A. Chekuryaev, M. Sychov, S. Perevislov, Vladimir N. Ulanov
As an example of the implementation of digital materials science approaches based on statistical processing of electron micrographs with the analysis of fractal parameters, the digital characteristics of microstructure of diamond–silicon carbide ceramic composite material are calculated. The lacunarity parameter characterizing the non-uniform distribution of filler particles in the matrix is found. Based on lacunarity values calculated at different scales, scale invariance parameter characterizing the dependence of lacunarity on the scale is evaluated. Voronoi entropy characterizing the structure based on the quantity of information is also calculated and used to determine the average number of neighboring particles and average distance between them. For the composites with high mechanical properties, the number of nearest neighbors approaches six, indicating an almost closest packing.
{"title":"Digital Characteristics of Microstructure of Diamond—Silicon Carbide Composites","authors":"A. Chekuryaev, M. Sychov, S. Perevislov, Vladimir N. Ulanov","doi":"10.3390/ceramics6020063","DOIUrl":"https://doi.org/10.3390/ceramics6020063","url":null,"abstract":"As an example of the implementation of digital materials science approaches based on statistical processing of electron micrographs with the analysis of fractal parameters, the digital characteristics of microstructure of diamond–silicon carbide ceramic composite material are calculated. The lacunarity parameter characterizing the non-uniform distribution of filler particles in the matrix is found. Based on lacunarity values calculated at different scales, scale invariance parameter characterizing the dependence of lacunarity on the scale is evaluated. Voronoi entropy characterizing the structure based on the quantity of information is also calculated and used to determine the average number of neighboring particles and average distance between them. For the composites with high mechanical properties, the number of nearest neighbors approaches six, indicating an almost closest packing.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43894327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Kerber, Magda Hollenbach, M. Neumann, T. Wetzig, T. Schemmel, H. Jansen, C. Aneziris
The objective of this study was to investigate the variability of flexural strength for flame-sprayed ceramic components and to determine which two-parametric distribution function was best suited to represent the experimental data. Moreover, the influence of the number of tested specimens was addressed. The stochastic nature of the flame-spraying process causes a pronounced variation in the properties of potential components, making it crucial to characterise the fracture statistics. To achieve this, this study used two large data sets consisting of 1000 flame-sprayed specimens each. In addition to the standard Weibull approach, the study examined the quality of representing the experimental data using other two-parametric distribution functions (Normal, Log-Normal, and Gamma). To evaluate the accuracy of the distribution functions and their characteristic parameters, random subsamples were generated by resampling of the experimental data, and the results were assessed based on the sampling size. It was found that the experimental data were best represented by either the Weibull or Gamma distribution, and the quality of the fit was correlated with the number of positive and negative outliers. The Weibull fit was more sensitive to positive outliers, whereas the Gamma fit was more sensitive to negative outliers.
{"title":"On the Statistics of Mechanical Failure in Flame-Sprayed Self-Supporting Components","authors":"Florian Kerber, Magda Hollenbach, M. Neumann, T. Wetzig, T. Schemmel, H. Jansen, C. Aneziris","doi":"10.3390/ceramics6020062","DOIUrl":"https://doi.org/10.3390/ceramics6020062","url":null,"abstract":"The objective of this study was to investigate the variability of flexural strength for flame-sprayed ceramic components and to determine which two-parametric distribution function was best suited to represent the experimental data. Moreover, the influence of the number of tested specimens was addressed. The stochastic nature of the flame-spraying process causes a pronounced variation in the properties of potential components, making it crucial to characterise the fracture statistics. To achieve this, this study used two large data sets consisting of 1000 flame-sprayed specimens each. In addition to the standard Weibull approach, the study examined the quality of representing the experimental data using other two-parametric distribution functions (Normal, Log-Normal, and Gamma). To evaluate the accuracy of the distribution functions and their characteristic parameters, random subsamples were generated by resampling of the experimental data, and the results were assessed based on the sampling size. It was found that the experimental data were best represented by either the Weibull or Gamma distribution, and the quality of the fit was correlated with the number of positive and negative outliers. The Weibull fit was more sensitive to positive outliers, whereas the Gamma fit was more sensitive to negative outliers.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46949056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monolithic zirconia and hybrid ceramic restorations have been widely used in the last decade for both anterior and posterior dental restorations. However, their use lacks sufficient scientific evidence in most cases, as the expeditious manufacturing of these versatile ceramic materials exceeds the limits of in vitro and/or in vivo validation. This study aimed to evaluate and compare the mechanical properties (flexural strength, fracture toughness, Vickers hardness, and brittleness index) of three CAD-CAM monolithic multilayer zirconia ceramics (GNX—Ceramill Zolid® Gen-X, ZCP—IPS e.max® ZirCAD, and UPC—Upcera® Esthetic Explore Prime) and one CAD-CAM monolithic multilayer polymer-infiltrated hybrid ceramic (ENM—Vita® Enamic) with a CAD-CAM monolithic lithium disilicate ceramic as a control (EMX —IPS e.max® CAD). A total of 160 discs (GNX = 32, ZCP = 32, UPC = 32, ENM = 32, and EMX = 32) were cut, polished, and fully sintered (except for the ENM). Half of the samples for each group were subjected to hydrothermal aging. Descriptive analysis and ANOVA tests were used to compare the groups. The zirconia groups showed significantly higher mechanical properties than the EMX group for both the non-aged and aged samples (p < 0.05). The ENM group showed the lowest brittleness index, while EMX showed the highest. The mechanical properties of monolithic multilayer zirconia ceramics were generally better than those of monolithic multilayer polymer-infiltrated hybrid ceramic and lithium disilicate ceramic. All groups showed, to some extent, a change in their mechanical properties after aging, with the ENM being the most affected.
{"title":"Mechanical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative In Vitro Study","authors":"S. Almohammed, Belal Alshorman, L. Abu-Naba’a","doi":"10.3390/ceramics6020061","DOIUrl":"https://doi.org/10.3390/ceramics6020061","url":null,"abstract":"Monolithic zirconia and hybrid ceramic restorations have been widely used in the last decade for both anterior and posterior dental restorations. However, their use lacks sufficient scientific evidence in most cases, as the expeditious manufacturing of these versatile ceramic materials exceeds the limits of in vitro and/or in vivo validation. This study aimed to evaluate and compare the mechanical properties (flexural strength, fracture toughness, Vickers hardness, and brittleness index) of three CAD-CAM monolithic multilayer zirconia ceramics (GNX—Ceramill Zolid® Gen-X, ZCP—IPS e.max® ZirCAD, and UPC—Upcera® Esthetic Explore Prime) and one CAD-CAM monolithic multilayer polymer-infiltrated hybrid ceramic (ENM—Vita® Enamic) with a CAD-CAM monolithic lithium disilicate ceramic as a control (EMX —IPS e.max® CAD). A total of 160 discs (GNX = 32, ZCP = 32, UPC = 32, ENM = 32, and EMX = 32) were cut, polished, and fully sintered (except for the ENM). Half of the samples for each group were subjected to hydrothermal aging. Descriptive analysis and ANOVA tests were used to compare the groups. The zirconia groups showed significantly higher mechanical properties than the EMX group for both the non-aged and aged samples (p < 0.05). The ENM group showed the lowest brittleness index, while EMX showed the highest. The mechanical properties of monolithic multilayer zirconia ceramics were generally better than those of monolithic multilayer polymer-infiltrated hybrid ceramic and lithium disilicate ceramic. All groups showed, to some extent, a change in their mechanical properties after aging, with the ENM being the most affected.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41843516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Zhuravlev, L. Ermakova, R. Samigullina, A. Ermakov
A study into the use of the Solution Combustion Synthesis (SCS) method with glycine and citric acid to synthesize fine powders of multicomponent solid solutions of oxides of rare earth (RE) metals (Nd, Sm, Eu, Gd, Dy, and Ho) for the preparation of ceramic materials is presented. Synthesis parameters of 4-, 5-, and 6-component entropy-stabilized rare earth oxides (REOs) with a C-type cubic structure are determined. The stability of entropy-stabilized oxides (ESOs) with a C-type structure is shown to depend not only on heavy RE metal quantity, but also on the rate of heating/cooling of the samples. The temperature of the polymorphic transformation of C-type REO structures into B-type (monoclinic) or H-type (hexagonal) structural variants can be described by the equation T (°C) = 0.0214Vcr2 − 62.737Vcr + 46390, where Vcr is the unit cell volume of an oxide with a C-type structure regardless of the number of cations in the solid solution. High-temperature thermal analysis up to 1250 °C revealed that dispersed powders, which contain impurities of basic carbonates along with hydroxocarbonates of RE metals and X-ray amorphous carbon formed during SCS reactions, also react with air moisture during storage. The influence of the ESO phase and cationic composition on the morphology, porosity and microhardness of ceramics was studied. Higher-entropy oxides form samples with higher density, microhardness and a smaller size of particle agglomerates.
{"title":"Preparation and Mechanical Characteristics of Multicomponent Ceramic Solid Solutions of Rare Earth Metal Oxides Synthesized by the SCS Method","authors":"V. Zhuravlev, L. Ermakova, R. Samigullina, A. Ermakov","doi":"10.3390/ceramics6020060","DOIUrl":"https://doi.org/10.3390/ceramics6020060","url":null,"abstract":"A study into the use of the Solution Combustion Synthesis (SCS) method with glycine and citric acid to synthesize fine powders of multicomponent solid solutions of oxides of rare earth (RE) metals (Nd, Sm, Eu, Gd, Dy, and Ho) for the preparation of ceramic materials is presented. Synthesis parameters of 4-, 5-, and 6-component entropy-stabilized rare earth oxides (REOs) with a C-type cubic structure are determined. The stability of entropy-stabilized oxides (ESOs) with a C-type structure is shown to depend not only on heavy RE metal quantity, but also on the rate of heating/cooling of the samples. The temperature of the polymorphic transformation of C-type REO structures into B-type (monoclinic) or H-type (hexagonal) structural variants can be described by the equation T (°C) = 0.0214Vcr2 − 62.737Vcr + 46390, where Vcr is the unit cell volume of an oxide with a C-type structure regardless of the number of cations in the solid solution. High-temperature thermal analysis up to 1250 °C revealed that dispersed powders, which contain impurities of basic carbonates along with hydroxocarbonates of RE metals and X-ray amorphous carbon formed during SCS reactions, also react with air moisture during storage. The influence of the ESO phase and cationic composition on the morphology, porosity and microhardness of ceramics was studied. Higher-entropy oxides form samples with higher density, microhardness and a smaller size of particle agglomerates.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47965867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus contributing to significantly improving the quality of life of rehabilitated patients. Calcium phosphates, bioactive glasses and glass-ceramics are mostly used in tissue engineering applications where bone regeneration is the major goal, while stronger but almost inert biocompatible ceramics such as alumina and alumina/zirconia composites are preferable in joint prostheses. Over the last few years, non-oxide ceramics—primarily silicon nitride, silicon carbide and diamond-like coatings—have been proposed as new options in orthopaedics in order to overcome some tribological and biomechanical limitations of existing commercial products, yielding very promising results. This review is specifically addressed to these relatively less popular, non-oxide biomaterials for bone applications, highlighting their potential advantages and critical aspects deserving further research in the future. Special focus is also given to the use of non-oxide ceramics in the manufacturing of the acetabular cup, which is the most critical component of hip joint prostheses.
{"title":"Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis","authors":"Consiglio M. Paione, F. Baino","doi":"10.3390/ceramics6020059","DOIUrl":"https://doi.org/10.3390/ceramics6020059","url":null,"abstract":"A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus contributing to significantly improving the quality of life of rehabilitated patients. Calcium phosphates, bioactive glasses and glass-ceramics are mostly used in tissue engineering applications where bone regeneration is the major goal, while stronger but almost inert biocompatible ceramics such as alumina and alumina/zirconia composites are preferable in joint prostheses. Over the last few years, non-oxide ceramics—primarily silicon nitride, silicon carbide and diamond-like coatings—have been proposed as new options in orthopaedics in order to overcome some tribological and biomechanical limitations of existing commercial products, yielding very promising results. This review is specifically addressed to these relatively less popular, non-oxide biomaterials for bone applications, highlighting their potential advantages and critical aspects deserving further research in the future. Special focus is also given to the use of non-oxide ceramics in the manufacturing of the acetabular cup, which is the most critical component of hip joint prostheses.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49407790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Á. Tóth, Nóra Mike-Kaszás, Gábor Bartus, H. Hargitai, Á. Szabó
Long-term sustainability and decreasing amount of fossil oil reserves require a partial or complete transformation of traditional lubricating oils. The use of silica nanoparticles as a lubricant additive has a huge tribological potential, which has already been discussed in numerous articles. Nanosized silica shows excellent results in reducing friction and preventing wear, but they quickly aggregate and settle after homogenization in oils. For long-term stable dispersion of lubricating oils containing nanoceramics, the surface of the particles was modified with ethyl oleate. The surface modification, the ethyl oleate applied to the surface of the nanosilica, was confirmed by Fourier-transform infrared spectroscopy. Group III based lubricating oil was prepared using the surface-modified nanosilica. The particle size of the nanoparticles in the lubricating oil dispersion was examined by dynamic light scattering. Oscillating tribometer measurements were performed with different concentrations (0.1; 0.2; 0.3 wt%) of nanolubricants. Based on the tribological results, the friction coefficient of the surface-modified nanosilica is more stable, its wear is 15% lower compared to the reference. There is no significant change in the magnitude of the friction coefficient. It can be concluded that the ethyl oleate surface modification method may be suitable for tribological investigations of the acting mechanisms of nanoparticles.
{"title":"Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests","authors":"Á. Tóth, Nóra Mike-Kaszás, Gábor Bartus, H. Hargitai, Á. Szabó","doi":"10.3390/ceramics6020058","DOIUrl":"https://doi.org/10.3390/ceramics6020058","url":null,"abstract":"Long-term sustainability and decreasing amount of fossil oil reserves require a partial or complete transformation of traditional lubricating oils. The use of silica nanoparticles as a lubricant additive has a huge tribological potential, which has already been discussed in numerous articles. Nanosized silica shows excellent results in reducing friction and preventing wear, but they quickly aggregate and settle after homogenization in oils. For long-term stable dispersion of lubricating oils containing nanoceramics, the surface of the particles was modified with ethyl oleate. The surface modification, the ethyl oleate applied to the surface of the nanosilica, was confirmed by Fourier-transform infrared spectroscopy. Group III based lubricating oil was prepared using the surface-modified nanosilica. The particle size of the nanoparticles in the lubricating oil dispersion was examined by dynamic light scattering. Oscillating tribometer measurements were performed with different concentrations (0.1; 0.2; 0.3 wt%) of nanolubricants. Based on the tribological results, the friction coefficient of the surface-modified nanosilica is more stable, its wear is 15% lower compared to the reference. There is no significant change in the magnitude of the friction coefficient. It can be concluded that the ethyl oleate surface modification method may be suitable for tribological investigations of the acting mechanisms of nanoparticles.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48643655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rock-salt ordered A2CuWO6 (A = Sr, Ba) with I4/m space group and disordered SrCu0.5M0.5O3−δ (M = Ta, Nb) with Pm3m space group perovskites were successfully obtained via a solid-state reaction route. Heat treatment of Ba2CuWO6 over 900 °C in air leads to phase decomposition to the barium tungstate and copper oxide. Thermogravimetric measurements reveal the strong stoichiometric oxygen content and specific oxygen capacity (ΔWo) exceeding 2.5% for Ba2CuWO6. At the same time, oxygen content reveals Cu3+ content in SrCu0.5Ta0.5O3−δ. Under the following reoxidation of Ba2CuWO6, step-like behavior in weight changes was observed, corresponding to possible Cu+ ion formation at 900 °C; in contrast, no similar effect was detected for M5+ cations. The yellow color of Ba2CuWO6 enables to measure the band gap 2.59 eV. SrCu0.5Ta0.5O3−δ due to high oxygen valance concentration has a low thermal conductivity 1.28 W·m−1·K−1 in the temperature range 25–400 °C.
{"title":"Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations","authors":"R. Shishkin, A. Suntsov, M. O. Kalinkin","doi":"10.3390/ceramics6020057","DOIUrl":"https://doi.org/10.3390/ceramics6020057","url":null,"abstract":"The rock-salt ordered A2CuWO6 (A = Sr, Ba) with I4/m space group and disordered SrCu0.5M0.5O3−δ (M = Ta, Nb) with Pm3m space group perovskites were successfully obtained via a solid-state reaction route. Heat treatment of Ba2CuWO6 over 900 °C in air leads to phase decomposition to the barium tungstate and copper oxide. Thermogravimetric measurements reveal the strong stoichiometric oxygen content and specific oxygen capacity (ΔWo) exceeding 2.5% for Ba2CuWO6. At the same time, oxygen content reveals Cu3+ content in SrCu0.5Ta0.5O3−δ. Under the following reoxidation of Ba2CuWO6, step-like behavior in weight changes was observed, corresponding to possible Cu+ ion formation at 900 °C; in contrast, no similar effect was detected for M5+ cations. The yellow color of Ba2CuWO6 enables to measure the band gap 2.59 eV. SrCu0.5Ta0.5O3−δ due to high oxygen valance concentration has a low thermal conductivity 1.28 W·m−1·K−1 in the temperature range 25–400 °C.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46720166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Gorshkov, E. Baldin, D. Stolbov, Viktor Rassulov, O. Karyagina, A. Shlyakhtina
Tm2(Ti2−xTmx)O7−x/2 (x = 0, 0.1, 0.18, 0.28, 0.74) solid electrolytes have been investigated as potential electrolyte materials for solid oxygen fuel cells (SOFCs), operating in the medium temperature range (600–700 °C). The design of new oxygen-conducting materials is of importance for their possible utilization in the solid oxide fuel cells. The oxygen–ion conductivity of the Tm2(Ti2−xTmx)O7−x/2 (x = 0, 0.1, 0.18, 0.28, 0.74) “stuffed” pyrochlores ceramics was investigated by electrochemical impedance spectroscopy (two-probe AC) in dry and wet air. The synthesis of precursors via co-precipitation and the precipitate decomposition temperature have been shown to be of key importance for obtaining dense and highly conductive ceramics. At ~770 °C, the highest total conductivity, ~3.16 × 10−3 S/cm, is offered by Tm2Ti2O7. The conductivity of the fluorite-like solid solution Tm2(Ti2−xTmx)O7−x/2 (x = 0.74) is an order of magnitude lower. However, for the first time a proton contribution of ~5 × 10−5 S/cm at 600 °C has been found in Tm2(Ti2−xTmx)O7−x/2 (x = 0.74) fluorite. Until now, compositions with proton conductivity were not known for the intermediate and heavy rare earth titanates Ln2(Ti2−xLnx)O7−x/2 (Ln = Ho − Lu) systems. The use of X-ray diffraction (structural analysis with Rietveld refinement), optical spectroscopy and dielectric permittivity data allowed us to follow structural disordering in the solid solution series with increasing thulium oxide content. High and low cooling rates have been shown to have different effects on the properties of the ceramics. Slow cooling initiates’ growth of fluorite nanodomains in a pyrochlore matrix. The fabrication of such nanostructured dense composites is a promising direction in the synthesis of highly conductive solid electrolytes for SOFCs. We assume that high-temperature firing of nanophase precursors helps to obtain lightly doped “stuffed” pyrochlores, which also provide the high oxygen–ion conductivity.
{"title":"Oxygen–Ion Conductivity, Dielectric Properties and Spectroscopic Characterization of “Stuffed” Tm2(Ti2−xTmx)O7−x/2 (x = 0, 0.1, 0.18, 0.28, 0.74) Pyrochlores","authors":"N. Gorshkov, E. Baldin, D. Stolbov, Viktor Rassulov, O. Karyagina, A. Shlyakhtina","doi":"10.3390/ceramics6020056","DOIUrl":"https://doi.org/10.3390/ceramics6020056","url":null,"abstract":"Tm2(Ti2−xTmx)O7−x/2 (x = 0, 0.1, 0.18, 0.28, 0.74) solid electrolytes have been investigated as potential electrolyte materials for solid oxygen fuel cells (SOFCs), operating in the medium temperature range (600–700 °C). The design of new oxygen-conducting materials is of importance for their possible utilization in the solid oxide fuel cells. The oxygen–ion conductivity of the Tm2(Ti2−xTmx)O7−x/2 (x = 0, 0.1, 0.18, 0.28, 0.74) “stuffed” pyrochlores ceramics was investigated by electrochemical impedance spectroscopy (two-probe AC) in dry and wet air. The synthesis of precursors via co-precipitation and the precipitate decomposition temperature have been shown to be of key importance for obtaining dense and highly conductive ceramics. At ~770 °C, the highest total conductivity, ~3.16 × 10−3 S/cm, is offered by Tm2Ti2O7. The conductivity of the fluorite-like solid solution Tm2(Ti2−xTmx)O7−x/2 (x = 0.74) is an order of magnitude lower. However, for the first time a proton contribution of ~5 × 10−5 S/cm at 600 °C has been found in Tm2(Ti2−xTmx)O7−x/2 (x = 0.74) fluorite. Until now, compositions with proton conductivity were not known for the intermediate and heavy rare earth titanates Ln2(Ti2−xLnx)O7−x/2 (Ln = Ho − Lu) systems. The use of X-ray diffraction (structural analysis with Rietveld refinement), optical spectroscopy and dielectric permittivity data allowed us to follow structural disordering in the solid solution series with increasing thulium oxide content. High and low cooling rates have been shown to have different effects on the properties of the ceramics. Slow cooling initiates’ growth of fluorite nanodomains in a pyrochlore matrix. The fabrication of such nanostructured dense composites is a promising direction in the synthesis of highly conductive solid electrolytes for SOFCs. We assume that high-temperature firing of nanophase precursors helps to obtain lightly doped “stuffed” pyrochlores, which also provide the high oxygen–ion conductivity.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45454305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno Medeiros da Silva, É. Santos, Vinícius Zancanelli Bôsco de Souza, M. Alves, C. Vieira, C. Santos
One of the most important steps in the extrusion processing of ceramic inks is the initial drying of the ceramic parts. This study aimed to investigate the drying behaviour of an Al2O3-based ceramic ink optimised to be processed by extrusion processing methods, e.g., direct ink writing. Carboxymethylcellulose (CMC) was singly added to a suspension of deionised water and Al2O3 (50:50 wt.%) to perform as a dispersing and plasticising agent. To assess moisture loss as a function of time, the ceramic inks were extruded into two types of polymeric moulds: one with a completely closed profile producing cylindrical samples (disks) and one with an open profile producing ceramic bars. After the injection of the inks, the moulds were exposed to different controlled temperatures (20 and 40 °C) for up to 180 h; moisture loss and warpage were periodically measured, and exponential mathematical expressions (moisture loss × drying time) were obtained. The Al2O3-bars dried for 24 h in open moulds at 20 and 40 °C presented longitudinal warpages of 4.5% and 9%, respectively, while the Al2O3 disks dried in closed moulds presented warpages of 3.5% and 7% in these same temperatures (20 and 40 °C, respectively). The samples were sintered at 1610 °C for 4 h and characterised by scanning electron microscopy (SEM), relative density (Archimedes principle), and X-ray diffraction (XRD), presenting a relative density of 92.3 ± 0.5%, α-Al2O3 as crystalline phase and grain with equiaxed morphology varying between 1 and 5 μm.
{"title":"Drying Behaviour of Al2O3 Inks Containing Carboxymethylcellulose (CMC) for Use in Colloidal Processing","authors":"Bruno Medeiros da Silva, É. Santos, Vinícius Zancanelli Bôsco de Souza, M. Alves, C. Vieira, C. Santos","doi":"10.3390/ceramics6020055","DOIUrl":"https://doi.org/10.3390/ceramics6020055","url":null,"abstract":"One of the most important steps in the extrusion processing of ceramic inks is the initial drying of the ceramic parts. This study aimed to investigate the drying behaviour of an Al2O3-based ceramic ink optimised to be processed by extrusion processing methods, e.g., direct ink writing. Carboxymethylcellulose (CMC) was singly added to a suspension of deionised water and Al2O3 (50:50 wt.%) to perform as a dispersing and plasticising agent. To assess moisture loss as a function of time, the ceramic inks were extruded into two types of polymeric moulds: one with a completely closed profile producing cylindrical samples (disks) and one with an open profile producing ceramic bars. After the injection of the inks, the moulds were exposed to different controlled temperatures (20 and 40 °C) for up to 180 h; moisture loss and warpage were periodically measured, and exponential mathematical expressions (moisture loss × drying time) were obtained. The Al2O3-bars dried for 24 h in open moulds at 20 and 40 °C presented longitudinal warpages of 4.5% and 9%, respectively, while the Al2O3 disks dried in closed moulds presented warpages of 3.5% and 7% in these same temperatures (20 and 40 °C, respectively). The samples were sintered at 1610 °C for 4 h and characterised by scanning electron microscopy (SEM), relative density (Archimedes principle), and X-ray diffraction (XRD), presenting a relative density of 92.3 ± 0.5%, α-Al2O3 as crystalline phase and grain with equiaxed morphology varying between 1 and 5 μm.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42898816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. V. Diachenko, A. S. Dolgin, N. A. Khristyuk, L. A. Lebedev, L. A. Nefedova, Sergey B. Pavlov, Kirill F. Merenkov, V. I. Ivkov, Alla N. Dmitrieva
The work proposes the use of aluminum oxide-based ceramic objects with a TPMS-Q-surface geometry as elements of armor structures. The samples were produced using the SLA-DLP 3D printing method. The main properties of the sample were determined using physical-chemical analysis methods: apparent density ρap = 3.6 g/cm3, open porosity Popn = 8.5%, microhardness Hµ = 15.3 GPa, water absorption W = 2.4%, elastic modulus E = 405 GPa. The Stiglich criterion M = 1.72 EPa2·m3/kg, and the Shevchenko criterion K = 0.8.
{"title":"3D Printing of Ceramic Elements with Q-Surface Geometry for the Fabrication of Protective Barrier","authors":"S. V. Diachenko, A. S. Dolgin, N. A. Khristyuk, L. A. Lebedev, L. A. Nefedova, Sergey B. Pavlov, Kirill F. Merenkov, V. I. Ivkov, Alla N. Dmitrieva","doi":"10.3390/ceramics6020053","DOIUrl":"https://doi.org/10.3390/ceramics6020053","url":null,"abstract":"The work proposes the use of aluminum oxide-based ceramic objects with a TPMS-Q-surface geometry as elements of armor structures. The samples were produced using the SLA-DLP 3D printing method. The main properties of the sample were determined using physical-chemical analysis methods: apparent density ρap = 3.6 g/cm3, open porosity Popn = 8.5%, microhardness Hµ = 15.3 GPa, water absorption W = 2.4%, elastic modulus E = 405 GPa. The Stiglich criterion M = 1.72 EPa2·m3/kg, and the Shevchenko criterion K = 0.8.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49115035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}