Wire-arc directed energy deposition (W-DED) is a cost-effective additive manufacturing technology increasingly applied to the fabrication of magnesium alloy components. However, AZ-series magnesium alloys fabricated by conventional DED suffer from inadequate properties and premature failure due to stress concentration caused by coarse structure and high fraction of porosity. In this work, a high-energy pulsed arc is introduced into the W-DED of AZ31B alloy, and its effects on porosity, microstructure, mechanical properties, and deformation damage behavior are comprehensively investigated. The pulsed-coupled DED (CMT+P) process significantly enhances component densification while refining grains and precipitates by intensifying solidification dynamics and modifying solute redistribution. The AZ31B alloy fabricated by CMT+P process exhibits a superior strength-ductility synergy, with ultimate tensile strength of 262 ± 1.5 MPa along BD and 267 ± 2 MPa along TD accompanied by a total elongation of 24.7 ± 1.8 % and 25.4 ± 1.5 %, respectively. In-situ synchrotron tomography from a novel “primary damage band (PDB)” perspective reveals the competitive relationship between initial and derived pores of deformation behavior. During the progressive damage evolution, the optimized structure crucially suppresses derived pore nucleation and delays stress accumulation to enhance damage tolerance and promote uniform plastic deformation. This work provides a new strategy for fabricating high-performance Mg-Al DED components that combine high performance with superior damage resistance.
扫码关注我们
求助内容:
应助结果提醒方式:
