Pub Date : 2024-08-03DOI: 10.1016/j.ijplas.2024.104081
J.Q. Shi , C.P. Huang , S.H. Deng , Z.J. Tan , H.L. Lu , J.Z. Hao , F.R. Shen , Y.F. Jia , J. Chen , Q. Wang , L.H. He , G. Wang
Additively manufacturing alloys by a selective laser melting (SLM) usually generates large temperature gradients and rapidly cooling, which enables a refined microstructure, an elemental segregation and high-density dislocations network to achieve an excellent strength-ductility synergy. In this study, the SLM fabricates FeCoNiAlTi high-entropy alloys (HEAs) with a cellular structure composed of high-density dislocations network and elemental segregation, which results in a noteworthy combination of a yield strength and a significant uniform plastic elongation. Strengthening mechanism and deformation behavior of SLM-prepared FeCoNiAlTi HEAs are investigated by a transmission electron microscopy in combination with an in-situ neutron diffraction technique. The results demonstrate that the high strength is mainly derived from cellular structure strengthening, which accounted for over 64 % of the yield strength. The cellular structure's capability to alleviate severe stress concentrations can facilitate deformation homogenization, and break a strength-ductility trade-off. This study provides essential insights into the underlying mechanisms governing the strength and ductility of additively manufactured HEAs.
通过选择性激光熔化(SLM)快速制造合金通常会产生较大的温度梯度并迅速冷却,从而使微观结构细化、元素偏析和高密度位错网络得以实现优异的强度-电导率协同效应。在本研究中,SLM 制造出了具有由高密度位错网络和元素偏析组成的蜂窝状结构的铁钴镍铝钛高熵合金(HEAs),从而实现了屈服强度和显著的均匀塑性延伸率的完美结合。透射电子显微镜结合原位中子衍射技术研究了 SLM 制备的铁钴镍铝钛 HEA 的强化机理和变形行为。结果表明,高强度主要来自于蜂窝结构的强化,占屈服强度的 64% 以上。蜂窝结构缓解严重应力集中的能力可促进变形均匀化,并打破强度-电导率权衡。这项研究为了解加成制造 HEA 的强度和延展性的基本机制提供了重要见解。
{"title":"In-situ neutron diffraction study of the strengthening mechanism and deformation behavior of cellular structure in high-entropy alloys by additive manufacturing","authors":"J.Q. Shi , C.P. Huang , S.H. Deng , Z.J. Tan , H.L. Lu , J.Z. Hao , F.R. Shen , Y.F. Jia , J. Chen , Q. Wang , L.H. He , G. Wang","doi":"10.1016/j.ijplas.2024.104081","DOIUrl":"10.1016/j.ijplas.2024.104081","url":null,"abstract":"<div><p>Additively manufacturing alloys by a selective laser melting (SLM) usually generates large temperature gradients and rapidly cooling, which enables a refined microstructure, an elemental segregation and high-density dislocations network to achieve an excellent strength-ductility synergy. In this study, the SLM fabricates FeCoNiAlTi high-entropy alloys (HEAs) with a cellular structure composed of high-density dislocations network and elemental segregation, which results in a noteworthy combination of a yield strength and a significant uniform plastic elongation. Strengthening mechanism and deformation behavior of SLM-prepared FeCoNiAlTi HEAs are investigated by a transmission electron microscopy in combination with an in-situ neutron diffraction technique. The results demonstrate that the high strength is mainly derived from cellular structure strengthening, which accounted for over 64 % of the yield strength. The cellular structure's capability to alleviate severe stress concentrations can facilitate deformation homogenization, and break a strength-ductility trade-off. This study provides essential insights into the underlying mechanisms governing the strength and ductility of additively manufactured HEAs.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104081"},"PeriodicalIF":9.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.ijplas.2024.104079
Rui Huang , Lingkun Zhang , Abdukadir Amar , Peter K. Liaw , Tongmin Wang , Tingju Li , Yiping Lu
Body-centered-cubic (BCC) high-entropy alloys (HEAs) encounter significant challenges in obtaining a high uniform tensile ductility (UTD). A dense dislocation-cell (DC) structure is produced in a heterogeneously grained HEA under tensile deformation, resulting from the anchored dislocation motion by grain interior elemental segregation. This fluctuation in elemental concentration is facilitated by thermomechanical processing. The activation of multiple-slip mechanisms, prompted by strain incompatibility among grains of varying sizes, significantly propels this process forward. This novel DC structure simultaneously increased the UTD (by 349.1 %) and yield strength (, by 29.0 %) for a stable BCC HEA. Specifically, the single-phase alloy achieved a record-high UTD of 7.5 % and an of > 1,200 MPa, outperforming the counterparts of all the single-phase BCC HEAs. We employed a combination of transmission electron microscopy, in-situ scanning electron microscopy tensile testing coupled with an electron backscatter diffraction technology to investigate underlying strengthening mechanisms and identified that the serious stress concentration as a result of prevalent planar slip caused premature failure and localized strain of common BCC HEAs. At the initial stage of deformation, the DC structure promoted the activation of multiple slip systems and facilitated the extension of a plastic flow across the sample volume, effectively weakening stress concentration and premature failure. The extended plasticity zone and intensified dislocation interactions contributed to the increased UTD and . These findings offer valuable inspiration for tailoring alloy properties via microstructure strategies and promoting their adoption in advanced manufacturing.
体心立方(BCC)高熵合金(HEAs)在获得高均匀拉伸延展性(UTD)方面面临重大挑战。在拉伸变形过程中,异质晶粒 HEA 中会产生密集的位错胞(DC)结构,这是晶粒内部元素偏析导致的锚定位错运动造成的。热机械加工促进了元素浓度的波动。不同尺寸晶粒之间的应变不相容性导致的多重滑移机制的启动,极大地推动了这一过程。这种新型直流结构同时提高了稳定 BCC HEA 的UTD(349.1%)和屈服强度(29.0%)。具体来说,这种单相合金的UTD达到了创纪录的7.5%,屈服强度大于1200兆帕,优于所有单相BCC HEA。我们采用透射电子显微镜、原位扫描电子显微镜拉伸测试与电子反向散射衍射技术相结合的方法来研究潜在的强化机制,并发现由于普遍存在的平面滑移导致严重的应力集中,从而造成普通 BCC HEA 的过早失效和局部应变。在变形的初始阶段,直流结构促进了多重滑移系统的激活,促进了塑性流动在样品体积上的扩展,有效削弱了应力集中和过早失效。塑性区的扩展和位错相互作用的加强导致了UTD和.DC的增加。这些发现为通过微结构策略定制合金特性并促进其在先进制造业中的应用提供了宝贵的启示。
{"title":"Achieving excellent uniform tensile ductility and strength in dislocation-cell-structured high-entropy alloys","authors":"Rui Huang , Lingkun Zhang , Abdukadir Amar , Peter K. Liaw , Tongmin Wang , Tingju Li , Yiping Lu","doi":"10.1016/j.ijplas.2024.104079","DOIUrl":"10.1016/j.ijplas.2024.104079","url":null,"abstract":"<div><p>Body-centered-cubic (BCC) high-entropy alloys (HEAs) encounter significant challenges in obtaining a high uniform tensile ductility (UTD). A dense dislocation-cell (DC) structure is produced in a heterogeneously grained HEA under tensile deformation, resulting from the anchored dislocation motion by grain interior elemental segregation. This fluctuation in elemental concentration is facilitated by thermomechanical processing. The activation of multiple-slip mechanisms, prompted by strain incompatibility among grains of varying sizes, significantly propels this process forward. This novel DC structure simultaneously increased the UTD (by 349.1 %) and yield strength (<span><math><msub><mi>σ</mi><mrow><mn>0.2</mn></mrow></msub></math></span>, by 29.0 %) for a stable BCC HEA. Specifically, the single-phase alloy achieved a record-high UTD of 7.5 % and an <span><math><msub><mi>σ</mi><mrow><mn>0.2</mn></mrow></msub></math></span> of > 1,200 MPa, outperforming the counterparts of all the single-phase BCC HEAs. We employed a combination of transmission electron microscopy, in-situ scanning electron microscopy tensile testing coupled with an electron backscatter diffraction technology to investigate underlying strengthening mechanisms and identified that the serious stress concentration as a result of prevalent planar slip caused premature failure and localized strain of common BCC HEAs. At the initial stage of deformation, the DC structure promoted the activation of multiple slip systems and facilitated the extension of a plastic flow across the sample volume, effectively weakening stress concentration and premature failure. The extended plasticity zone and intensified dislocation interactions contributed to the increased UTD and <span><math><msub><mi>σ</mi><mrow><mn>0.2</mn></mrow></msub></math></span>. These findings offer valuable inspiration for tailoring alloy properties via microstructure strategies and promoting their adoption in advanced manufacturing.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104079"},"PeriodicalIF":9.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.ijplas.2024.104082
Haodi Yang , Zhutian Xu , Linfa Peng , Xinmin Lai , Mingwang Fu
Cr-rich stainless steel sheets exhibit superior corrosion resistance but low ductility, which presents a trade-off between fabrication complexity and performance of the materials in multiple industrial applications, such as marine equipment and microreactors. By transitioning the Cr-rich (30 wt.% Cr) stainless steel component to SS 316 L with a smooth composition gradient in the thickness direction, the intrinsic homogeneous elongation of the Cr-rich layer was increased by 260 % while maintaining the naturally high corrosion resistance (100 %) and retaining most of the strength (more than 80 %). By employing in-situ tensile testing and electron backscatter diffraction analysis, it was revealed that the Cr-rich layer in the gradient structure underwent a profound deformation mechanism, including significant heterogeneous deformation-induced hardening and grain reorientation induced by multiplication and accumulation of geometrically necessary dislocations, in such a way to enable a substantial plastic strain and thereby retarding the occurrence of fracture. The proportion of the Cr-rich layer makes a significant impact on the magnitude of the strain gradient in the gradient specimens, therefore affecting the increment of density of geometrically necessary dislocations. The critical proportion value of the Cr-rich layer is found to be around 22 %. Before and after the critical value the gradient specimens showed different sensitivities to the proportion. This discovery underlines the significance of intrinsic plasticity in low-ductility metals and the role of compositional gradient materials in enhancing strength and ductility.
富含铬的不锈钢板具有优异的耐腐蚀性,但延展性较低,这就需要在制造复杂性和材料性能之间进行权衡,以适应多种工业应用,如海洋设备和微反应器。通过将富含铬(30 wt.%铬)的不锈钢成分转变为在厚度方向上具有平滑成分梯度的 SS 316 L,富含铬层的固有均匀伸长率提高了 260%,同时保持了天然的高耐腐蚀性(100%)并保留了大部分强度(超过 80%)。通过原位拉伸试验和电子反向散射衍射分析,发现梯度结构中的富铬层经历了深刻的变形机制,包括显著的异质变形诱导硬化和几何必要位错倍增和累积诱导的晶粒重取向,从而产生了大量塑性应变,从而延缓了断裂的发生。富铬层的比例对梯度试样中应变梯度的大小有显著影响,因此会影响几何必要位错密度的增加。富铬层的临界比例值约为 22%。在临界值之前和之后,梯度试样对该比例表现出不同的敏感性。这一发现强调了低延展性金属固有塑性的重要性,以及成分梯度材料在提高强度和延展性方面的作用。
{"title":"Chromium gradient stainless steels with simultaneous high strength, ductility, and corrosion-resistant: In-depth study of continuous hardening mechanisms","authors":"Haodi Yang , Zhutian Xu , Linfa Peng , Xinmin Lai , Mingwang Fu","doi":"10.1016/j.ijplas.2024.104082","DOIUrl":"10.1016/j.ijplas.2024.104082","url":null,"abstract":"<div><p>Cr-rich stainless steel sheets exhibit superior corrosion resistance but low ductility, which presents a trade-off between fabrication complexity and performance of the materials in multiple industrial applications, such as marine equipment and microreactors. By transitioning the Cr-rich (30 wt.% Cr) stainless steel component to SS 316 L with a smooth composition gradient in the thickness direction, the intrinsic homogeneous elongation of the Cr-rich layer was increased by 260 % while maintaining the naturally high corrosion resistance (100 %) and retaining most of the strength (more than 80 %). By employing in-situ tensile testing and electron backscatter diffraction analysis, it was revealed that the Cr-rich layer in the gradient structure underwent a profound deformation mechanism, including significant heterogeneous deformation-induced hardening and grain reorientation induced by multiplication and accumulation of geometrically necessary dislocations, in such a way to enable a substantial plastic strain and thereby retarding the occurrence of fracture. The proportion of the Cr-rich layer makes a significant impact on the magnitude of the strain gradient in the gradient specimens, therefore affecting the increment of density of geometrically necessary dislocations. The critical proportion value of the Cr-rich layer is found to be around 22 %. Before and after the critical value the gradient specimens showed different sensitivities to the proportion. This discovery underlines the significance of intrinsic plasticity in low-ductility metals and the role of compositional gradient materials in enhancing strength and ductility.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104082"},"PeriodicalIF":9.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.ijplas.2024.104074
Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi
Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (1 ), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.
{"title":"Hydrogen effects on the deformation and slip localization in a single crystal austenitic stainless steel","authors":"Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi","doi":"10.1016/j.ijplas.2024.104074","DOIUrl":"10.1016/j.ijplas.2024.104074","url":null,"abstract":"<div><p>Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (<span><math><mo>></mo></math></span>1 <span><math><mi>mm</mi></math></span>), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For <span><math><mrow><mo>〈</mo><mn>110</mn><mo>〉</mo></mrow></math></span> tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104074"},"PeriodicalIF":9.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.ijplas.2024.104076
Karim Louca , Katherine S. Shanks , Amlan Das , Darren Pagan , Robert Klassen , Hamidreza Abdolvand
Texture, microstructure, and local grain neighbourhood contribute to the development of localized stresses in polycrystals. For hexagonal close-packed materials, crystal's elastic and plastic anisotropy can also be a major contributing factor, yet there is a paucity of experimental studies focusing on the extent of contribution of such parameters on the magnitude of localized stresses at microscales. This study focuses on addressing this knowledge gap by deforming double-edge-notched soft-textured α-zirconium specimens in-situ, while measuring grain scale tensorial stresses using high energy synchrotron X-ray diffraction. The specimens were subjected to cyclic loads to study the evolution of stresses in the vicinity of both shallow and deep notches. The soft-texture of the specimens is such that there are no c-axes of grains aligned along the macroscopic loading direction thereby inhibiting deformation twinning. The “as-measured” microstructures and notch geometries were imported into a crystal plasticity finite element model for further analysis. Results show that despite the absence of c-axes of grains aligned along loading direction, the developed stresses were substantially influenced by crystallographic orientations. Stress drop was observed near the onset of plasticity with further loading and the orientation and position effects were highlighted. A plastic deformation mechanism was revealed where, upon specimen loading, the mechanical constraints enforced during grain-grain interactions led to hardening. Accordingly, a parameter was devised to quantify the grain level hardening arising from this mechanism. It was shown that grain-scale stress concentration factors vary significantly before the onset of plasticity, but they settle in the plastic zone and with the progression of cycles.
质地、微观结构和局部晶粒相邻关系有助于多晶体局部应力的形成。对于六方紧密堆积材料来说,晶体的弹性和塑性各向异性也可能是一个主要的影响因素,但很少有实验研究关注这些参数对微观局部应力大小的影响程度。本研究通过对双刃缺口软质地α-锆试样进行原位变形,同时使用高能同步辐射 X 射线衍射测量晶粒尺度张量应力,重点解决了这一知识空白。对试样施加循环载荷,以研究浅凹口和深凹口附近的应力演变。试样的软质地使得晶粒没有沿宏观加载方向排列的 c 轴,从而抑制了变形孪生。测量 "的微观结构和凹槽几何形状被导入晶体塑性有限元模型中进行进一步分析。结果表明,尽管晶粒没有沿加载方向排列的 c 轴,但所产生的应力在很大程度上受到晶体取向的影响。随着进一步加载,在塑性开始附近观察到应力下降,取向和位置效应凸显。揭示了一种塑性变形机制,即在试样加载时,晶粒相互作用过程中产生的机械约束导致了硬化。因此,我们设计了一个参数来量化由这一机制引起的晶粒级硬化。结果表明,晶粒尺度应力集中因子在塑性开始之前变化很大,但在塑性区和循环过程中会稳定下来。
{"title":"The development of grain resolved stress fields around notch tips in soft-textured zirconium polycrystals: A three-dimensional synchrotron X-ray diffraction study","authors":"Karim Louca , Katherine S. Shanks , Amlan Das , Darren Pagan , Robert Klassen , Hamidreza Abdolvand","doi":"10.1016/j.ijplas.2024.104076","DOIUrl":"10.1016/j.ijplas.2024.104076","url":null,"abstract":"<div><p>Texture, microstructure, and local grain neighbourhood contribute to the development of localized stresses in polycrystals. For hexagonal close-packed materials, crystal's elastic and plastic anisotropy can also be a major contributing factor, yet there is a paucity of experimental studies focusing on the extent of contribution of such parameters on the magnitude of localized stresses at microscales. This study focuses on addressing this knowledge gap by deforming double-edge-notched soft-textured α-zirconium specimens in-situ, while measuring grain scale tensorial stresses using high energy synchrotron X-ray diffraction. The specimens were subjected to cyclic loads to study the evolution of stresses in the vicinity of both shallow and deep notches. The soft-texture of the specimens is such that there are no c-axes of grains aligned along the macroscopic loading direction thereby inhibiting deformation twinning. The “as-measured” microstructures and notch geometries were imported into a crystal plasticity finite element model for further analysis. Results show that despite the absence of c-axes of grains aligned along loading direction, the developed stresses were substantially influenced by crystallographic orientations. Stress drop was observed near the onset of plasticity with further loading and the orientation and position effects were highlighted. A plastic deformation mechanism was revealed where, upon specimen loading, the mechanical constraints enforced during grain-grain interactions led to hardening. Accordingly, a parameter was devised to quantify the grain level hardening arising from this mechanism. It was shown that grain-scale stress concentration factors vary significantly before the onset of plasticity, but they settle in the plastic zone and with the progression of cycles.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104076"},"PeriodicalIF":9.4,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924002031/pdfft?md5=09179e8e8a7c0f9baba05a14f37eb8f3&pid=1-s2.0-S0749641924002031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.ijplas.2024.104078
Yiping Xia , Xin Bai , Huijun Fang , Xuewen Li , Xinbo Ni , He Wu , Kesong Miao , Rengeng Li , Honglan Xie , Hao Wu , Lin Geng , Guohua Fan
Elucidating the effect of local strain on the mechanical properties is of great significance for the design of high-performance layered metals. For this purpose, we conceived the present study, featured by tailoring the local strain by layer thickness design, and simultaneous monitoring of local strain and geometrically necessary dislocations (GNDs) via coupling in-situ electron backscatter diffraction (EBSD) and high-resolution digital image correlation (DIC). In addition, synchrotron X-ray micro-computed tomography (μCT) was employed to analyze the microcracks that serve as another form of strain localization. Such detailed experimental studies revealed that the interfacial strain gradient was rapidly elevated, and the strain localization band was effectively dispersed as the layer thickness decreased. This leads to two typical transitions, from grain-boundary-related to layer-interface-related plastic deformation mode, and from macroscopic shear to zig-zag fracture mode. Their influences on the mechanical properties, as well as underlying mechanisms, were discussed based on the relationship among the layer thickness, strain gradient, strain localization, GND density, and microcracks. Our work not only contributes to the fundamental understanding of the mechanical behavior of multilayered metals but also offers guidance for the structural design of high-performance metals aimed at achieving superior strength-ductility combinations.
阐明局部应变对力学性能的影响对高性能层状金属的设计具有重要意义。为此,我们构思了本研究,其特点是通过层厚设计定制局部应变,并通过电子反向散射衍射(EBSD)和高分辨率数字图像相关(DIC)耦合同时监测局部应变和几何必要位错(GNDs)。此外,同步辐射 X 射线显微计算机断层扫描(μCT)被用来分析作为另一种应变定位形式的微裂缝。这些详细的实验研究表明,界面应变梯度迅速升高,应变定位带随着层厚度的减小而有效分散。这导致了两种典型的转变,即从与晶界相关的塑性变形模式转变为与层界面相关的塑性变形模式,以及从宏观剪切模式转变为 "之 "字形断裂模式。根据层厚、应变梯度、应变局部化、GND 密度和微裂纹之间的关系,讨论了它们对力学性能的影响以及内在机制。我们的研究不仅有助于从根本上理解多层金属的力学行为,还为高性能金属的结构设计提供了指导,旨在实现卓越的强度-电导率组合。
{"title":"Effects of local strain on the plastic deformation and fracture mechanism of heterogeneous multilayered aluminum","authors":"Yiping Xia , Xin Bai , Huijun Fang , Xuewen Li , Xinbo Ni , He Wu , Kesong Miao , Rengeng Li , Honglan Xie , Hao Wu , Lin Geng , Guohua Fan","doi":"10.1016/j.ijplas.2024.104078","DOIUrl":"10.1016/j.ijplas.2024.104078","url":null,"abstract":"<div><p>Elucidating the effect of local strain on the mechanical properties is of great significance for the design of high-performance layered metals. For this purpose, we conceived the present study, featured by tailoring the local strain by layer thickness design, and simultaneous monitoring of local strain and geometrically necessary dislocations (GNDs) via coupling <em>in-situ</em> electron backscatter diffraction (EBSD) and high-resolution digital image correlation (DIC). In addition, synchrotron X-ray micro-computed tomography (μCT) was employed to analyze the microcracks that serve as another form of strain localization. Such detailed experimental studies revealed that the interfacial strain gradient was rapidly elevated, and the strain localization band was effectively dispersed as the layer thickness decreased. This leads to two typical transitions, from grain-boundary-related to layer-interface-related plastic deformation mode, and from macroscopic shear to zig-zag fracture mode. Their influences on the mechanical properties, as well as underlying mechanisms, were discussed based on the relationship among the layer thickness, strain gradient, strain localization, GND density, and microcracks. Our work not only contributes to the fundamental understanding of the mechanical behavior of multilayered metals but also offers guidance for the structural design of high-performance metals aimed at achieving superior strength-ductility combinations.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104078"},"PeriodicalIF":9.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.ijplas.2024.104073
Sung-Hyun Oh , Hyun-Dong Lee , Jae-Uk Lee , Sung-Ho Park , Won-Seob Cho , Yong-Jin Park , Alexandra Haag , Soichi Watanabe , Marco Arnold , Hoo-Jeong Lee , Eun-Ho Lee
With the increase in computational costs driven by the use of artificial intelligence, enhancing the performance of semiconductor systems while improving efficiency has become an inevitable challenge. Due to the fine pitch limits of micro bumps, bumpless Cu-Cu bonding is emerging as the next-generation core technology. This study aims to analyze the effects of individual temperature and pressure on both large- and local-scale behaviors of material in the Cu-Cu bonding process with experiments and numerical analysis. The motivation of this study is to compensate the deficiencies in reported studies on process optimization, particularly the lack of exploration of the separated effects of temperature and pressure on large- and local-scale Cu-Cu bonding. Furthermore, reports on the thermodynamic modeling of Cu-Cu bonding behavior are not sufficient, making it challenging to find suitable models. Bonding experiments were performed by independently controlling the temperature and pressure using blank Cu films treated by precise chemical mechanical polishing (CMP) processes. The large-scale bonded area under each condition was measured, and transmission electron microscope (TEM) images were captured to observe the patterns of local void formation under various temperature and pressure conditions. In the experiments, it was observed that the temperature increase had a greater impact on the bonded area at a larger scale than the increase in pressure. However, for nanoscale-local voids, an increase in pressure had a more dominant effect. To discuss the experimental results, a thermodynamic modeling framework that considers coupled heat-induced deformation, plastic deformation, and volumetric changes caused by material flux was proposed. The proposed model has been implemented in the user-defined material subroutine (UMAT) of the ABAQUS program for finite element (FE) analysis. Numerical analysis using the proposed model captures the experimental data well. In large-scale simulations, temperature conditions have a significant impact, with plastic deformation being the primary mode of deformation, while the pressure conditions dominate the material flux, making substantial contributions to reducing voids at local-scale. To achieve complete closure of the void, the simulation demonstrated that maintaining a sufficient pressure gradient until the complete closure is required. The study findings provide an explicit understanding of how the temperature and pressure conditions differently affect large-scale bonding and local voids for semiconductor package manufacturing.
{"title":"Thermodynamic modeling framework with experimental investigation of the large-scale bonded area and local void in Cu-Cu bonding interface for advanced semiconductor packaging","authors":"Sung-Hyun Oh , Hyun-Dong Lee , Jae-Uk Lee , Sung-Ho Park , Won-Seob Cho , Yong-Jin Park , Alexandra Haag , Soichi Watanabe , Marco Arnold , Hoo-Jeong Lee , Eun-Ho Lee","doi":"10.1016/j.ijplas.2024.104073","DOIUrl":"10.1016/j.ijplas.2024.104073","url":null,"abstract":"<div><p>With the increase in computational costs driven by the use of artificial intelligence, enhancing the performance of semiconductor systems while improving efficiency has become an inevitable challenge. Due to the fine pitch limits of micro bumps, bumpless Cu-Cu bonding is emerging as the next-generation core technology. This study aims to analyze the effects of individual temperature and pressure on both large- and local-scale behaviors of material in the Cu-Cu bonding process with experiments and numerical analysis. The motivation of this study is to compensate the deficiencies in reported studies on process optimization, particularly the lack of exploration of the separated effects of temperature and pressure on large- and local-scale Cu-Cu bonding. Furthermore, reports on the thermodynamic modeling of Cu-Cu bonding behavior are not sufficient, making it challenging to find suitable models. Bonding experiments were performed by independently controlling the temperature and pressure using blank Cu films treated by precise chemical mechanical polishing (CMP) processes. The large-scale bonded area under each condition was measured, and transmission electron microscope (TEM) images were captured to observe the patterns of local void formation under various temperature and pressure conditions. In the experiments, it was observed that the temperature increase had a greater impact on the bonded area at a larger scale than the increase in pressure. However, for nanoscale-local voids, an increase in pressure had a more dominant effect. To discuss the experimental results, a thermodynamic modeling framework that considers coupled heat-induced deformation, plastic deformation, and volumetric changes caused by material flux was proposed. The proposed model has been implemented in the user-defined material subroutine (UMAT) of the ABAQUS program for finite element (FE) analysis. Numerical analysis using the proposed model captures the experimental data well. In large-scale simulations, temperature conditions have a significant impact, with plastic deformation being the primary mode of deformation, while the pressure conditions dominate the material flux, making substantial contributions to reducing voids at local-scale. To achieve complete closure of the void, the simulation demonstrated that maintaining a sufficient pressure gradient until the complete closure is required. The study findings provide an explicit understanding of how the temperature and pressure conditions differently affect large-scale bonding and local voids for semiconductor package manufacturing.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104073"},"PeriodicalIF":9.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.ijplas.2024.104077
Yuyang Liu , Lei Zhao , Yixuan Hu , Ge Wang , Wangshu Zheng , Tim Vogel , Kolan M. Reddy , Yubin Ke , Qiang Guo
Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.
{"title":"Multi-functional amorphous/crystalline interfaces rendering strong-and-ductile nano-metallic-glass/aluminum composite","authors":"Yuyang Liu , Lei Zhao , Yixuan Hu , Ge Wang , Wangshu Zheng , Tim Vogel , Kolan M. Reddy , Yubin Ke , Qiang Guo","doi":"10.1016/j.ijplas.2024.104077","DOIUrl":"10.1016/j.ijplas.2024.104077","url":null,"abstract":"<div><p>Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104077"},"PeriodicalIF":9.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.ijplas.2024.104075
Jinheung Park , Yong Hou , Junying Min , Zeran Hou , Heung Nam Han , Binbin He , Myoung-Gyu Lee
This study develops a novel crystal plasticity (CP) model incorporating deformation-induced martensitic transformation (DIMT) and transformation-induced plasticity (TRIP) effect to predict the complex interplay between microstructural evolution and mechanical behavior in a third-generation advanced high-strength steel QP980. This model introduces phenomenological theory of martensite crystallography (PTMC) based TRIP theory and DIMT kinetics grounded on nucleation-controlled phenomenon. Notably, the DIMT model is improved by utilizing a geometric approach for calculating shear band intersections. A virtual multiphase representative volume element (RVE) based on the Voronoi tessellation is generated for the QP980 steel, which comprises ferrite, martensite, and retained austenite (RA). The study highlights how phase transformation affects mechanical properties, notably the strengthening from transformed martensite and the mechanical alterations in RA due to the TRIP effect. The DIMT kinetics dependent on stress states such as uniaxial tension (UT), uniaxial compression (UC), plane strain tension (PST), and equi-biaxial tension (EBT) are analyzed using the developed model. The role of microstructural surroundings on martensitic transformation is also examined. Furthermore, analysis under biaxial loading angles using the model reveals an asymmetric yield surface, with more pronounced changes in yield stress in the tensile region due to accelerated transformation behaviors, as opposed to the more gradual transformations in the compressive region. This study provides valuable insights into the deformation mechanisms of the third-generation advanced high-strength steels including relationship between plastic anisotropy, transformation kinetics, and microstructural evolution.
{"title":"Understanding plasticity in multiphase quenching & partitioning steels: Insights from crystal plasticity with stress state-dependent martensitic transformation","authors":"Jinheung Park , Yong Hou , Junying Min , Zeran Hou , Heung Nam Han , Binbin He , Myoung-Gyu Lee","doi":"10.1016/j.ijplas.2024.104075","DOIUrl":"10.1016/j.ijplas.2024.104075","url":null,"abstract":"<div><p>This study develops a novel crystal plasticity (CP) model incorporating deformation-induced martensitic transformation (DIMT) and transformation-induced plasticity (TRIP) effect to predict the complex interplay between microstructural evolution and mechanical behavior in a third-generation advanced high-strength steel QP980. This model introduces phenomenological theory of martensite crystallography (PTMC) based TRIP theory and DIMT kinetics grounded on nucleation-controlled phenomenon. Notably, the DIMT model is improved by utilizing a geometric approach for calculating shear band intersections. A virtual multiphase representative volume element (RVE) based on the Voronoi tessellation is generated for the QP980 steel, which comprises ferrite, martensite, and retained austenite (RA). The study highlights how phase transformation affects mechanical properties, notably the strengthening from transformed martensite and the mechanical alterations in RA due to the TRIP effect. The DIMT kinetics dependent on stress states such as uniaxial tension (UT), uniaxial compression (UC), plane strain tension (PST), and equi-biaxial tension (EBT) are analyzed using the developed model. The role of microstructural surroundings on martensitic transformation is also examined. Furthermore, analysis under biaxial loading angles using the model reveals an asymmetric yield surface, with more pronounced changes in yield stress in the tensile region due to accelerated transformation behaviors, as opposed to the more gradual transformations in the compressive region. This study provides valuable insights into the deformation mechanisms of the third-generation advanced high-strength steels including relationship between plastic anisotropy, transformation kinetics, and microstructural evolution.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104075"},"PeriodicalIF":9.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.ijplas.2024.104077
Yuyang Liu, Lei Zhao, Yixuan Hu, Ge Wang, Wangshu Zheng, Tim Vogel, Kolan M. Reddy, Yubin Ke, Qiang Guo
Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.
{"title":"Multi-functional amorphous/crystalline interfaces rendering strong-and-ductile nano-metallic-glass/aluminum composite","authors":"Yuyang Liu, Lei Zhao, Yixuan Hu, Ge Wang, Wangshu Zheng, Tim Vogel, Kolan M. Reddy, Yubin Ke, Qiang Guo","doi":"10.1016/j.ijplas.2024.104077","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104077","url":null,"abstract":"Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"74 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}