<p>Catheter ablation has been validated as an effective intervention for atrial fibrillation (AF) patients, significantly reducing recurrence rates, improving prognoses, and enhancing life quality.<span><sup>1-3</sup></span> However, conventional methods employing radiofrequency or cryothermal energy suffer from a lack of tissue specificity, potentially leading to complications such as pulmonary vein stenosis, atrioesophageal fistula, and hemidiaphragmatic paralysis.<span><sup>2, 3</sup></span> Pulsed field ablation (PFA) has recently emerged as a promising alternative, utilizing the microsecond-scale, high-voltage electrical fields to induce irreversible electroporation and cell membrane destabilization, culminating in cellular necrosis.<span><sup>4, 5</sup></span> Its superior tissue selectivity minimizes damage to non-target tissues during ablation, positioning PFA as an ideal modality for cardiac ablation.</p><p>Preclinical experiments utilizing animal models have underscored the potential of PFA for achieving durable pulmonary vein isolation (PVI),<span><sup>6, 7</sup></span> highlighting the method's capability to form comprehensive transmural lesions devoid of adverse effects like pulmonary vein ostia stenosis or esophageal damage.<span><sup>8, 9</sup></span> Notably, PFA's application has shown efficacy in permanently neutralizing the atrial ganglion plexus without compromising atrial myocardium integrity or triggering inflammatory responses and fibrosis.<span><sup>7-9</sup></span></p><p>In 2018, Reddy and colleagues<span><sup>10</sup></span> pioneered the application of PFA for the clinical management of paroxysmal AF Their groundbreaking work revealed that an average of 3.26 ablations was sufficient to achieve complete PVI with an operation duration of approximately 67 ± 10.5 min. The procedure was characterized by minimal chest and diaphragmatic sensations, yet remarkably, it resulted in no complications. Follow-up studies involving 81 patients undergoing mono-phase and bi-phase PFA demonstrated 100% acute isolation of pulmonary veins, with the procedure taking an average of 92.2 ± 27.4 min and the ablation itself 13.1 ± 7.6 min.<span><sup>11</sup></span> Given the pivotal role of pulmonary vein reconnection in ablation recurrence, the stability of PVI post-procedure emerges as crucial. Notably, advancements in PFA waveform technology have significantly increased PVI durability from 18% to a full 100% at the 3-month benchmark. Aside from a single incident of cardiac tamponade related to the operation, no severe complications were reported within the first 120 days post-ablation. At the one-year follow-up mark, the rate of sinus rhythm maintenance impressively stood at 87.4%. These findings collectively affirm the efficacy of PFA in achieving swift and durable PVI, primarily through selective myocardial tissue targeting, while maintaining a commendable safety profile.</p><p>Nevertheless, the inherent challenge of high recurrence rates i
{"title":"Pulse field ablation for atrial fibrillation: Is the curtain about to rise?","authors":"Junpeng Liu, Min Dong, Jiefu Yang","doi":"10.1002/agm2.12326","DOIUrl":"https://doi.org/10.1002/agm2.12326","url":null,"abstract":"<p>Catheter ablation has been validated as an effective intervention for atrial fibrillation (AF) patients, significantly reducing recurrence rates, improving prognoses, and enhancing life quality.<span><sup>1-3</sup></span> However, conventional methods employing radiofrequency or cryothermal energy suffer from a lack of tissue specificity, potentially leading to complications such as pulmonary vein stenosis, atrioesophageal fistula, and hemidiaphragmatic paralysis.<span><sup>2, 3</sup></span> Pulsed field ablation (PFA) has recently emerged as a promising alternative, utilizing the microsecond-scale, high-voltage electrical fields to induce irreversible electroporation and cell membrane destabilization, culminating in cellular necrosis.<span><sup>4, 5</sup></span> Its superior tissue selectivity minimizes damage to non-target tissues during ablation, positioning PFA as an ideal modality for cardiac ablation.</p><p>Preclinical experiments utilizing animal models have underscored the potential of PFA for achieving durable pulmonary vein isolation (PVI),<span><sup>6, 7</sup></span> highlighting the method's capability to form comprehensive transmural lesions devoid of adverse effects like pulmonary vein ostia stenosis or esophageal damage.<span><sup>8, 9</sup></span> Notably, PFA's application has shown efficacy in permanently neutralizing the atrial ganglion plexus without compromising atrial myocardium integrity or triggering inflammatory responses and fibrosis.<span><sup>7-9</sup></span></p><p>In 2018, Reddy and colleagues<span><sup>10</sup></span> pioneered the application of PFA for the clinical management of paroxysmal AF Their groundbreaking work revealed that an average of 3.26 ablations was sufficient to achieve complete PVI with an operation duration of approximately 67 ± 10.5 min. The procedure was characterized by minimal chest and diaphragmatic sensations, yet remarkably, it resulted in no complications. Follow-up studies involving 81 patients undergoing mono-phase and bi-phase PFA demonstrated 100% acute isolation of pulmonary veins, with the procedure taking an average of 92.2 ± 27.4 min and the ablation itself 13.1 ± 7.6 min.<span><sup>11</sup></span> Given the pivotal role of pulmonary vein reconnection in ablation recurrence, the stability of PVI post-procedure emerges as crucial. Notably, advancements in PFA waveform technology have significantly increased PVI durability from 18% to a full 100% at the 3-month benchmark. Aside from a single incident of cardiac tamponade related to the operation, no severe complications were reported within the first 120 days post-ablation. At the one-year follow-up mark, the rate of sinus rhythm maintenance impressively stood at 87.4%. These findings collectively affirm the efficacy of PFA in achieving swift and durable PVI, primarily through selective myocardial tissue targeting, while maintaining a commendable safety profile.</p><p>Nevertheless, the inherent challenge of high recurrence rates i","PeriodicalId":32862,"journal":{"name":"Aging Medicine","volume":"7 3","pages":"287-291"},"PeriodicalIF":2.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agm2.12326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}