Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111269
Limin Cao , Bingbing Li , Sijia Zheng , Qicheng Zhang , Yongmei Qian , Yinghui Ren , Huimin Wang , Min Wang , Xiang Wu , Jiayi Zhang , Ke Xu
Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction. Insulin-like growth factor 2 (IGF2) secreted by NSCLC cells mediated NSCLC cells’ effect on autophagy induction and CAFs activation. Importantly, the activated CAFs promoted NSCLC cells growth, migration, and invasion. Further study showed that the activated CAFs facilitated NSCLC cells invasion via promoting epithelial-mesenchymal transition (EMT) process, upregulating metastasis-related genes, releasing CXCL12, and activating its downstream AKT serine/threonine kinase 1 (AKT)/ nuclear factor κB (NF-κB) signaling pathway. These findings revealed that IGF2-mediated autophagy plays a critical role in CAFs activation and suggested the IGF2-autophagy cascade in fibroblasts could be a potential target for lung cancer therapy.
{"title":"Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells","authors":"Limin Cao , Bingbing Li , Sijia Zheng , Qicheng Zhang , Yongmei Qian , Yinghui Ren , Huimin Wang , Min Wang , Xiang Wu , Jiayi Zhang , Ke Xu","doi":"10.1016/j.isci.2024.111269","DOIUrl":"10.1016/j.isci.2024.111269","url":null,"abstract":"<div><div>Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction. Insulin-like growth factor 2 (IGF2) secreted by NSCLC cells mediated NSCLC cells’ effect on autophagy induction and CAFs activation. Importantly, the activated CAFs promoted NSCLC cells growth, migration, and invasion. Further study showed that the activated CAFs facilitated NSCLC cells invasion via promoting epithelial-mesenchymal transition (EMT) process, upregulating metastasis-related genes, releasing CXCL12, and activating its downstream AKT serine/threonine kinase 1 (AKT)/ nuclear factor κB (NF-κB) signaling pathway. These findings revealed that IGF2-mediated autophagy plays a critical role in CAFs activation and suggested the IGF2-autophagy cascade in fibroblasts could be a potential target for lung cancer therapy.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111269"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111264
Lina Wang , Zeling Chen , Xiaofeng Wang , Binrui Wang
Addressing the joint control problem of pneumatic muscle-driven robots, this study aims to design a bionic reflex mechanism to enhance the robots’ adaptive capacity to various disturbances. Based on the biological reflex mechanism, we developed a spindle reflex and deep tendon reflex control system based on CPG (central pattern generator) to mitigate the sudden impact on the hip joint and the continuous blocking force on the knee joint, respectively. The spindle reflex controller incorporates the fast response of sliding mode control to effectively minimize the trajectory deviation of the hip joint under impact disturbances. The deep tendon reflex controller integrates RBF neural network adaptive control and the Tegotae framework to suppress excessive tension in the knee joint and augment the system’s adaptability to the blocking force disturbances. The experimental results confirm that the two reflex mechanisms significantly enhance the robustness and flexibility of the pneumatic muscle-driven robot in motion.
{"title":"Anti-disturbance control of CPG bionic reflection in pneumatic muscle actuator","authors":"Lina Wang , Zeling Chen , Xiaofeng Wang , Binrui Wang","doi":"10.1016/j.isci.2024.111264","DOIUrl":"10.1016/j.isci.2024.111264","url":null,"abstract":"<div><div>Addressing the joint control problem of pneumatic muscle-driven robots, this study aims to design a bionic reflex mechanism to enhance the robots’ adaptive capacity to various disturbances. Based on the biological reflex mechanism, we developed a spindle reflex and deep tendon reflex control system based on CPG (central pattern generator) to mitigate the sudden impact on the hip joint and the continuous blocking force on the knee joint, respectively. The spindle reflex controller incorporates the fast response of sliding mode control to effectively minimize the trajectory deviation of the hip joint under impact disturbances. The deep tendon reflex controller integrates RBF neural network adaptive control and the Tegotae framework to suppress excessive tension in the knee joint and augment the system’s adaptability to the blocking force disturbances. The experimental results confirm that the two reflex mechanisms significantly enhance the robustness and flexibility of the pneumatic muscle-driven robot in motion.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111264"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111279
Zhaohuai Li , Runping Duan , Qi Jiang , Jiaying Liu , Jialing Chen , Loujing Jiang , Tianfu Wang , He Li , Yihan Zhang , Xuening Peng , Zhaohao Huang , Lei Zhu , Wenjun Zou , Ying Lin , Wenru Su
Uveitis, an autoimmune disease, often leads to blindness. CD4+ T cells, including regulatory T cells (Tregs) and effector T cells (Th1 and Th17), play a critical role in its pathogenesis. Caloric restriction (CR) has been shown to alleviate autoimmune diseases. However, careful characterization of the impact of CR on experimental autoimmune uveitis (EAU) is poorly understood. This study used single-cell RNA sequencing to analyze cervical draining lymph nodes in mice under ad libitum (AL) and CR diets, with or without EAU. CR increased Tregs, altered immune cell metabolism, reduced EAU symptoms, and downregulated inflammatory and glycolysis genes. Flow cytometry confirmed CR’s inhibitory effect on Th1 and Th17 proliferation and its promotion of Treg proliferation. CR also balanced CD4+ T cells by inhibiting the PI3K/AKT/c-Myc pathway and reducing GM-CSF in Th17 cells. These findings suggest CR as a potential therapeutic strategy for autoimmune diseases.
{"title":"Dietary caloric restriction protects experimental autoimmune uveitis by regulating Teff/Treg balance","authors":"Zhaohuai Li , Runping Duan , Qi Jiang , Jiaying Liu , Jialing Chen , Loujing Jiang , Tianfu Wang , He Li , Yihan Zhang , Xuening Peng , Zhaohao Huang , Lei Zhu , Wenjun Zou , Ying Lin , Wenru Su","doi":"10.1016/j.isci.2024.111279","DOIUrl":"10.1016/j.isci.2024.111279","url":null,"abstract":"<div><div>Uveitis, an autoimmune disease, often leads to blindness. CD4<sup>+</sup> T cells, including regulatory T cells (Tregs) and effector T cells (Th1 and Th17), play a critical role in its pathogenesis. Caloric restriction (CR) has been shown to alleviate autoimmune diseases. However, careful characterization of the impact of CR on experimental autoimmune uveitis (EAU) is poorly understood. This study used single-cell RNA sequencing to analyze cervical draining lymph nodes in mice under <em>ad libitum</em> (AL) and CR diets, with or without EAU. CR increased Tregs, altered immune cell metabolism, reduced EAU symptoms, and downregulated inflammatory and glycolysis genes. Flow cytometry confirmed CR’s inhibitory effect on Th1 and Th17 proliferation and its promotion of Treg proliferation. CR also balanced CD4<sup>+</sup> T cells by inhibiting the PI3K/AKT/c-Myc pathway and reducing GM-CSF in Th17 cells. These findings suggest CR as a potential therapeutic strategy for autoimmune diseases.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111279"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111276
Matteo Spinelli , Alejandra Acevedo Harnecker , Christoph T. Block , Lucia Lindenthal , Fabian Schuhmann , Martin Greschner , Ulrike Janssen-Bienhold , Karin Dedek , Christian Puller
The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons. We asked whether regional specializations are present in terms of horizontal cell density distributions, morphological properties, localization of gap junction proteins, and the spatial extent of electrical coupling. These key features were asymmetrically organized along the dorsoventral axis. Dorsal cells were less densely distributed, had larger dendritic trees, and electrical coupling was more extensive than in ventral cells. The steepest change occurred at the visual horizon. Our results show that the cellular and synaptic organization of the mouse visual system are adapted to the visual environment at the earliest possible level and that horizontal cells are suited to form the substrate for the global gradient of ganglion cell receptive fields.
{"title":"The first interneuron of the mouse visual system is tailored to the natural environment through morphology and electrical coupling","authors":"Matteo Spinelli , Alejandra Acevedo Harnecker , Christoph T. Block , Lucia Lindenthal , Fabian Schuhmann , Martin Greschner , Ulrike Janssen-Bienhold , Karin Dedek , Christian Puller","doi":"10.1016/j.isci.2024.111276","DOIUrl":"10.1016/j.isci.2024.111276","url":null,"abstract":"<div><div>The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons. We asked whether regional specializations are present in terms of horizontal cell density distributions, morphological properties, localization of gap junction proteins, and the spatial extent of electrical coupling. These key features were asymmetrically organized along the dorsoventral axis. Dorsal cells were less densely distributed, had larger dendritic trees, and electrical coupling was more extensive than in ventral cells. The steepest change occurred at the visual horizon. Our results show that the cellular and synaptic organization of the mouse visual system are adapted to the visual environment at the earliest possible level and that horizontal cells are suited to form the substrate for the global gradient of ganglion cell receptive fields.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111276"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111256
Arnaud Lyon , Thomas Agius , Michael R. Macarthur , Kevin Kiesworo , Louis Stavart , Florent Allagnat , Sarah J. Mitchell , Leonardo V. Riella , Korkut Uygun , Heidi Yeh , Sebastien Déglise , Déla Golshayan , Alban Longchamp
One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown. PR was achieved in mice via one-week carbohydrate loading and/or through a low-protein diet. PR decreased IGF-1 circulating levels as well as renal and hepatic expression. Upon renal IR, serum IGF-1 positively correlated with renal dysfunction and tissular damages, independently of sex and age. Exogenous IGF-1 administration abrogated PR benefits during IR, while IGF-1 receptor inhibition with linsitinib was protective. IGF-1 was associated with a reduction in forkhead box O (FoxO), and AMP-activated protein kinase (AMPK) signaling pathways previously demonstrated to improve IR resilience in various organs. These data support dietary or pharmacological reduction of IGF-1 signaling to mitigate IR injury prior to solid organ transplantation and beyond.
{"title":"Dietary or pharmacological inhibition of insulin-like growth factor-1 protects from renal ischemia-reperfusion injury in mice","authors":"Arnaud Lyon , Thomas Agius , Michael R. Macarthur , Kevin Kiesworo , Louis Stavart , Florent Allagnat , Sarah J. Mitchell , Leonardo V. Riella , Korkut Uygun , Heidi Yeh , Sebastien Déglise , Déla Golshayan , Alban Longchamp","doi":"10.1016/j.isci.2024.111256","DOIUrl":"10.1016/j.isci.2024.111256","url":null,"abstract":"<div><div>One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown. PR was achieved in mice via one-week carbohydrate loading and/or through a low-protein diet. PR decreased IGF-1 circulating levels as well as renal and hepatic expression. Upon renal IR, serum IGF-1 positively correlated with renal dysfunction and tissular damages, independently of sex and age. Exogenous IGF-1 administration abrogated PR benefits during IR, while IGF-1 receptor inhibition with linsitinib was protective. IGF-1 was associated with a reduction in forkhead box O (FoxO), and AMP-activated protein kinase (AMPK) signaling pathways previously demonstrated to improve IR resilience in various organs. These data support dietary or pharmacological reduction of IGF-1 signaling to mitigate IR injury prior to solid organ transplantation and beyond.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111256"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111262
Yueqing Liang , Xueyi Jiang , Xinfeng Zhao , Tiantian Tang , Xiuqin Fan , Rui Wang , Mengyi Yang , Kemin Qi , Yi Zhang , Ping Li
Increasing evidence points toward vitamin D (VD) having lipometabolism and immune-related properties to protect against related metabolic diseases through influencing DNA methylation with inconsistent results. Simultaneously, its relatively precise molecular metabolism on the progression of metabolic-associated fatty liver disease (MAFLD) remains uncertain. Here, we report an unprecedented role and possible mechanism for VD supplementation on the alleviation of high-fat diet (HFD)-induced MAFLD. Over time, our results demonstrated that metabolic disorders in the HFD-induced MAFLD were aggravated with a certain time-response dependence and accompanied by reduced VD metabolites. All these could be alleviated under sufficient VD supplementation in vivo and vitro. It was partially by inhibiting the expressions of DNMT1 to reverse the epigenetic patterns on the VD metabolism genes and TGFβR1, which ultimately triggered the TGFβ1/Smad3 pathway to result in the development of MAFLD. Furthermore, the protective effects of VD were weakened by the treatment with gene silencing of DNMT1.
{"title":"Vitamin D alleviates HFD-induced hepatic fibrosis by inhibiting DNMT1 to affect the TGFβ1/Smad3 pathway","authors":"Yueqing Liang , Xueyi Jiang , Xinfeng Zhao , Tiantian Tang , Xiuqin Fan , Rui Wang , Mengyi Yang , Kemin Qi , Yi Zhang , Ping Li","doi":"10.1016/j.isci.2024.111262","DOIUrl":"10.1016/j.isci.2024.111262","url":null,"abstract":"<div><div>Increasing evidence points toward vitamin D (VD) having lipometabolism and immune-related properties to protect against related metabolic diseases through influencing DNA methylation with inconsistent results. Simultaneously, its relatively precise molecular metabolism on the progression of metabolic-associated fatty liver disease (MAFLD) remains uncertain. Here, we report an unprecedented role and possible mechanism for VD supplementation on the alleviation of high-fat diet (HFD)-induced MAFLD. Over time, our results demonstrated that metabolic disorders in the HFD-induced MAFLD were aggravated with a certain time-response dependence and accompanied by reduced VD metabolites. All these could be alleviated under sufficient VD supplementation <em>in vivo</em> and vitro. It was partially by inhibiting the expressions of DNMT1 to reverse the epigenetic patterns on the VD metabolism genes and TGFβR1, which ultimately triggered the TGFβ1/Smad3 pathway to result in the development of MAFLD. Furthermore, the protective effects of VD were weakened by the treatment with gene silencing of DNMT1.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111262"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111272
Jeffrey C. Nekola , Jan Divíšek , Michal Horsák
Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas. Because appropriate modern climate occurs for these species throughout the Holarctic, with no clear barriers being present—especially for such efficient passive dispersers—the current >90% turnover observed between Eurasian and North American species pools appears at least in part related to the LGM landscape. Understanding current and predicting potential future biodiversity patterns thus requires consideration of the landscape template across at least 15,000 years time scales.
{"title":"The ghost of ice ages past: Impact of Last Glacial Maximum landscapes on modern biodiversity","authors":"Jeffrey C. Nekola , Jan Divíšek , Michal Horsák","doi":"10.1016/j.isci.2024.111272","DOIUrl":"10.1016/j.isci.2024.111272","url":null,"abstract":"<div><div>Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas. Because appropriate modern climate occurs for these species throughout the Holarctic, with no clear barriers being present—especially for such efficient passive dispersers—the current >90% turnover observed between Eurasian and North American species pools appears at least in part related to the LGM landscape. Understanding current and predicting potential future biodiversity patterns thus requires consideration of the landscape template across at least 15,000 years time scales.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111272"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111282
Bisiayo E. Fashemi , Amala K. Rougeau , Arnold M. Salazar , Steven J. Bark , Rayvanth Chappidi , Jeffrey W. Brown , Charles J. Cho , Jason C. Mills , Indira U. Mysorekar
The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of Ifrd1 leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. Ifrd1-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.
{"title":"IFRD1 is required for maintenance of bladder epithelial homeostasis","authors":"Bisiayo E. Fashemi , Amala K. Rougeau , Arnold M. Salazar , Steven J. Bark , Rayvanth Chappidi , Jeffrey W. Brown , Charles J. Cho , Jason C. Mills , Indira U. Mysorekar","doi":"10.1016/j.isci.2024.111282","DOIUrl":"10.1016/j.isci.2024.111282","url":null,"abstract":"<div><div>The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of <em>Ifrd1</em> leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. <em>Ifrd1</em>-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111282"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the area of thermal management, thermal control elements (TCEs) and thermal control circuits (TCCs) are proving to be innovative solutions to the challenges of temperature control and heat dissipation in various applications, ranging from electronic cooling to energy conversion and temperature control in buildings. Their integration promises to improve power density, energy efficiency, system reliability and system life expectancy. With the aim of connecting researchers in the field of thermal management and accelerating the development of TCEs and TCCs, we have developed an open-source TCC simulation tool called TCCbuilder that enables a quick and easy time-dependent 1D numerical analysis of the behavior of TCEs and TCCs. It uses the heat conduction equation to solve temperature profiles in different devices. The TCCbuilder application offers features not previously available with any other TCC modeling tool: a large adjacent library of materials and TCEs as well as a user-friendly graphical user interface (GUI).
{"title":"TCCbuilder: An open-source tool for the analysis of thermal switches, thermal diodes, thermal regulators, and thermal control circuits","authors":"Katja Vozel , Katja Klinar , Nada Petelin , Andrej Kitanovski","doi":"10.1016/j.isci.2024.111263","DOIUrl":"10.1016/j.isci.2024.111263","url":null,"abstract":"<div><div>In the area of thermal management, thermal control elements (TCEs) and thermal control circuits (TCCs) are proving to be innovative solutions to the challenges of temperature control and heat dissipation in various applications, ranging from electronic cooling to energy conversion and temperature control in buildings. Their integration promises to improve power density, energy efficiency, system reliability and system life expectancy. With the aim of connecting researchers in the field of thermal management and accelerating the development of TCEs and TCCs, we have developed an open-source TCC simulation tool called TCCbuilder that enables a quick and easy time-dependent 1D numerical analysis of the behavior of TCEs and TCCs. It uses the heat conduction equation to solve temperature profiles in different devices. The TCCbuilder application offers features not previously available with any other TCC modeling tool: a large adjacent library of materials and TCEs as well as a user-friendly graphical user interface (GUI).</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111263"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.isci.2024.111275
Joaquín Gonzalez , Pablo Torterolo , Kevin A. Bolding , Adriano B.L. Tort
Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.
{"title":"Communication subspace dynamics of the canonical olfactory pathway","authors":"Joaquín Gonzalez , Pablo Torterolo , Kevin A. Bolding , Adriano B.L. Tort","doi":"10.1016/j.isci.2024.111275","DOIUrl":"10.1016/j.isci.2024.111275","url":null,"abstract":"<div><div>Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111275"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}