Haoxiang Su, Manlu Liu, Hongwei Liu, Jianwen Huo, Songlin Gou, Qing Su
Compared with the traditional manipulator, the hyper-redundant manipulator has the advantage of high flexibility, which is particularly suitable for all kinds of complex working environments. However, the complex space environment requires the hyper-redundant manipulator to have stronger obstacle avoidance ability and adaptability. In order to solve the problems of a large amount of calculation and poor obstacle avoidance effects in the path planning of the hyper-redundant manipulator, this paper introduces the ‘backbone curve’ approach, which transforms the problem of solving joint path points into the behaviour of determining the backbone curve. After the backbone curve approach is used to design the curve that meets the requirements of obstacle avoidance and the end pose, the least squares fitting and the improved space joint fitting are used to match the plane curve and the space curve respectively, and the angle value of each joint of the manipulator is limited by the algorithm. Furthermore, a fusion obstacle avoidance algorithm is proposed to obtain the joint path points of the hyper-redundant manipulator. Compared with the classic Jacobian iteration method, this method can avoid obstacles better, has the advantages of simple calculation, high efficiency, and can fully reflect the geometric characteristics of the manipulator. Simulation experiments have proven the feasibility of the algorithm.
{"title":"Path planning of hyper-redundant manipulators for narrow spaces","authors":"Haoxiang Su, Manlu Liu, Hongwei Liu, Jianwen Huo, Songlin Gou, Qing Su","doi":"10.1049/csy2.12055","DOIUrl":"10.1049/csy2.12055","url":null,"abstract":"<p>Compared with the traditional manipulator, the hyper-redundant manipulator has the advantage of high flexibility, which is particularly suitable for all kinds of complex working environments. However, the complex space environment requires the hyper-redundant manipulator to have stronger obstacle avoidance ability and adaptability. In order to solve the problems of a large amount of calculation and poor obstacle avoidance effects in the path planning of the hyper-redundant manipulator, this paper introduces the ‘backbone curve’ approach, which transforms the problem of solving joint path points into the behaviour of determining the backbone curve. After the backbone curve approach is used to design the curve that meets the requirements of obstacle avoidance and the end pose, the least squares fitting and the improved space joint fitting are used to match the plane curve and the space curve respectively, and the angle value of each joint of the manipulator is limited by the algorithm. Furthermore, a fusion obstacle avoidance algorithm is proposed to obtain the joint path points of the hyper-redundant manipulator. Compared with the classic Jacobian iteration method, this method can avoid obstacles better, has the advantages of simple calculation, high efficiency, and can fully reflect the geometric characteristics of the manipulator. Simulation experiments have proven the feasibility of the algorithm.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 3","pages":"251-263"},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47919382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaojun Li, Xinyan Qin, Jin Lei, Jie Zhang, Huidong Li, Bo Li, Yanqi Wang, Dexin Wang
To address complex work conditions incredibly challenging to the stability of power line inspection robots, we design a walking mechanism and propose a variable universe fuzzy control (VUFC) method based on multi-work conditions for flying-walking power line inspection robots (FPLIRs). The contributions of this paper are as follows: (1) A flexible pressing component is designed to improve the adaptability of the FPLIR to the ground line slope. (2) The influence of multi-work conditions on the FPLIR's walking stability is quantified using three condition parameters (i.e., slope, slipping degree and swing angle), and their measurement methods are proposed. (3) The VUFC method based on the condition parameters is proposed to improve the walking stability of the FPLIR. Finally, the effect of the VUFC method on walking stability of the FPLIR is teste. The experimental results show that the maximum climbing angle of the FPLIR reaches 29.1°. Compared with the constant pressing force of 30 N, the average value of slipping degree is 0.93°, increasing by 35%. The maximum and average values of robot's swing angle are reduced by 46% and 54%, respectively. By comparing with fuzzy control, the VUFC can provide a more reasonable pressing force while maintaining the walking stability of the FPLIR. The proposed walking mechanism and the VUFC method significantly improve the stability of the FPLIR, providing a reference for structural designs and stability controls of inspection robots.
{"title":"Variable universe fuzzy control of walking stability for flying-walking power line inspection robot based on multi-work conditions","authors":"Zhaojun Li, Xinyan Qin, Jin Lei, Jie Zhang, Huidong Li, Bo Li, Yanqi Wang, Dexin Wang","doi":"10.1049/csy2.12058","DOIUrl":"10.1049/csy2.12058","url":null,"abstract":"<p>To address complex work conditions incredibly challenging to the stability of power line inspection robots, we design a walking mechanism and propose a variable universe fuzzy control (VUFC) method based on multi-work conditions for flying-walking power line inspection robots (FPLIRs). The contributions of this paper are as follows: (1) A flexible pressing component is designed to improve the adaptability of the FPLIR to the ground line slope. (2) The influence of multi-work conditions on the FPLIR's walking stability is quantified using three condition parameters (i.e., slope, slipping degree and swing angle), and their measurement methods are proposed. (3) The VUFC method based on the condition parameters is proposed to improve the walking stability of the FPLIR. Finally, the effect of the VUFC method on walking stability of the FPLIR is teste. The experimental results show that the maximum climbing angle of the FPLIR reaches 29.1°. Compared with the constant pressing force of 30 N, the average value of slipping degree is 0.93°, increasing by 35%. The maximum and average values of robot's swing angle are reduced by 46% and 54%, respectively. By comparing with fuzzy control, the VUFC can provide a more reasonable pressing force while maintaining the walking stability of the FPLIR. The proposed walking mechanism and the VUFC method significantly improve the stability of the FPLIR, providing a reference for structural designs and stability controls of inspection robots.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 3","pages":"212-227"},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47585860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tracking control has been a vital research topic in robotics. This paper presents a novel hybrid control strategy for an unmanned underwater vehicle (UUV) based on a bioinspired neural dynamics model. An enhanced backstepping kinematic control strategy is first developed to avoid sharp velocity jumps and provides smooth velocity commands relative to conventional methods. Then, a novel sliding mode control is proposed, which is capable of providing smooth and continuous torque commands free from chattering. In comparative studies, the proposed combined hybrid control strategy has ensured control signal smoothness, which is critical in real-world applications, especially for a UUV that needs to operate in complex underwater environments.
{"title":"A hybrid tracking control strategy for an unmanned underwater vehicle aided with bioinspired neural dynamics","authors":"Zhe Xu, Tao Yan, Simon X. Yang, S. Andrew Gadsden","doi":"10.1049/csy2.12060","DOIUrl":"10.1049/csy2.12060","url":null,"abstract":"<p>Tracking control has been a vital research topic in robotics. This paper presents a novel hybrid control strategy for an unmanned underwater vehicle (UUV) based on a bioinspired neural dynamics model. An enhanced backstepping kinematic control strategy is first developed to avoid sharp velocity jumps and provides smooth velocity commands relative to conventional methods. Then, a novel sliding mode control is proposed, which is capable of providing smooth and continuous torque commands free from chattering. In comparative studies, the proposed combined hybrid control strategy has ensured control signal smoothness, which is critical in real-world applications, especially for a UUV that needs to operate in complex underwater environments.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 3","pages":"153-162"},"PeriodicalIF":0.0,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78821766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907560
Jianjun Yu, Ruiqi Li, Daoxiong Gong, Yixin Liu, Peng Liu
In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like.
{"title":"Gait tracking control of biped robot based on adaptive gait switching algorithm","authors":"Jianjun Yu, Ruiqi Li, Daoxiong Gong, Yixin Liu, Peng Liu","doi":"10.1109/CYBER55403.2022.9907560","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907560","url":null,"abstract":"In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"42 4 1","pages":"105-110"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90424781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907466
Zhilin Yang, H. Fang, Yongqiang Wang, Wei Feng, Kai He
At present, most of the cleaning of oil storage tanks is in the manual cleaning stage. On the one hand, manual cleaning has high labor intensity and high-risk factor, on the other hand, low cleaning efficiency leads to high cleaning costs. In response to the urgent needs and actual operating conditions of the oil tank cleaning industry, the crawler hydraulic sludge cleaning robot is developed in this paper which can replace the manual cleaning of oil tanks to a certain extent. This article mainly introduces the structure and working process of the robot as well as the strength check of the key components. Afterwards, the kinematics analysis of the robot in the working state is carried out.
{"title":"Mechanical Design of a Crawler Hydraulic Sludge Cleaning Robot","authors":"Zhilin Yang, H. Fang, Yongqiang Wang, Wei Feng, Kai He","doi":"10.1109/CYBER55403.2022.9907466","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907466","url":null,"abstract":"At present, most of the cleaning of oil storage tanks is in the manual cleaning stage. On the one hand, manual cleaning has high labor intensity and high-risk factor, on the other hand, low cleaning efficiency leads to high cleaning costs. In response to the urgent needs and actual operating conditions of the oil tank cleaning industry, the crawler hydraulic sludge cleaning robot is developed in this paper which can replace the manual cleaning of oil tanks to a certain extent. This article mainly introduces the structure and working process of the robot as well as the strength check of the key components. Afterwards, the kinematics analysis of the robot in the working state is carried out.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"10 1","pages":"1247-1252"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87529032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In view of the problems of health care for the semi-disabled elderly, this paper studies the semantic segmentation of human features in a bathing environment with a scrubbing device. Firstly three-dimensional point cloud data of different types to construct a human model is collected by the lidar. Secondly, overcome the influence of the water fog environment on the modeling by the hybrid filtering algorithm, and the human point cloud area is extracted. Finally, the human semantic segmentation model fusing the spatial feature extraction module and the channel attention module is proposed based on PointNet improvement. After training and testing on the target data set, the results show that the algorithm can accurately identify feature information for 3D human models of different types. The segmentation rate reaches 95.7%, which is 4.5% higher than the PointNet network, significantly improves the segmentation of human features, and has high engineering application value.
{"title":"Research on Human Features Semantic Segmentation Based on Laser Point Cloud","authors":"Tianyi Ma, Bokai Xuan, Jian Li, Yuexuan Xu, Minghe Liu, Qingsong Ding, Jianwen Wang, Hao Sun","doi":"10.1109/CYBER55403.2022.9907384","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907384","url":null,"abstract":"In view of the problems of health care for the semi-disabled elderly, this paper studies the semantic segmentation of human features in a bathing environment with a scrubbing device. Firstly three-dimensional point cloud data of different types to construct a human model is collected by the lidar. Secondly, overcome the influence of the water fog environment on the modeling by the hybrid filtering algorithm, and the human point cloud area is extracted. Finally, the human semantic segmentation model fusing the spatial feature extraction module and the channel attention module is proposed based on PointNet improvement. After training and testing on the target data set, the results show that the algorithm can accurately identify feature information for 3D human models of different types. The segmentation rate reaches 95.7%, which is 4.5% higher than the PointNet network, significantly improves the segmentation of human features, and has high engineering application value.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"10 1","pages":"876-881"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88450395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907154
Shengshu Liu, Y. Lei, Xin Dong
Gmapping and Karto are two classic laser-based SLAM algorithms widely used in various applications. This paper evaluated and compared the performances of these two algorithms. A series of experiments were conducted within the self-built outdoor environments. The parameters of algorithms were tuned, the performances of different parameter settings were evaluated and compared, and the pros and cons regarding mapping and localization accuracy and computational cost of two algorithms were discussed.
{"title":"Evaluation and Comparison of Gmapping and Karto SLAM Systems","authors":"Shengshu Liu, Y. Lei, Xin Dong","doi":"10.1109/CYBER55403.2022.9907154","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907154","url":null,"abstract":"Gmapping and Karto are two classic laser-based SLAM algorithms widely used in various applications. This paper evaluated and compared the performances of these two algorithms. A series of experiments were conducted within the self-built outdoor environments. The parameters of algorithms were tuned, the performances of different parameter settings were evaluated and compared, and the pros and cons regarding mapping and localization accuracy and computational cost of two algorithms were discussed.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"1 1","pages":"295-300"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90840915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907070
Xiaoteng Wang, Gang Chen
The welding process of large steel components is mainly manual, with high labour intensity, high risk factor and low operational efficiency, which cannot meet the requirements of modern enterprise manufacturing. This paper proposed a crawling robot, which is combined with a 6-axis robot through a magnetic suction mobile chassis, and uses a laser tracking system to guide the crawling robot to walk, which solves the problem of the restricted working space of the traditional crawling robot. The crawler welding robot has good mobility and high degrees of freedom, and can be adapted to automated welding of large steel components.
{"title":"Development of a Crawling Robot for Large Steel Structure Welding","authors":"Xiaoteng Wang, Gang Chen","doi":"10.1109/CYBER55403.2022.9907070","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907070","url":null,"abstract":"The welding process of large steel components is mainly manual, with high labour intensity, high risk factor and low operational efficiency, which cannot meet the requirements of modern enterprise manufacturing. This paper proposed a crawling robot, which is combined with a 6-axis robot through a magnetic suction mobile chassis, and uses a laser tracking system to guide the crawling robot to walk, which solves the problem of the restricted working space of the traditional crawling robot. The crawler welding robot has good mobility and high degrees of freedom, and can be adapted to automated welding of large steel components.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"23 1","pages":"1212-1217"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72584928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907417
Puchun Liu, Bo Li, Sheng Bi, Muye Li, Chen Zheng
Multi-object tracking (MOT) attracts great attention in computer vision while playing an increasingly essential role in manufacturing and life. There is currently an urgent requirement for practical implementation of MOT algorithms to guide production in industry. Nevertheless, the algorithm guiding camera movement is prone to be naive in reality to some degree, which is not conducive to handle complex situations and may cause damage. In this paper, we propose a deep-learning-based MOT method to guide camera movement. In particular, jointly learnt detector and embedding model (JDE) is adopted to extract the features of live stream through data preprocessing and training, which detects the spacial and temporal information of objects, for instance, pedestrians. Moreover, we propose a cognitive-based network segmentation method which makes edge-cloud collaboration possible. Additionally, object location information provided by deep learning allows object clustering and weight allocation, followed by utilizing PID algorithm to guide camera motion. Our method is compared with conventional model through several metrics, especially Euclidean Average Distance, which indicates the effectiveness, reliability and robustness of our model.
{"title":"A Camera Movement Guidance Method based on Multi-Object Tracking","authors":"Puchun Liu, Bo Li, Sheng Bi, Muye Li, Chen Zheng","doi":"10.1109/CYBER55403.2022.9907417","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907417","url":null,"abstract":"Multi-object tracking (MOT) attracts great attention in computer vision while playing an increasingly essential role in manufacturing and life. There is currently an urgent requirement for practical implementation of MOT algorithms to guide production in industry. Nevertheless, the algorithm guiding camera movement is prone to be naive in reality to some degree, which is not conducive to handle complex situations and may cause damage. In this paper, we propose a deep-learning-based MOT method to guide camera movement. In particular, jointly learnt detector and embedding model (JDE) is adopted to extract the features of live stream through data preprocessing and training, which detects the spacial and temporal information of objects, for instance, pedestrians. Moreover, we propose a cognitive-based network segmentation method which makes edge-cloud collaboration possible. Additionally, object location information provided by deep learning allows object clustering and weight allocation, followed by utilizing PID algorithm to guide camera motion. Our method is compared with conventional model through several metrics, especially Euclidean Average Distance, which indicates the effectiveness, reliability and robustness of our model.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"24 10","pages":"150-155"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72412747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1109/CYBER55403.2022.9907708
Mingyue Zhao, M. Lin, W. Fan, Q. Xie, Bo Wang
Automatic biochemical immune analyzer is often used in clinical examination and diagnosis, and its efficiency is very important. At present, most automatic biochemical analyzers use fixed period algorithm for scheduling, which has long detection time, low efficiency and intermittency. In this paper, a scheduling method based on particle swarm optimization (PSO) algorithm is proposed. The algorithm adopts sequence coding method, and approximates the scheduling problem of automatic biochemical analyzer to ATSP, and establishes ATSP model suitable for the scheduling problem of fully automatic biochemical analyzer, so as to optimize the scheduling of automatic biochemical analyzer.
{"title":"Scheduling Optimization of Automatic Biochemical Analyzer based on Particle Swarm Optimization","authors":"Mingyue Zhao, M. Lin, W. Fan, Q. Xie, Bo Wang","doi":"10.1109/CYBER55403.2022.9907708","DOIUrl":"https://doi.org/10.1109/CYBER55403.2022.9907708","url":null,"abstract":"Automatic biochemical immune analyzer is often used in clinical examination and diagnosis, and its efficiency is very important. At present, most automatic biochemical analyzers use fixed period algorithm for scheduling, which has long detection time, low efficiency and intermittency. In this paper, a scheduling method based on particle swarm optimization (PSO) algorithm is proposed. The algorithm adopts sequence coding method, and approximates the scheduling problem of automatic biochemical analyzer to ATSP, and establishes ATSP model suitable for the scheduling problem of fully automatic biochemical analyzer, so as to optimize the scheduling of automatic biochemical analyzer.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"116 1","pages":"1028-1031"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79562552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}