined by two percentage points, and the power generation per ton of waste increased by 4.2 %. These improvements not only strengthen the economic benefits but also effectively reduce the pollutants emissions.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108162"},"PeriodicalIF":7.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.fuproc.2024.108160
Miaomiao Zhang, Jianbin Cao
Combining stratified lean-burn techniques with methanol offers a promising path to achieving high efficiency and low emissions in direct-injection spark-ignition (DISI) engines. This work compares the stratified and homogeneous-stratified lean-burn characteristics of methanol/gasoline fuels on a DISI engine. Combustion and emissions characteristics under two stratified lean-burn strategies were investigated. The results indicate that compared to double-injection stratified lean-burn (DISL), single-injection stratified lean-burn (SISL) leads to more timely combustion, which deteriorates more slowly as the excess air ratio increases. Using M20 fuel with SISL achieves a higher tolerance for air dilution. At the same excess air ratio, SISL results in higher maximum in-cylinder pressure and combustion temperature, but lower exhaust temperature. The economic zone for SISL occurs with M40 fuel at λ = 1.3–1.6, whereas DISL's economic zone is within λ = 1.1–1.3. When λ is below 1.5, SISL produces higher hydrocarbon (HC) emissions but lower nitrogen oxides (NOx) emissions. However, as λ exceeds 1.5, HC emissions from DISL increase sharply while NOx emissions decrease significantly. The particle concentration from SISL is at least an order of magnitude higher than that from DISL, with particle size distribution forming a unimodal curve centered around accumulation mode particles. Conversely, DISL exhibits a quasi-bimodal distribution.
{"title":"Comparative study on combustion and emission characteristics of methanol/gasoline blend fueled DISI engine under different stratified lean burn modes","authors":"Miaomiao Zhang, Jianbin Cao","doi":"10.1016/j.fuproc.2024.108160","DOIUrl":"10.1016/j.fuproc.2024.108160","url":null,"abstract":"<div><div>Combining stratified lean-burn techniques with methanol offers a promising path to achieving high efficiency and low emissions in direct-injection spark-ignition (DISI) engines. This work compares the stratified and homogeneous-stratified lean-burn characteristics of methanol/gasoline fuels on a DISI engine. Combustion and emissions characteristics under two stratified lean-burn strategies were investigated. The results indicate that compared to double-injection stratified lean-burn (DISL), single-injection stratified lean-burn (SISL) leads to more timely combustion, which deteriorates more slowly as the excess air ratio increases. Using M20 fuel with SISL achieves a higher tolerance for air dilution. At the same excess air ratio, SISL results in higher maximum in-cylinder pressure and combustion temperature, but lower exhaust temperature. The economic zone for SISL occurs with M40 fuel at λ = 1.3–1.6, whereas DISL's economic zone is within λ = 1.1–1.3. When λ is below 1.5, SISL produces higher hydrocarbon (HC) emissions but lower nitrogen oxides (NOx) emissions. However, as λ exceeds 1.5, HC emissions from DISL increase sharply while NOx emissions decrease significantly. The particle concentration from SISL is at least an order of magnitude higher than that from DISL, with particle size distribution forming a unimodal curve centered around accumulation mode particles. Conversely, DISL exhibits a quasi-bimodal distribution.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108160"},"PeriodicalIF":7.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.fuproc.2024.108151
Xi Cao, Changsheng Bu, Qijie Han, Xu Zhao, Guilin Piao
A macro-thermobalance (macro-TGA) was applied to investigate the steam co-gasification characteristics of the chars produced from Huainan coal (HN), two types of biomasses, sawdust (SD) and wheat straw (WS), and coal-biomass blends at 900–1200 °C under rapid heating conditions. The gasification reaction kinetics were determined by the homogeneous reaction model (VM), shrinking core model (SCM) and random pore model (RPM), and the optimal model was selected by deviation calculation. The results show that the char gasification reactivity increased with the increase of temperature. The promotion effect of biomass semi-coke on coal char mainly occurred in the stage when the carbon conversion rate was greater than 0.5, which is mainly attributed to the migration of active AAEMs to the surface of coal char to catalyze the gasification reaction in the later stage. However, with the increase in temperature, this promoting effect is weakened due to the increasing influence of mass transfer effects over chemical rate control, and increased volatilization of the inorganic species. The RPM model is suitable for describing the coal char gasification process, while the SCM was the model that best fitted the biomass semi-coke and coal/biomass blends, which elucidates the kinetic mechanisms governing the gasification process.
{"title":"Kinetic analysis and model evaluation for steam co-gasification of coal-biomass blended chars using macro-TGA","authors":"Xi Cao, Changsheng Bu, Qijie Han, Xu Zhao, Guilin Piao","doi":"10.1016/j.fuproc.2024.108151","DOIUrl":"10.1016/j.fuproc.2024.108151","url":null,"abstract":"<div><div>A macro-thermobalance (macro-TGA) was applied to investigate the steam co-gasification characteristics of the chars produced from Huainan coal (HN), two types of biomasses, sawdust (SD) and wheat straw (WS), and coal-biomass blends at 900–1200 °C under rapid heating conditions. The gasification reaction kinetics were determined by the homogeneous reaction model (VM), shrinking core model (SCM) and random pore model (RPM), and the optimal model was selected by deviation calculation. The results show that the char gasification reactivity increased with the increase of temperature. The promotion effect of biomass semi-coke on coal char mainly occurred in the stage when the carbon conversion rate was greater than 0.5, which is mainly attributed to the migration of active AAEMs to the surface of coal char to catalyze the gasification reaction in the later stage. However, with the increase in temperature, this promoting effect is weakened due to the increasing influence of mass transfer effects over chemical rate control, and increased volatilization of the inorganic species. The RPM model is suitable for describing the coal char gasification process, while the SCM was the model that best fitted the biomass semi-coke and coal/biomass blends, which elucidates the kinetic mechanisms governing the gasification process.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108151"},"PeriodicalIF":7.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.fuproc.2024.108161
Babatunde Oladipo, Sisipho Qasana, Sibabalwe C. Zini, Ntokozo Menemene, Tunde V. Ojumu
This work examined the potency of carob (Ceratonia siliqua) pod as a heterogeneous base catalyst for converting waste cooking oil (WCO) into biodiesel via a microwave irradiation system. The optimal calcination for the catalyst synthesis was achieved at 500 °C for 4 h. Various analytical techniques were employed to investigate the properties of the developed catalyst. The results indicate that the catalyst primarily consists of mesoporous particles abundant in potassium, with medium to strong basic sites, which are crucial for its catalytic function. WCO underwent pretreatment with H2SO4 before being converted to biodiesel. Optimum conditions for the biodiesel production were a methanol-to-WCO molar ratio of 9.87, 1.00 wt% catalyst dosage, 3.03 min reaction time, 450 rpm stirring speed, and 600 W microwave power, yielding 98.20 ± 0.81 wt% biodiesel. The low specific energy consumption value of 0.91 kWh/kg and specific CO2 emission of 0.73 kg/kg of biodiesel suggest the effective utilization of microwave energy in driving the transesterification reaction and in promoting a reduction in carbon footprint, respectively. The synthesized catalyst remained effective up to the 5th production cycle and the biodiesel produced met established specifications. The results of this study show that carob pod is a suitable candidate to be included in the database of biobased catalysts currently being developed for heterogeneous catalysis of cost-effective biodiesel production.
{"title":"Microwave-assisted biodiesel synthesis from waste cooking oil: Exploring the potential of carob pod-derived solid base catalyst","authors":"Babatunde Oladipo, Sisipho Qasana, Sibabalwe C. Zini, Ntokozo Menemene, Tunde V. Ojumu","doi":"10.1016/j.fuproc.2024.108161","DOIUrl":"10.1016/j.fuproc.2024.108161","url":null,"abstract":"<div><div>This work examined the potency of carob (<em>Ceratonia siliqua</em>) pod as a heterogeneous base catalyst for converting waste cooking oil (WCO) into biodiesel via a microwave irradiation system. The optimal calcination for the catalyst synthesis was achieved at 500 °C for 4 h. Various analytical techniques were employed to investigate the properties of the developed catalyst. The results indicate that the catalyst primarily consists of mesoporous particles abundant in potassium, with medium to strong basic sites, which are crucial for its catalytic function. WCO underwent pretreatment with H<sub>2</sub>SO<sub>4</sub> before being converted to biodiesel. Optimum conditions for the biodiesel production were a methanol-to-WCO molar ratio of 9.87, 1.00 wt% catalyst dosage, 3.03 min reaction time, 450 rpm stirring speed, and 600 W microwave power, yielding 98.20 ± 0.81 wt% biodiesel. The low specific energy consumption value of 0.91 kWh/kg and specific CO<sub>2</sub> emission of 0.73 kg/kg of biodiesel suggest the effective utilization of microwave energy in driving the transesterification reaction and in promoting a reduction in carbon footprint, respectively. The synthesized catalyst remained effective up to the 5th production cycle and the biodiesel produced met established specifications. The results of this study show that carob pod is a suitable candidate to be included in the database of biobased catalysts currently being developed for heterogeneous catalysis of cost-effective biodiesel production.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108161"},"PeriodicalIF":7.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.fuproc.2024.108155
Ahmed Aboalhamayie , Nadeem Ahmad , Yang Zhang , Mohsen Ghamari , Numan Salah , Jameel Alshahrani
This study presents an experimental evaluation of the thermophysical properties of colloidal suspensions of carbon-rich fly ash microparticles (CFA) and single-walled carbon nanotubes (SWCNT) in Jet-A fuel, focusing on their impact on evaporation and burning rates. The research explores the effects of these carbon-based additives on key parameters such as thermal conductivity, viscosity, surface tension, evaporation rate, and combustion behavior. Utilizing a hybrid preparation method combining sonication and surfactants, stable colloidal suspensions were prepared for experimental analysis. The results demonstrate that both CFA and SWCNT enhance the thermal conductivity of Jet-A fuel, with SWCNT achieving a notable 13 % increase at a 1 wt% concentration, while CFA achieves an 8 % increase at a 3 wt% concentration. The study also reveals distinct trends in viscosity and surface tension, with SWCNT causing a significant non-linear increase in viscosity compared to CFA. In combustion experiments, the evaporation rates of CFA and SWCNT suspensions showed considerable improvement, with CFA demonstrating up to an 87 % increase at 1 wt% concentration. The study concludes with an analysis of ignition delay, highlighting the superior performance of SWCNT in reducing ignition time due to their high thermal conductivity and the presence of iron nanoparticles on their surface.
{"title":"An experimental evaluation of thermophysical properties of colloidal suspension of carbon-rich fly ash microparticles and single-walled carbon nanotubes in Jet-A fuel and its impact on evaporation and burning rate","authors":"Ahmed Aboalhamayie , Nadeem Ahmad , Yang Zhang , Mohsen Ghamari , Numan Salah , Jameel Alshahrani","doi":"10.1016/j.fuproc.2024.108155","DOIUrl":"10.1016/j.fuproc.2024.108155","url":null,"abstract":"<div><div>This study presents an experimental evaluation of the thermophysical properties of colloidal suspensions of carbon-rich fly ash microparticles (CFA) and single-walled carbon nanotubes (SWCNT) in Jet-A fuel, focusing on their impact on evaporation and burning rates. The research explores the effects of these carbon-based additives on key parameters such as thermal conductivity, viscosity, surface tension, evaporation rate, and combustion behavior. Utilizing a hybrid preparation method combining sonication and surfactants, stable colloidal suspensions were prepared for experimental analysis. The results demonstrate that both CFA and SWCNT enhance the thermal conductivity of Jet-A fuel, with SWCNT achieving a notable 13 % increase at a 1 wt% concentration, while CFA achieves an 8 % increase at a 3 wt% concentration. The study also reveals distinct trends in viscosity and surface tension, with SWCNT causing a significant non-linear increase in viscosity compared to CFA. In combustion experiments, the evaporation rates of CFA and SWCNT suspensions showed considerable improvement, with CFA demonstrating up to an 87 % increase at 1 wt% concentration. The study concludes with an analysis of ignition delay, highlighting the superior performance of SWCNT in reducing ignition time due to their high thermal conductivity and the presence of iron nanoparticles on their surface.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108155"},"PeriodicalIF":7.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.fuproc.2024.108158
Aleksandra Modzelewska , Mateusz Jackowski , Panagiotis Boutikos , Magdalena Lech , Maciej Grabowski , Krystian Krochmalny , María González Martínez , Christian Aragón-Briceño , Amit Arora , Hao Luo , Luca Fiori , Qingang Xiong , Muhammad Yousaf Arshad , Anna Trusek , Halina Pawlak-Kruczek , Lukasz Niedzwiecki
A significant increase in the use of hydrogen, expected to reach between 667 and 4000 TWh, is forecasted for the whole EU in 2050. Electrolysis is believed to be a “silver bullet” due to its synergy with the needs of the grid. However, biohydrogen generation could be complimentary to electrolysis since it does not depend on electricity prices. This review presents a comprehensive picture of the landscape in biohydrogen production, showing state-of-the-art research on different biohydrogen production processes and highlighting potential problems and shortcomings for different processes, including microbial-based production and thermal processes. The work shows that “colour coding” used nowadays is insufficient in terms of providing accurate information regarding the sustainability of particular biohydrogen production technologies. Instead, LCA can provide substantial information for each investigated process. However, there is a need for a wider scope of LCA studies since currently published studies present a syndrome of “carbon tunnel vision”, often ignoring impacts other than global warming. Moreover, studies often tend to exclude the impact of capital goods production, which might provide an incomplete overview of such technologies. Moreover, it should not be overlooked that biohydrogen is capable of achieving negative values of CO2 emissions if CCS is implemented.
{"title":"Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact","authors":"Aleksandra Modzelewska , Mateusz Jackowski , Panagiotis Boutikos , Magdalena Lech , Maciej Grabowski , Krystian Krochmalny , María González Martínez , Christian Aragón-Briceño , Amit Arora , Hao Luo , Luca Fiori , Qingang Xiong , Muhammad Yousaf Arshad , Anna Trusek , Halina Pawlak-Kruczek , Lukasz Niedzwiecki","doi":"10.1016/j.fuproc.2024.108158","DOIUrl":"10.1016/j.fuproc.2024.108158","url":null,"abstract":"<div><div>A significant increase in the use of hydrogen, expected to reach between 667 and 4000 TWh, is forecasted for the whole EU in 2050. Electrolysis is believed to be a “silver bullet” due to its synergy with the needs of the grid. However, biohydrogen generation could be complimentary to electrolysis since it does not depend on electricity prices. This review presents a comprehensive picture of the landscape in biohydrogen production, showing state-of-the-art research on different biohydrogen production processes and highlighting potential problems and shortcomings for different processes, including microbial-based production and thermal processes. The work shows that “colour coding” used nowadays is insufficient in terms of providing accurate information regarding the sustainability of particular biohydrogen production technologies. Instead, LCA can provide substantial information for each investigated process. However, there is a need for a wider scope of LCA studies since currently published studies present a syndrome of “carbon tunnel vision”, often ignoring impacts other than global warming. Moreover, studies often tend to exclude the impact of capital goods production, which might provide an incomplete overview of such technologies. Moreover, it should not be overlooked that biohydrogen is capable of achieving negative values of CO<sub>2</sub> emissions if CCS is implemented.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108158"},"PeriodicalIF":7.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.fuproc.2024.108157
Xin Li, Lele Cao, Dongdong Jia, Yongyue Sun
To investigate highly performance catalysts for the direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol, a Co0.02/Ce0.7Zr0.3O2 ternary metal solid solution nanoparticle catalyst was synthesized, demonstrating superior performance with a DMC yield of 3.86 mmol g−1 and selectivity of 100 % at 7 MPa and 140 °C. A series of characterizations further validated the successful incorporation of cobalt and zirconium into the crystal lattice of CeO2, resulting in an increased number of acid-base sites on its surface and a rise in oxygen vacancy content from 10.1 % to 28.7 %. The density functional theory (DFT) calculation results further corroborated the experimental findings, indicating that the doping of cobalt and zirconium ions significantly reduced the formation energy of oxygen vacancies on the catalyst surface from 2.53 to −1.38 eV, while concurrently decreasing the adsorption energy of CO2 from −0.33 to −1.74 eV. Additionally, charge calculation results revealed that oxygen vacancies functioned as Lewis acid sites, whereas lattice oxygen atoms served as Lewis base sites, facilitating the cooperative activation of CO2. The results may provide a new approach for designing and improving CeO2-based catalysts for CO2 activation.
{"title":"Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Co-Ce-Zr ternary metal solid solution","authors":"Xin Li, Lele Cao, Dongdong Jia, Yongyue Sun","doi":"10.1016/j.fuproc.2024.108157","DOIUrl":"10.1016/j.fuproc.2024.108157","url":null,"abstract":"<div><div>To investigate highly performance catalysts for the direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO<sub>2</sub>) and methanol, a Co<sub>0.02</sub>/Ce<sub>0.7</sub>Zr<sub>0.3</sub>O<sub>2</sub> ternary metal solid solution nanoparticle catalyst was synthesized, demonstrating superior performance with a DMC yield of 3.86 mmol g<sup>−1</sup> and selectivity of 100 % at 7 MPa and 140 °C. A series of characterizations further validated the successful incorporation of cobalt and zirconium into the crystal lattice of CeO<sub>2</sub>, resulting in an increased number of acid-base sites on its surface and a rise in oxygen vacancy content from 10.1 % to 28.7 %. The density functional theory (DFT) calculation results further corroborated the experimental findings, indicating that the doping of cobalt and zirconium ions significantly reduced the formation energy of oxygen vacancies on the catalyst surface from 2.53 to −1.38 eV, while concurrently decreasing the adsorption energy of CO<sub>2</sub> from −0.33 to −1.74 eV. Additionally, charge calculation results revealed that oxygen vacancies functioned as Lewis acid sites, whereas lattice oxygen atoms served as Lewis base sites, facilitating the cooperative activation of CO<sub>2</sub>. The results may provide a new approach for designing and improving CeO<sub>2</sub>-based catalysts for CO<sub>2</sub> activation.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108157"},"PeriodicalIF":7.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}