Microwaves have been used in various organic synthesis applications. The use of microwaves provides many advantages, including relatively short start-up and heating times, energy efficiency and process costs, easy and precise process control, selective heating, better final product quality, and improved dry material quality. Microwaves were used in this study to convert chitin into chitosan and to determine the effect of deacetylation time on the degree of deacetylation of chitosan, which was in accordance with the Indonesian National Standard (SNI 7949:2013). The chitin deacetylation process was carried out by varying the heating time to 5, 7, 11, and 15 minutes with a power of 350 W. Two grams of chitin were mixed with 40 mL of 70% NaOH solution in a beaker. The mixture was put in a microwave at a constant temperature of 70 °C. Chitosan was washed until neutral and then dried in an oven. The degree of deacetylation (DD) was analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The results showed that A deacetylation degree of 79.96% was achieved at a reaction time of 15 min. The water content of chitosan was determined to be 9.15%.
{"title":"EFFECT OF MICROWAVE IRRADIATION TIME TO DEACETYLATION PROCESS OF CHITIN FROM SHRIMP SHELLS","authors":"Arief Adhiksana, W. Wahyudi, Z. Arifin, M. Irwan","doi":"10.20473/jkr.v8i1.40222","DOIUrl":"https://doi.org/10.20473/jkr.v8i1.40222","url":null,"abstract":"Microwaves have been used in various organic synthesis applications. The use of microwaves provides many advantages, including relatively short start-up and heating times, energy efficiency and process costs, easy and precise process control, selective heating, better final product quality, and improved dry material quality. Microwaves were used in this study to convert chitin into chitosan and to determine the effect of deacetylation time on the degree of deacetylation of chitosan, which was in accordance with the Indonesian National Standard (SNI 7949:2013). The chitin deacetylation process was carried out by varying the heating time to 5, 7, 11, and 15 minutes with a power of 350 W. Two grams of chitin were mixed with 40 mL of 70% NaOH solution in a beaker. The mixture was put in a microwave at a constant temperature of 70 °C. Chitosan was washed until neutral and then dried in an oven. The degree of deacetylation (DD) was analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The results showed that A deacetylation degree of 79.96% was achieved at a reaction time of 15 min. The water content of chitosan was determined to be 9.15%.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88207226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piroxicam belongs to BCS class II and has low solubility. Self-nanoemulsifying drug delivery systems (SNEDDS) are considered a potential approach for increasing the solubility and release of piroxicam. This study aimed to select the components and component ratios of piroxicam SNEDDS using fractional factorial design 26-2 (FFD). The variables used in the DFT development of piroxicam SNEDDS are the type and concentration of oil (triacetin and oleic acid), surfactant (kolliphor EL and Tween 60), and co-surfactants (Transcutol and PEG 400). The FFD results showed 16 runs with different proportions of the piroxicam SNEDDS components, which were then characterized by critical parameters including emulsification time, %transmittance, droplet size, and drug loading. The components and component ratios of the PKM SNEDDS were determined using single-factor plot analysis. The results showed that triacetin (oil), kolliphor EL (surfactant), Transcutol (co-surfactant) had the greatest contribution to the formation of piroxicam SNEDDS with an oil ratio range of 11.11–28.57%, surfactant 44.44–77.78%, co-surfactant 11.11–44.44 %.
{"title":"SCREENING OF PIROXICAM SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM (SNEDDS) USING FRACTIONAL FACTORIAL DESIGN","authors":"Septiawan Adi Nugroho, I. Kuncahyo, D. Marlina","doi":"10.20473/jkr.v8i1.43803","DOIUrl":"https://doi.org/10.20473/jkr.v8i1.43803","url":null,"abstract":"Piroxicam belongs to BCS class II and has low solubility. Self-nanoemulsifying drug delivery systems (SNEDDS) are considered a potential approach for increasing the solubility and release of piroxicam. This study aimed to select the components and component ratios of piroxicam SNEDDS using fractional factorial design 26-2 (FFD). The variables used in the DFT development of piroxicam SNEDDS are the type and concentration of oil (triacetin and oleic acid), surfactant (kolliphor EL and Tween 60), and co-surfactants (Transcutol and PEG 400). The FFD results showed 16 runs with different proportions of the piroxicam SNEDDS components, which were then characterized by critical parameters including emulsification time, %transmittance, droplet size, and drug loading. The components and component ratios of the PKM SNEDDS were determined using single-factor plot analysis. The results showed that triacetin (oil), kolliphor EL (surfactant), Transcutol (co-surfactant) had the greatest contribution to the formation of piroxicam SNEDDS with an oil ratio range of 11.11–28.57%, surfactant 44.44–77.78%, co-surfactant 11.11–44.44 %.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83621837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suhartini, Imas Solihat, Foliatini, S. R. Setyawati, Nurdiani, L. Sulistiawaty, Muhammad Fadhil Khoirurrizal
The use of plastic as food packaging tends to cause problems because it is difficult to decompose; therefore, it can pollute the environment. The development of biodegradable plastics is an alternative to this problem. Chitosan, a bioplastic, can be used as a packaging material but has poor barrier properties. A biodegradable film was made from a mixture of plasticizer, nano chitosan, and avocado seed starch. Nanochitosan synthesis was carried out using the UAE method for 2 h at an amplitude of 50% to produce 0.7 µm sized particles. Films were formed using the casting method, and characterization was performed, which included functional group, thickness, color, and antioxidant tests. The FTIR spectrum showed that the interaction between nanochitosan and avocado seed starch occurred physically, marked by a shift in the wavenumber of the amide carbonyl group from 1646.60 cm-1 1549.99 cm-1. The film thickness was 0.10–0.15 cm with a darker color as the volume of nanochitosan used increased. Antioxidant analysis revealed that the LC50 value was between 150-250 ppm. The barrier properties of the resulting film against water vapor can inhibit strawberry fruit decay for 3–4 days at room temperature.
{"title":"SYNTHESIS AND CHARACTERIZATION OF NANO CHITOSAN-AVOCADO SEED STARCH AS EDIBLE FILMS","authors":"Suhartini, Imas Solihat, Foliatini, S. R. Setyawati, Nurdiani, L. Sulistiawaty, Muhammad Fadhil Khoirurrizal","doi":"10.20473/jkr.v8i1.43394","DOIUrl":"https://doi.org/10.20473/jkr.v8i1.43394","url":null,"abstract":"The use of plastic as food packaging tends to cause problems because it is difficult to decompose; therefore, it can pollute the environment. The development of biodegradable plastics is an alternative to this problem. Chitosan, a bioplastic, can be used as a packaging material but has poor barrier properties. A biodegradable film was made from a mixture of plasticizer, nano chitosan, and avocado seed starch. Nanochitosan synthesis was carried out using the UAE method for 2 h at an amplitude of 50% to produce 0.7 µm sized particles. Films were formed using the casting method, and characterization was performed, which included functional group, thickness, color, and antioxidant tests. The FTIR spectrum showed that the interaction between nanochitosan and avocado seed starch occurred physically, marked by a shift in the wavenumber of the amide carbonyl group from 1646.60 cm-1 1549.99 cm-1. The film thickness was 0.10–0.15 cm with a darker color as the volume of nanochitosan used increased. Antioxidant analysis revealed that the LC50 value was between 150-250 ppm. The barrier properties of the resulting film against water vapor can inhibit strawberry fruit decay for 3–4 days at room temperature.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76657218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, N. Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto
Approximately 10% of total fish production is wasted due to decomposition. Excessive formalin use in fish preservation can be potentially lethal. One of the natural preservatives is edible coating, which can be prepared from natural ingredients such as mandarin orange peel (Citrus reticulata) pectin and Moringa leaves (Moringa oleifera) which contain antibacterial compounds. The purpose of this research was to examine the antibacterial influence of edible coatings made from pectin of mandarin orange peel with the addition of Moringa leaf extract and to determine its effect on the freshness of nile tilapia (Oreochromis niloticus). Moringa leaf extraction was performed using the Soxhlet extraction method with 96% ethanol at 60–80 °C, while the mandarin orange peel was isolated by reflux using 1% HCl with a pH of 1.5 for 4 hours at 90 °C. Edible coating was synthesized from mandarin orange peel pectin and carboxymethyl cellulose (CMC) which was homogenized with distilled water, and glycerol was added as a plasticizer. Edible coatings were prepared with various concentrations of 0%, 50%, and 100% Moringa leaf extract. Nile tilapia with the addition of edible coatings experienced slower decay, especially in the variations of 100% Moringa leaf extract. This was evidenced by the quantitative test through the Total Plate Count (TPC) test which still did not exceed the limit of >5.6 log CFU/g.
{"title":"Antibacterial Edible Coating from Mandarin Orange Peel (Citrus reticulata) and Moringa Leaf (Moringa oleifera) Extract for Fish Preservation","authors":"M. Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, N. Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto","doi":"10.25077/jrk.v14i1.563","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.563","url":null,"abstract":"Approximately 10% of total fish production is wasted due to decomposition. Excessive formalin use in fish preservation can be potentially lethal. One of the natural preservatives is edible coating, which can be prepared from natural ingredients such as mandarin orange peel (Citrus reticulata) pectin and Moringa leaves (Moringa oleifera) which contain antibacterial compounds. The purpose of this research was to examine the antibacterial influence of edible coatings made from pectin of mandarin orange peel with the addition of Moringa leaf extract and to determine its effect on the freshness of nile tilapia (Oreochromis niloticus). Moringa leaf extraction was performed using the Soxhlet extraction method with 96% ethanol at 60–80 °C, while the mandarin orange peel was isolated by reflux using 1% HCl with a pH of 1.5 for 4 hours at 90 °C. Edible coating was synthesized from mandarin orange peel pectin and carboxymethyl cellulose (CMC) which was homogenized with distilled water, and glycerol was added as a plasticizer. Edible coatings were prepared with various concentrations of 0%, 50%, and 100% Moringa leaf extract. Nile tilapia with the addition of edible coatings experienced slower decay, especially in the variations of 100% Moringa leaf extract. This was evidenced by the quantitative test through the Total Plate Count (TPC) test which still did not exceed the limit of >5.6 log CFU/g.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49015330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moch. Amrun Hidayat, Noviani Tri Wahyuning, Indah Yulia Ningsih, B. Kuswandi
The caffeine chemical sensor was developed by co-immobilizing sodium periodate (NaIO4), 3-methyl-2-benzothiazolinone hydrazone (MBTH), and acetic acid (CH3COOH) onto paper by using an adsorption technique. The addition of caffeine solution could change the color of the sensor from white to pale blue which can be then captured by using a flatbed scanner and quantified by the ImageJ program, known as a scanometric technique. Method validation such as linearity, LOD, LOQ, precision, and accuracy of the sensor was done by using caffeine standards. The result of caffeine analysis using the developed chemical sensor-scanometric method agreed with that of the spectrophotometric method, suggesting that the developed sensor with scanometric technique can be used as an alternative method for caffeine assay in coffee samples.
{"title":"Pengembangan Sensor Kimia Berbasis Kertas Untuk Penetapan Kadar Kafein Sampel Kopi","authors":"Moch. Amrun Hidayat, Noviani Tri Wahyuning, Indah Yulia Ningsih, B. Kuswandi","doi":"10.25077/jrk.v14i1.589","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.589","url":null,"abstract":"The caffeine chemical sensor was developed by co-immobilizing sodium periodate (NaIO4), 3-methyl-2-benzothiazolinone hydrazone (MBTH), and acetic acid (CH3COOH) onto paper by using an adsorption technique. The addition of caffeine solution could change the color of the sensor from white to pale blue which can be then captured by using a flatbed scanner and quantified by the ImageJ program, known as a scanometric technique. Method validation such as linearity, LOD, LOQ, precision, and accuracy of the sensor was done by using caffeine standards. The result of caffeine analysis using the developed chemical sensor-scanometric method agreed with that of the spectrophotometric method, suggesting that the developed sensor with scanometric technique can be used as an alternative method for caffeine assay in coffee samples.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69210027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Getih-getihan (Rivina humilis L.) plants can be used as antibacterial, antioxidant and natural pesticides. Most of the biological activities of natural products originated from secondary metabolites contained therein. Studies have shown the effects of leaves, branches, and fruits extract of R. humilis towards biological activities. However, identifying the phytochemical compounds of R. humilis L. fruit is less discussed. Here we proposed research on the identification of secondary metabolite compounds of R. humilis L. fruit extract using phytochemical screening tests and spectroscopic method. The extraction of R. humilis L. fruit was proceeded by maceration method using methanol solvent. The series of phytochemical screening tests signified the presence of alkaloids, terpenoids, tannins and flavonoids. Furthermore, we applied FT-IR analysis to confirm the existence of functional groups in the secondary metabolite compounds. A broad absorption band showed the hydroxyl groups (O-H) at 3265 cm-1. The sharp band at 1632 cm-1 exhibited the C=C stretching band. The presence of C-N (stretching) was signified by the absorption band at 1237 cm-1, while the C-H bond in CH3 terminals (alkanes, alkyl group) was exhibited at 1401 cm-1. All the functional groups confirmed in the FT-IR analysis corroborated the phytochemical test results.
{"title":"Identification of Secondary Metabolites and FT-IR Analysis of Getih-Getihan Fruit Extract (Rivina humilis L.)","authors":"Mariyam, Yulistia Anggraini, T. Suhartati","doi":"10.25077/jrk.v14i1.565","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.565","url":null,"abstract":"Getih-getihan (Rivina humilis L.) plants can be used as antibacterial, antioxidant and natural pesticides. Most of the biological activities of natural products originated from secondary metabolites contained therein. Studies have shown the effects of leaves, branches, and fruits extract of R. humilis towards biological activities. However, identifying the phytochemical compounds of R. humilis L. fruit is less discussed. Here we proposed research on the identification of secondary metabolite compounds of R. humilis L. fruit extract using phytochemical screening tests and spectroscopic method. The extraction of R. humilis L. fruit was proceeded by maceration method using methanol solvent. The series of phytochemical screening tests signified the presence of alkaloids, terpenoids, tannins and flavonoids. Furthermore, we applied FT-IR analysis to confirm the existence of functional groups in the secondary metabolite compounds. A broad absorption band showed the hydroxyl groups (O-H) at 3265 cm-1. The sharp band at 1632 cm-1 exhibited the C=C stretching band. The presence of C-N (stretching) was signified by the absorption band at 1237 cm-1, while the C-H bond in CH3 terminals (alkanes, alkyl group) was exhibited at 1401 cm-1. All the functional groups confirmed in the FT-IR analysis corroborated the phytochemical test results.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42492408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The manufacture of vibration damping material from natural rubber (NR) required an increase in dynamic properties, thermal stability, and resistance to heat. Using the Carbon Black N990 as a filler in NR vulcanizates can potentially increase on these properties. This research aims to study the effect of using Carbon Black N990 on dynamic properties, thermal stability, and aging resistance to heat in NR vulcanizates. The dynamic properties of NR vulcanizates were determined by Rubber Process Analyzer (RPA), while the thermal stability properties were studied by TGA, and heat resistance was determined by the thermal aging test. The RPA test results showed that adding 50 phr Carbon Black N990 in the NR compound could increase the value of the complex shear modulus to 65%. Furthermore, the results of the TGA test showed that the thermal stability properties of unfilled NR vulcanizates were better than that of NR vulcanizates containing Carbon Black N990. Unfilled NR vulcanizates were heat stable up to 353oC, while NR vulcanizates containing 15, 30, and 50 parts per hundred rubber (phr) Carbon Black N990, respectively, were heat stable up to 348.1oC, 348oC, and 349oC. Based on the requirements of ISO 4632-1, it showed that the NR compound containing Carbon Black N990 has good heat resistance properties. The NR compound formula contains 30 phr Carbon Black N990 showing good dynamic properties and heat resistance in accordance with EN 15129 requirements so that it has the potential to be used as a vibration damping material for earthquake-resistant structures.
{"title":"Kajian Penggunaan Carbon Black N990 sebagai Bahan Pengisi Kompon Karet Alam: Sifat Dinamik, Kestabilan Termal, dan Ketahanan Panas","authors":"Purwantiningsih Sugita","doi":"10.25077/jrk.v14i1.560","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.560","url":null,"abstract":"The manufacture of vibration damping material from natural rubber (NR) required an increase in dynamic properties, thermal stability, and resistance to heat. Using the Carbon Black N990 as a filler in NR vulcanizates can potentially increase on these properties. This research aims to study the effect of using Carbon Black N990 on dynamic properties, thermal stability, and aging resistance to heat in NR vulcanizates. The dynamic properties of NR vulcanizates were determined by Rubber Process Analyzer (RPA), while the thermal stability properties were studied by TGA, and heat resistance was determined by the thermal aging test. The RPA test results showed that adding 50 phr Carbon Black N990 in the NR compound could increase the value of the complex shear modulus to 65%. Furthermore, the results of the TGA test showed that the thermal stability properties of unfilled NR vulcanizates were better than that of NR vulcanizates containing Carbon Black N990. Unfilled NR vulcanizates were heat stable up to 353oC, while NR vulcanizates containing 15, 30, and 50 parts per hundred rubber (phr) Carbon Black N990, respectively, were heat stable up to 348.1oC, 348oC, and 349oC. Based on the requirements of ISO 4632-1, it showed that the NR compound containing Carbon Black N990 has good heat resistance properties. The NR compound formula contains 30 phr Carbon Black N990 showing good dynamic properties and heat resistance in accordance with EN 15129 requirements so that it has the potential to be used as a vibration damping material for earthquake-resistant structures.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47643293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astaxanthin is a pigment from the carotenoid group found in algae, shrimp, and crabs. Due to its chemical structure, astaxanthin has many health benefits but low stability against direct exposure to light and oxygen. In this study, the Zn-astaxanthin complex was synthesized using a reflux reactor at 37o and 60oC. Complex compounds were analyzed using a UV-Vis spectrophotometer and FTIR. The UV-Vis spectrophotometer analysis showed a bathochromic shift in acetone (475 to 477 nm). In comparison, in dimethyl sulfoxide, a hypsochromic shift (493 to 475 nm) was observed, and a new absorption peak was observed at 330 nm. FTIR analysis shows a decrease in the intensity of the C=O stretching vibration and -OH group vibration at 1712 and 1219 cm-1, respectively. This indicated an interaction between the metal ion Zn2+ and astaxanthin. Zn-astaxanthin has better stability than astaxanthin during irradiation, using a halogen lamp at a light intensity of 300 W/m2 for 6 hours. Based on the zero-order degradation kinetics model, the degradation rate constant of the Zn-astaxanthin complex was 0.0621, smaller than that of astaxanthin (0.0880).
{"title":"Sintesis dan Uji Fotostabilitas Kompleks Zn(II)-Astaxanthin","authors":"Winda Rahmalia, Dwi Imam Prayitno, Adhitiyawarman, Septiani","doi":"10.25077/jrk.v14i1.568","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.568","url":null,"abstract":"Astaxanthin is a pigment from the carotenoid group found in algae, shrimp, and crabs. Due to its chemical structure, astaxanthin has many health benefits but low stability against direct exposure to light and oxygen. In this study, the Zn-astaxanthin complex was synthesized using a reflux reactor at 37o and 60oC. Complex compounds were analyzed using a UV-Vis spectrophotometer and FTIR. The UV-Vis spectrophotometer analysis showed a bathochromic shift in acetone (475 to 477 nm). In comparison, in dimethyl sulfoxide, a hypsochromic shift (493 to 475 nm) was observed, and a new absorption peak was observed at 330 nm. FTIR analysis shows a decrease in the intensity of the C=O stretching vibration and -OH group vibration at 1712 and 1219 cm-1, respectively. This indicated an interaction between the metal ion Zn2+ and astaxanthin. Zn-astaxanthin has better stability than astaxanthin during irradiation, using a halogen lamp at a light intensity of 300 W/m2 for 6 hours. Based on the zero-order degradation kinetics model, the degradation rate constant of the Zn-astaxanthin complex was 0.0621, smaller than that of astaxanthin (0.0880).","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45720836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One alternative to make biofuels and replace petroleum-based fuels is to convert non-food ingredients from Ulva reticulata seaweed into bioethanol. Seventy percent of the earth's surface is covered by microalgae and seaweeds that can be converted into bioethanol. Ulva seaweed contains 50.3% carbohydrates in the form of heteropolysaccharides such as glucose, arabinose, rhamnose and xylose. Optimization of the seaweed hydrolysis catalyzed by HNO3 using Microwave irradiation was done by varying acid concentration (1, 3, 5, 7%), hydrolysis time (30, 40, 50, and 60 minutes), and hydrolysis temperature (75, 100, 125, 150°C). Fermentation was carried out by varying inoculum concentrations (6, 8, and 10% (v/v)) for 5, 6 and 7 days at a temperature of 30°C and a pH of 4.5. Analysis of the surface texture of the sample was carried out by Scanning Electron Microscopy (SEM). The analysis of reducing sugars concentration was carried out using the dinitrosalicylate (DNS) method. Ethanol analysis was carried out by Gas Chromatography (GC). The results of SEM analysis showed that prior to hydrolysis, the surface morphology of the powder was still compact and intact. Whereas after being hydrolyzed with HNO3 it was seen that the surface texture of the powder suffered significant damage. The hydrolysis results showed that the optimum conditions during the pretreatment of U. reticulata powder was at acid concentration of 7%, reaction time of 50 minutes, reaction temperature of 150°C and 250 watts of power which gave hydrolysate with reducing sugar concentration of 86.5 g/L. Fermentation of the hydrolysate using yeast Saccharomyces cerevisiae produced bioethanol with concentration of 37.2% as analyzed using a gas chromatograph.
{"title":"Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Pelarut HNO3 untuk Produksi Bioetanol","authors":"Sefrinus Maria Dolfi Kolo","doi":"10.25077/jrk.v14i1.574","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.574","url":null,"abstract":"One alternative to make biofuels and replace petroleum-based fuels is to convert non-food ingredients from Ulva reticulata seaweed into bioethanol. Seventy percent of the earth's surface is covered by microalgae and seaweeds that can be converted into bioethanol. Ulva seaweed contains 50.3% carbohydrates in the form of heteropolysaccharides such as glucose, arabinose, rhamnose and xylose. Optimization of the seaweed hydrolysis catalyzed by HNO3 using Microwave irradiation was done by varying acid concentration (1, 3, 5, 7%), hydrolysis time (30, 40, 50, and 60 minutes), and hydrolysis temperature (75, 100, 125, 150°C). Fermentation was carried out by varying inoculum concentrations (6, 8, and 10% (v/v)) for 5, 6 and 7 days at a temperature of 30°C and a pH of 4.5. Analysis of the surface texture of the sample was carried out by Scanning Electron Microscopy (SEM). The analysis of reducing sugars concentration was carried out using the dinitrosalicylate (DNS) method. Ethanol analysis was carried out by Gas Chromatography (GC). The results of SEM analysis showed that prior to hydrolysis, the surface morphology of the powder was still compact and intact. Whereas after being hydrolyzed with HNO3 it was seen that the surface texture of the powder suffered significant damage. The hydrolysis results showed that the optimum conditions during the pretreatment of U. reticulata powder was at acid concentration of 7%, reaction time of 50 minutes, reaction temperature of 150°C and 250 watts of power which gave hydrolysate with reducing sugar concentration of 86.5 g/L. Fermentation of the hydrolysate using yeast Saccharomyces cerevisiae produced bioethanol with concentration of 37.2% as analyzed using a gas chromatograph.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46795365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suryati, Bustanul Arifin, Thaharah Alifa Aziz Yenuuar, Rahmi Vika Ulia, Shafinna Hana Fadhia, Miftahul Melsya Salsabilla
Pucuk merah (Syzygium myrtifolium Walp.) is an ornamental plant from the Myrtaceae family. Several phytochemical tests from previous researchers reported that pucuk merah contains secondary metabolites that have benefits such as antioxidants, antibacterials, and anti-cancer. In addition, the distinctive aroma produced from pucuk merah leaves indicates the presence of essential oils whose bioactivity can be studied. Still, there has been no report on this plant's chemical components or bioactivity. Therefore, this study aims to determine the content of chemical components of pucuk merah essential oil and their bioactivity as antibacterial and toxicity. The isolation of essential oils was carried out by the hydro distillation method. The chemical components of essential oils were analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS) method. GC-MS results showed the presence of 42 compounds with four main compounds, namely caryophyllene (23.45%), 3-carene (15.67%), α-terpineol (10.74%), and α-pinene (5.98%) ). Antibacterial test of pucuk merah essential oil using the disc diffusion method showed strong activity against Staphylococcus aureus and Escherichia coli with inhibition zones of 16.15 ± 2.03 and 16.13 ± 1.74 mm at 100% concentration. The results of the toxicity test of pucuk merah essential oil using the BSLT (Brine Shrimp Lethality Test) method on Artemia salina Leach shrimp larvae showed strong toxic properties with an LC50 value of 3.99 µg/mL.
{"title":"Komponen Kimia Minyak Atsiri yang Diisolasi dari Daun Tanaman Pucuk Merah (Syzygium myrtifolium Walp.) dan Potensi Antibakteri serta Toksisitasnya","authors":"Suryati, Bustanul Arifin, Thaharah Alifa Aziz Yenuuar, Rahmi Vika Ulia, Shafinna Hana Fadhia, Miftahul Melsya Salsabilla","doi":"10.25077/jrk.v14i1.583","DOIUrl":"https://doi.org/10.25077/jrk.v14i1.583","url":null,"abstract":"Pucuk merah (Syzygium myrtifolium Walp.) is an ornamental plant from the Myrtaceae family. Several phytochemical tests from previous researchers reported that pucuk merah contains secondary metabolites that have benefits such as antioxidants, antibacterials, and anti-cancer. In addition, the distinctive aroma produced from pucuk merah leaves indicates the presence of essential oils whose bioactivity can be studied. Still, there has been no report on this plant's chemical components or bioactivity. Therefore, this study aims to determine the content of chemical components of pucuk merah essential oil and their bioactivity as antibacterial and toxicity. The isolation of essential oils was carried out by the hydro distillation method. The chemical components of essential oils were analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS) method. GC-MS results showed the presence of 42 compounds with four main compounds, namely caryophyllene (23.45%), 3-carene (15.67%), α-terpineol (10.74%), and α-pinene (5.98%) ). Antibacterial test of pucuk merah essential oil using the disc diffusion method showed strong activity against Staphylococcus aureus and Escherichia coli with inhibition zones of 16.15 ± 2.03 and 16.13 ± 1.74 mm at 100% concentration. The results of the toxicity test of pucuk merah essential oil using the BSLT (Brine Shrimp Lethality Test) method on Artemia salina Leach shrimp larvae showed strong toxic properties with an LC50 value of 3.99 µg/mL.","PeriodicalId":33366,"journal":{"name":"Jurnal Riset Kimia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47101091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}