首页 > 最新文献

Journal of Advanced Joining Processes最新文献

英文 中文
Effect of weld-line position on springback behavior in advanced high-strength steel tailor-welded blanks on hat-shaped bending application 在帽形弯曲应用中,焊缝位置对先进高强度钢定制焊接坯料回弹行为的影响
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1016/j.jajp.2024.100241
Rittichai Phaoniam, Komgrit Lawanwong

In this study, both experiments and finite-element analysis are performed to elucidate the effect of weld-line position on the springback behavior of advanced high-strength steel tailor-welded blanks (AHSS-TWBs). AHSS-TWBs are fabricated from grade 590Y high-strength steel and 980Y advanced high-strength steel, each with a thickness of 1.2 mm. Gas tungsten arc welding is performed to obtain autogenous butt-weld joints. Three distinct weld-line position patterns are systematically analyzed to investigate the springback phenomenon via hat-shaped draw bending. Experiments on the AHSS-TWBs show that the weld-line position affects springback. The stress distribution changes with the weld-line position, thereby initiating variations in both the components of the bending moment and the corresponding springback angle. Depending on the weld-line position, different springback behaviors and bending moments are resulted on the components.

本研究通过实验和有限元分析阐明了焊缝位置对高级高强度钢定制焊接坯料(AHSS-TWBs)回弹行为的影响。AHSS-TWB 由 590Y 级高强度钢和 980Y 高级高强度钢制成,每种钢的厚度均为 1.2 毫米。通过气体钨极氩弧焊获得自生对接焊点。系统分析了三种不同的焊接线位置模式,以研究通过帽形拉弯产生的回弹现象。对 AHSS-TWB 的实验表明,焊缝位置会影响回弹。应力分布随焊缝位置的变化而变化,从而导致弯矩分量和相应的回弹角度的变化。根据焊接线位置的不同,各部件的回弹行为和弯曲力矩也不同。
{"title":"Effect of weld-line position on springback behavior in advanced high-strength steel tailor-welded blanks on hat-shaped bending application","authors":"Rittichai Phaoniam,&nbsp;Komgrit Lawanwong","doi":"10.1016/j.jajp.2024.100241","DOIUrl":"10.1016/j.jajp.2024.100241","url":null,"abstract":"<div><p>In this study, both experiments and finite-element analysis are performed to elucidate the effect of weld-line position on the springback behavior of advanced high-strength steel tailor-welded blanks (AHSS-TWBs). AHSS-TWBs are fabricated from grade 590Y high-strength steel and 980Y advanced high-strength steel, each with a thickness of 1.2 mm. Gas tungsten arc welding is performed to obtain autogenous butt-weld joints. Three distinct weld-line position patterns are systematically analyzed to investigate the springback phenomenon via hat-shaped draw bending. Experiments on the AHSS-TWBs show that the weld-line position affects springback. The stress distribution changes with the weld-line position, thereby initiating variations in both the components of the bending moment and the corresponding springback angle. Depending on the weld-line position, different springback behaviors and bending moments are resulted on the components.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100241"},"PeriodicalIF":3.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000578/pdfft?md5=428b51fc4d13681df3ff6261a668485b&pid=1-s2.0-S2666330924000578-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of foam interlayer thickness and pore size on the microstructure and properties of brazed joints 泡沫夹层厚度和孔径对钎焊接头微观结构和性能的影响
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1016/j.jajp.2024.100242
Yifeng Xiao , Zhang Song , Qiankun Zhang , Rui Zhang , Shijie Bai , Liang Wu

Ni foam was introduced as an interlayer to improve the performance of the brazed C/C composite-TC4 titanium alloy joint, and high-quality brazed connections of c/c composites and TC4 were realized. Compared to a brazing joint without foam, the introduction of a foam Ni interlayer can achieve a more uniform bonding interface. The effects of the thickness and pore size of the foam Ni interlayer on the microstructure, mechanical properties and residual stresses of the joints were investigated. With increasing thickness and pore diameter, Ag-based solid solutions and Ti–Cu intermetallic compounds first become more dispersed and smaller at the center of the brazed joints, and then aggregate to become larger. The brazed interface microstructure with a 0.4 mm thick foam Ni interlayer with a pore size of 0.5 mm was more uniform, and the shear strength of the joint reached 21.23 MPa, representing an 85.96 % increase compared to the joint without the foam Ni interlayer. The residual stress and its distribution calculated by finite element method (FEM), and the residual stress of the brazed joint decreased from 467 MPa/-289.53 MPa to 457.96 MPa/-234.98 MPa. These results indicated that the Ni foam could act as a buffer layer to reduce the residual thermal stress, and improve the mechanical properties of C/C composite-TC4 titanium alloy joint.

通过引入泡沫镍作为中间层,提高了 C/C 复合材料-TC4 钛合金钎焊接头的性能,实现了 C/C 复合材料和 TC4 的高质量钎焊连接。与没有泡沫的钎焊接头相比,引入泡沫镍中间膜可以获得更均匀的粘接界面。研究了泡沫镍中间膜的厚度和孔径对接头微观结构、机械性能和残余应力的影响。随着厚度和孔径的增加,Ag 基固溶体和 Ti-Cu 金属间化合物首先在钎焊接头中心变得更加分散和细小,然后聚集变大。带有 0.4 毫米厚、孔径为 0.5 毫米的泡沫镍夹层的钎焊界面微观结构更加均匀,接头的剪切强度达到 21.23 兆帕,与不带泡沫镍夹层的接头相比提高了 85.96%。通过有限元法(FEM)计算残余应力及其分布,钎焊接头的残余应力从 467 兆帕/-289.53 兆帕降至 457.96 兆帕/-234.98 兆帕。这些结果表明,泡沫镍可作为缓冲层降低残余热应力,并改善 C/C 复合材料-TC4 钛合金接头的机械性能。
{"title":"Effect of foam interlayer thickness and pore size on the microstructure and properties of brazed joints","authors":"Yifeng Xiao ,&nbsp;Zhang Song ,&nbsp;Qiankun Zhang ,&nbsp;Rui Zhang ,&nbsp;Shijie Bai ,&nbsp;Liang Wu","doi":"10.1016/j.jajp.2024.100242","DOIUrl":"10.1016/j.jajp.2024.100242","url":null,"abstract":"<div><p>Ni foam was introduced as an interlayer to improve the performance of the brazed C/C composite-TC4 titanium alloy joint, and high-quality brazed connections of c/c composites and TC4 were realized. Compared to a brazing joint without foam, the introduction of a foam Ni interlayer can achieve a more uniform bonding interface. The effects of the thickness and pore size of the foam Ni interlayer on the microstructure, mechanical properties and residual stresses of the joints were investigated. With increasing thickness and pore diameter, Ag-based solid solutions and Ti–Cu intermetallic compounds first become more dispersed and smaller at the center of the brazed joints, and then aggregate to become larger. The brazed interface microstructure with a 0.4 mm thick foam Ni interlayer with a pore size of 0.5 mm was more uniform, and the shear strength of the joint reached 21.23 MPa, representing an 85.96 % increase compared to the joint without the foam Ni interlayer. The residual stress and its distribution calculated by finite element method (FEM), and the residual stress of the brazed joint decreased from 467 MPa/-289.53 MPa to 457.96 MPa/-234.98 MPa. These results indicated that the Ni foam could act as a buffer layer to reduce the residual thermal stress, and improve the mechanical properties of C/C composite-TC4 titanium alloy joint.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100242"},"PeriodicalIF":3.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266633092400058X/pdfft?md5=d396e81f9ecdb9fd147835189740a0c4&pid=1-s2.0-S266633092400058X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of welding current on the mechanical properties of Al 5083 alloy processed using high-current gas metal arc welding 焊接电流对使用大电流气体金属弧焊加工的 Al 5083 合金机械性能的影响
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-30 DOI: 10.1016/j.jajp.2024.100240
Cheolho Park , Hyunbin Nam , Namhyun Kang

This study investigated the effect of welding current during gas metal arc welding (GMAW) on the microstructure and composition of an Al 5083 alloy. As the welding current increased from 650 to 950 A, several changes were observed in the heat-affected zone (HAZ): grain coarsening and the formation of liquation cracks, and in the weld zone (WZ): increasing average secondary arm spacing and Mg loss. Therefore, the welding currents above 800 A are likely to cause liquation cracks in the HAZ and deterioration of the alloy's mechanical properties. Thus, welding condition with low heat input must be applied to improve the mechanical properties of the welds. This study provides a correlation between the weldability of Al 5083 alloy and welding current, offering a competitive advantage of liquid hydrogen storage containers.

本研究探讨了气体金属弧焊(GMAW)过程中焊接电流对铝 5083 合金微观结构和成分的影响。随着焊接电流从 650 A 增加到 950 A,在热影响区(HAZ)观察到了几种变化:晶粒粗化和液化裂纹的形成;在焊接区(WZ)观察到了几种变化:平均副臂间距增加和镁流失。因此,800 A 以上的焊接电流很可能会导致 HAZ 出现液化裂纹,并使合金的机械性能下降。因此,必须采用低热输入的焊接条件来改善焊缝的机械性能。本研究提供了 Al 5083 合金焊接性与焊接电流之间的相关性,为液氢储存容器提供了竞争优势。
{"title":"Effect of welding current on the mechanical properties of Al 5083 alloy processed using high-current gas metal arc welding","authors":"Cheolho Park ,&nbsp;Hyunbin Nam ,&nbsp;Namhyun Kang","doi":"10.1016/j.jajp.2024.100240","DOIUrl":"10.1016/j.jajp.2024.100240","url":null,"abstract":"<div><p>This study investigated the effect of welding current during gas metal arc welding (GMAW) on the microstructure and composition of an Al 5083 alloy. As the welding current increased from 650 to 950 A, several changes were observed in the heat-affected zone (HAZ): grain coarsening and the formation of liquation cracks, and in the weld zone (WZ): increasing average secondary arm spacing and Mg loss. Therefore, the welding currents above 800 A are likely to cause liquation cracks in the HAZ and deterioration of the alloy's mechanical properties. Thus, welding condition with low heat input must be applied to improve the mechanical properties of the welds. This study provides a correlation between the weldability of Al 5083 alloy and welding current, offering a competitive advantage of liquid hydrogen storage containers.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100240"},"PeriodicalIF":3.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000566/pdfft?md5=cbb7eec009a68bb35d90f8a5e128eea2&pid=1-s2.0-S2666330924000566-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flux enhancement with titanium or vanadium oxides addition for superior submerged arc welding of HSLA steel plates 添加钛或钒氧化物增强焊剂以实现 HSLA 钢板的优质埋弧焊接
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-27 DOI: 10.1016/j.jajp.2024.100238
Majid Malekinia , Habib Hamed Zargari , Kazuhiro Ito , Syamak Hossein Nedjad

A high-strength low-alloy (HSLA) steel plate of 10 mm thickness underwent submerged arc welding with enhanced fluxes containing additional titanium oxide (TiO2) or vanadium oxide (V2O5). The addition of TiO2 led to the development of a finer acicular ferrite structure but coarsening the carbide and martensite/austenite (M/A) constituents, which marginally improved the hardness, tensile strength, and ductility of weld metal. Conversely, incorporating V2O5 facilitated a substantial vanadium absorption (0.7 wt. %) in the weld metal, giving rise to a distinctive acicular microstructure less reliant on ferrite nucleation at non-metallic inclusions than conventional acicular ferrite. The distinctive microstructure, unique to vanadium steels, combined lath bainite with irregularly shaped granular bainite. The resultant dual-mode bainitic structure, coupled with a more uniform distribution of refined microphase constituents, outperformed the conventional acicular ferrite, delivering more than 20% and 13% improvements in yield and tensile strengths respectively, as evidenced by transverse tensile tests on the weld metals.

使用含有氧化钛(TiO2)或氧化钒(V2O5)的强化焊剂对厚度为 10 毫米的高强度低合金(HSLA)钢板进行埋弧焊接。加入 TiO2 后,形成了更细的针状铁素体结构,但碳化物和马氏体/奥氏体 (M/A) 成分变得更粗,从而略微提高了焊接金属的硬度、抗拉强度和延展性。相反,V2O5 的加入促进了焊接金属中大量的钒吸收(0.7 wt.%),从而产生了一种独特的针状微观结构,与传统的针状铁素体相比,这种结构对非金属夹杂物中铁素体成核的依赖性更低。这种独特的微观结构是钒钢所独有的,它将板条贝氏体与不规则粒状贝氏体结合在一起。由此产生的双模式贝氏体结构,加上分布更均匀的细化微相成分,使其性能优于传统的针状铁素体,屈服强度和抗拉强度分别提高了 20% 和 13%,这在焊接金属的横向拉伸试验中得到了证明。
{"title":"Flux enhancement with titanium or vanadium oxides addition for superior submerged arc welding of HSLA steel plates","authors":"Majid Malekinia ,&nbsp;Habib Hamed Zargari ,&nbsp;Kazuhiro Ito ,&nbsp;Syamak Hossein Nedjad","doi":"10.1016/j.jajp.2024.100238","DOIUrl":"10.1016/j.jajp.2024.100238","url":null,"abstract":"<div><p>A high-strength low-alloy (HSLA) steel plate of 10 mm thickness underwent submerged arc welding with enhanced fluxes containing additional titanium oxide (TiO<sub>2</sub>) or vanadium oxide (V<sub>2</sub>O<sub>5</sub>). The addition of TiO<sub>2</sub> led to the development of a finer acicular ferrite structure but coarsening the carbide and martensite/austenite (M/A) constituents, which marginally improved the hardness, tensile strength, and ductility of weld metal. Conversely, incorporating V<sub>2</sub>O<sub>5</sub> facilitated a substantial vanadium absorption (0.7 wt. %) in the weld metal, giving rise to a distinctive acicular microstructure less reliant on ferrite nucleation at non-metallic inclusions than conventional acicular ferrite. The distinctive microstructure, unique to vanadium steels, combined lath bainite with irregularly shaped granular bainite. The resultant dual-mode bainitic structure, coupled with a more uniform distribution of refined microphase constituents, outperformed the conventional acicular ferrite, delivering more than 20% and 13% improvements in yield and tensile strengths respectively, as evidenced by transverse tensile tests on the weld metals.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100238"},"PeriodicalIF":3.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000542/pdfft?md5=72b4df01a39d4eb29881c56a83a0f7e1&pid=1-s2.0-S2666330924000542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of laminate stacking sequence on the strength properties of aluminum alloy–carbon fiber-reinforced plastic dissimilar single-lap adhesive joints 层压板堆叠顺序对铝合金-碳纤维增强塑料异种单层粘接接头强度性能的影响
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-26 DOI: 10.1016/j.jajp.2024.100239
Kazuhiro kusukawa

Here, two single-lap adhesive joints (SLJs) of dissimilar materials were subjected to static and cyclic loading tests. A2017 aluminum alloy was used as an adherend for one, and carbon fiber reinforced plastic (CFRP) was used as the adherend for the other. Four types of orthogonal laminated CFRPs with different laminate stacking sequences were used as adherends to investigate the effect of adherend stiffness on the strength properties of the joints. Furthermore, the results of the finite element analysis of the dissimilar SLJs revealed that when the tensile load was applied to them, the out-of-plane deformation asymmetry increased with increasing difference in stiffness between both adherends. This asymmetry affected the peel and shear stress distributions. Furthermore, the experiments revealed that the static tensile strength of the SLJs increased with increasing stiffness of the CFRP adherend. Additionally, fracture simulation using cohesive-zone modeling (CZM) revealed that the SLJs with higher CFRP stiffness exhibited higher strength, qualitatively agreeing with the experimental results. CZM analysis and adhesion strain measurements during the tests indicated that failure occurred at the A2017 adherend–adhesive interface. In contrast, no differences were observed between the fatigue strengths of the different types of adherends in the short-life region, with a number of cycles to failure (Nf) being ≤ 2 × 105. However, in the long-life region, beyond Nf = 2 × 105, the SLJ bearing the unidirectional CFRP adherend exhibited lower fatigue strength than the others. The anodizing process on A2017 was found to improve fatigue strength by a factor of two or more.

在此,我们对两种不同材料的单圈粘接接头(SLJ)进行了静态和循环加载试验。其中一个采用 A2017 铝合金作为粘合剂,另一个采用碳纤维增强塑料(CFRP)作为粘合剂。四种具有不同层叠顺序的正交层压 CFRP 被用作附着物,以研究附着物刚度对接头强度性能的影响。此外,对异种 SLJ 的有限元分析结果表明,当对其施加拉伸载荷时,平面外变形的不对称性随着两个附着物之间刚度差异的增大而增加。这种不对称影响了剥离应力和剪切应力的分布。此外,实验还表明,SLJ 的静态拉伸强度随着 CFRP 粘合剂刚度的增加而增加。此外,利用内聚区建模(CZM)进行的断裂模拟显示,CFRP 刚度越高的 SLJ 强度越高,与实验结果基本吻合。CZM 分析和试验过程中的粘附应变测量结果表明,失效发生在 A2017 粘接剂-粘接剂界面。相比之下,不同类型粘合剂在短寿命区的疲劳强度没有差异,失效循环次数(Nf)≤ 2 × 105。然而,在 Nf = 2 × 105 以上的长寿命区域,带有单向 CFRP 附着物的 SLJ 的疲劳强度低于其他附着物。A2017 上的阳极氧化工艺可将疲劳强度提高两倍或更多。
{"title":"Effects of laminate stacking sequence on the strength properties of aluminum alloy–carbon fiber-reinforced plastic dissimilar single-lap adhesive joints","authors":"Kazuhiro kusukawa","doi":"10.1016/j.jajp.2024.100239","DOIUrl":"10.1016/j.jajp.2024.100239","url":null,"abstract":"<div><p>Here, two single-lap adhesive joints (SLJs) of dissimilar materials were subjected to static and cyclic loading tests. A2017 aluminum alloy was used as an adherend for one, and carbon fiber reinforced plastic (CFRP) was used as the adherend for the other. Four types of orthogonal laminated CFRPs with different laminate stacking sequences were used as adherends to investigate the effect of adherend stiffness on the strength properties of the joints. Furthermore, the results of the finite element analysis of the dissimilar SLJs revealed that when the tensile load was applied to them, the out-of-plane deformation asymmetry increased with increasing difference in stiffness between both adherends. This asymmetry affected the peel and shear stress distributions. Furthermore, the experiments revealed that the static tensile strength of the SLJs increased with increasing stiffness of the CFRP adherend. Additionally, fracture simulation using cohesive-zone modeling (CZM) revealed that the SLJs with higher CFRP stiffness exhibited higher strength, qualitatively agreeing with the experimental results. CZM analysis and adhesion strain measurements during the tests indicated that failure occurred at the A2017 adherend–adhesive interface. In contrast, no differences were observed between the fatigue strengths of the different types of adherends in the short-life region, with a number of cycles to failure (N<sub>f</sub>) being ≤ 2 × 10<sup>5</sup>. However, in the long-life region, beyond N<sub>f</sub> = 2 × 10<sup>5</sup>, the SLJ bearing the unidirectional CFRP adherend exhibited lower fatigue strength than the others. The anodizing process on A2017 was found to improve fatigue strength by a factor of two or more.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100239"},"PeriodicalIF":3.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000554/pdfft?md5=fc35686a8b4ac80f50530c5b1ef9a771&pid=1-s2.0-S2666330924000554-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disclosing connection links between microstructure and mechanical performance in pulsating current gas tungsten arc welding of Hastelloy B-2 superalloy 揭示哈氏合金 B-2 超耐热合金脉冲电流气体钨极氩弧焊微观结构与机械性能之间的联系
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-28 DOI: 10.1016/j.jajp.2024.100237
Mehdi Khalasi Dezfuli , Ali Heidary Moghadam , Mehdi Ghobeiti Hasab , Rouholah Ashiri

In this study, welding a Ni-Mo-based superalloy (Hastelloy B-2) was examined in order to characterize the microstructure and mechanical performance of joints along with assessing the effects of current intensity on the microstructure and mechanical responses of different weld zones. The gas tungsten arc welding (GTAW) process was used to weld the samples using ERNiCrMo-2 filler metal. The pulsed current GTAW process was used to weld the superalloy sheets of thickness of 1 mm with background current (Ib) of 20 A and 40 A and peak current (Ip) of 80 A and 60 A. Tensile and Vickers microhardness tests were conducted to evaluate the effect of pulsed current on mechanical properties of the welds along with chemistry and microstructure characterizations. Finally, the fracture surfaces after the tensile test were studied using SEM fractography analysis. The results indicated that increasing Ib and decreasing Ip led to low heat input and high cooling rate resulting in a high thermal gradient. This caused microstructure transition from the columnar dendrites to the coaxial ones in the weld zone; molten metal convection in the fusion zone led to fine grains in the weld zone during welding time. Moreover, a significant decrease in the amount of molybdenum carbides at the interdendritic regions of the weld metal was observed under these conditions. The tensile strength of the weld metal was higher than that of the base metal resulting in the fracture of all welds from the base metal. Additionally, the microhardness results indicated a significant increase for the weld metal compared to both heat-affected zone (HAZ) and base metal. The higher mechanical properties of the weld metal is attributed to the increase in background current and decrease in peak current leading to a fine grain microstructure. Fractography following the tensile test showed a completely ductile fracture.

本研究考察了镍钼基超级合金(哈氏合金 B-2)的焊接情况,以确定接头的微观结构和机械性能,同时评估电流强度对不同焊接区的微观结构和机械响应的影响。使用 ERNiCrMo-2 填充金属对样品进行了气体钨极氩弧焊 (GTAW) 焊接。采用脉冲电流 GTAW 工艺焊接厚度为 1 毫米的超耐热合金板,背景电流 (Ib) 为 20 A 和 40 A,峰值电流 (Ip) 为 80 A 和 60 A。最后,使用扫描电镜断口分析法研究了拉伸试验后的断裂面。结果表明,增加 Ib 和减小 Ip 会导致低热输入和高冷却速率,从而产生高热梯度。这导致微观结构从焊接区的柱状树枝状转变为同轴树枝状;熔合区的熔融金属对流导致焊接区在焊接期间出现细小晶粒。此外,在这些条件下,焊缝金属枝晶间区域的钼碳化物数量明显减少。焊接金属的抗拉强度高于母材金属,导致所有焊缝都从母材金属断裂。此外,显微硬度结果表明,与热影响区(HAZ)和母材金属相比,焊缝金属的显微硬度显著提高。焊接金属机械性能较高的原因是本底电流增加,峰值电流减少,从而形成了细晶粒微观结构。拉伸试验后的断裂图显示了完全韧性断裂。
{"title":"Disclosing connection links between microstructure and mechanical performance in pulsating current gas tungsten arc welding of Hastelloy B-2 superalloy","authors":"Mehdi Khalasi Dezfuli ,&nbsp;Ali Heidary Moghadam ,&nbsp;Mehdi Ghobeiti Hasab ,&nbsp;Rouholah Ashiri","doi":"10.1016/j.jajp.2024.100237","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100237","url":null,"abstract":"<div><p>In this study, welding a Ni-Mo-based superalloy (Hastelloy B-2) was examined in order to characterize the microstructure and mechanical performance of joints along with assessing the effects of current intensity on the microstructure and mechanical responses of different weld zones. The gas tungsten arc welding (GTAW) process was used to weld the samples using ERNiCrMo-2 filler metal. The pulsed current GTAW process was used to weld the superalloy sheets of thickness of 1 mm with background current (I<sub>b</sub>) of 20 A and 40 A and peak current (I<sub>p</sub>) of 80 A and 60 A. Tensile and Vickers microhardness tests were conducted to evaluate the effect of pulsed current on mechanical properties of the welds along with chemistry and microstructure characterizations. Finally, the fracture surfaces after the tensile test were studied using SEM fractography analysis. The results indicated that increasing I<sub>b</sub> and decreasing I<sub>p</sub> led to low heat input and high cooling rate resulting in a high thermal gradient. This caused microstructure transition from the columnar dendrites to the coaxial ones in the weld zone; molten metal convection in the fusion zone led to fine grains in the weld zone during welding time. Moreover, a significant decrease in the amount of molybdenum carbides at the interdendritic regions of the weld metal was observed under these conditions. The tensile strength of the weld metal was higher than that of the base metal resulting in the fracture of all welds from the base metal. Additionally, the microhardness results indicated a significant increase for the weld metal compared to both heat-affected zone (HAZ) and base metal. The higher mechanical properties of the weld metal is attributed to the increase in background current and decrease in peak current leading to a fine grain microstructure. Fractography following the tensile test showed a completely ductile fracture.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100237"},"PeriodicalIF":3.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000530/pdfft?md5=b8f5e1a7f4a5a0f82392aba7f95844d3&pid=1-s2.0-S2666330924000530-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of stacking-fault energy on dynamic recrystallization, textural evolution, and strengthening mechanism of Fe−Mn based twinning-induced plasticity (TWIP) steels during friction-stir welding 堆焊缺陷能量对摩擦搅拌焊接过程中铁锰基孪晶诱导塑性 (TWIP) 钢的动态再结晶、纹理演变和强化机制的影响
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1016/j.jajp.2024.100236
Hyo-Nam Choi , Jeong-Won Choi , Heon Kang , Hidetoshi Fujii , Seung-Joon Lee

This study aims to elucidate the effect of stacking fault energy (SFE) on the microstructural evolution and related hardening mechanisms of Fe−18Mn−0.6C−(0 and 1.5)Al and Fe−30Mn−3Al−3Si (wt.%) twinning−induced plasticity (TWIP) steels during friction stir welding (FSW) using a high−resolution electron backscattered diffractometer. With increasing SFE, the intensities of the Goss, CuT, and Brass components increased via active dynamic recrystallization (DRX) accompanied by twinning. The 30Mn weld, which had the highest SFE, exhibited the highest recrystallization fraction (94.8 %) and an increasing rate of hardness (40.9 %). This is because a higher SFE can enhance dislocation mobility, leading to an active rate of continuous DRX as well as discontinuous DRX. Consequently, the refinement of the recrystallized grains effectively assisted the hardening of the 30Mn weld after FSW. Hence, we concluded that SFE should be considered to improve the properties of TWIP steels after FSW.

本研究旨在利用高分辨率电子反向散射衍射仪阐明堆叠断层能(SFE)对搅拌摩擦焊(FSW)过程中 Fe-18Mn-0.6C-(0 and 1.5)Al 和 Fe-30Mn-3Al-3Si (重量百分比)孪晶诱导塑性(TWIP)钢的微观结构演变和相关硬化机制的影响。随着 SFE 值的增加,Goss、CuT 和黄铜成分的强度通过伴随孪晶的主动动态再结晶(DRX)而增加。SFE 值最高的 30Mn 焊缝显示出最高的再结晶分数(94.8%)和硬度增加率(40.9%)。这是因为较高的 SFE 可提高位错流动性,导致连续 DRX 和不连续 DRX 的活跃率。因此,再结晶晶粒的细化有效地帮助了 FSW 后 30Mn 焊缝的硬化。因此,我们认为应考虑采用 SFE 来改善 FSW 后 TWIP 钢的性能。
{"title":"Effect of stacking-fault energy on dynamic recrystallization, textural evolution, and strengthening mechanism of Fe−Mn based twinning-induced plasticity (TWIP) steels during friction-stir welding","authors":"Hyo-Nam Choi ,&nbsp;Jeong-Won Choi ,&nbsp;Heon Kang ,&nbsp;Hidetoshi Fujii ,&nbsp;Seung-Joon Lee","doi":"10.1016/j.jajp.2024.100236","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100236","url":null,"abstract":"<div><p>This study aims to elucidate the effect of stacking fault energy (SFE) on the microstructural evolution and related hardening mechanisms of Fe−18Mn−0.6C−(0 and 1.5)Al and Fe−30Mn−3Al−3Si (wt.%) twinning−induced plasticity (TWIP) steels during friction stir welding (FSW) using a high−resolution electron backscattered diffractometer. With increasing SFE, the intensities of the Goss, CuT, and Brass components increased via active dynamic recrystallization (DRX) accompanied by twinning. The 30Mn weld, which had the highest SFE, exhibited the highest recrystallization fraction (94.8 %) and an increasing rate of hardness (40.9 %). This is because a higher SFE can enhance dislocation mobility, leading to an active rate of continuous DRX as well as discontinuous DRX. Consequently, the refinement of the recrystallized grains effectively assisted the hardening of the 30Mn weld after FSW. Hence, we concluded that SFE should be considered to improve the properties of TWIP steels after FSW.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100236"},"PeriodicalIF":3.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000529/pdfft?md5=e6671d015e66fa13f220e57320998bdb&pid=1-s2.0-S2666330924000529-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replacing non-renewable lubricants with vegetables oils in threaded joints 用蔬菜油替代螺纹接头中的不可再生润滑剂
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1016/j.jajp.2024.100234
Dario Croccolo , Massimiliano De Agostinis , Stefano Fini , Mattia Mele , Sayed Nassar , Giorgio Olmi , Chiara Scapecchi , Muhammad Yasir Khan , Muhammad Hassaan Bin Tariq

Lubrication is essential to ensure the proper performance of threaded joints subjected to multiple tightenings. Previous research has investigated the effectiveness of various mineral and synthetic lubricants, but no studies have been conducted on those derived from renewable sources. In this study, the performances of sesame, sunflower, coconut, and castor oil are compared to traditional VG46 oil and MoS2 grease. First, the rheological properties of the oils have been characterized. Then, tightening tests have been carried out to measure the coefficients of friction at the underhead and thread. The results demonstrate that vegetable oils outperform mineral VG46, especially in terms of repeatability. In particular, fractionated coconut oil exhibits exceptionally low coefficients of friction, which are not influenced by the tightening speed, unlike all other tested lubricants.

润滑对于确保多次拧紧的螺纹接头的正常性能至关重要。以往的研究已对各种矿物和合成润滑剂的有效性进行了调查,但尚未对从可再生资源中提取的润滑剂进行研究。本研究将芝麻油、葵花籽油、椰子油和蓖麻油的性能与传统的 VG46 润滑油和 MoS2 润滑脂进行了比较。首先,对油的流变特性进行了表征。然后,进行了拧紧试验,以测量头下和螺纹处的摩擦系数。结果表明,植物油的性能优于矿物 VG46,尤其是在重复性方面。特别是分馏椰子油的摩擦系数特别低,与所有其他测试过的润滑油不同,它不受拧紧速度的影响。
{"title":"Replacing non-renewable lubricants with vegetables oils in threaded joints","authors":"Dario Croccolo ,&nbsp;Massimiliano De Agostinis ,&nbsp;Stefano Fini ,&nbsp;Mattia Mele ,&nbsp;Sayed Nassar ,&nbsp;Giorgio Olmi ,&nbsp;Chiara Scapecchi ,&nbsp;Muhammad Yasir Khan ,&nbsp;Muhammad Hassaan Bin Tariq","doi":"10.1016/j.jajp.2024.100234","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100234","url":null,"abstract":"<div><p>Lubrication is essential to ensure the proper performance of threaded joints subjected to multiple tightenings. Previous research has investigated the effectiveness of various mineral and synthetic lubricants, but no studies have been conducted on those derived from renewable sources. In this study, the performances of sesame, sunflower, coconut, and castor oil are compared to traditional VG46 oil and MoS<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> grease. First, the rheological properties of the oils have been characterized. Then, tightening tests have been carried out to measure the coefficients of friction at the underhead and thread. The results demonstrate that vegetable oils outperform mineral VG46, especially in terms of repeatability. In particular, fractionated coconut oil exhibits exceptionally low coefficients of friction, which are not influenced by the tightening speed, unlike all other tested lubricants.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100234"},"PeriodicalIF":3.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000505/pdfft?md5=0fe4881aa94d22efd195a455d7a99e71&pid=1-s2.0-S2666330924000505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal and spatial determination of solidification rate during pulsed laser beam welding of hot-crack susceptible aluminum alloys by means of high-speed synchrotron X-ray imaging 利用高速同步辐射 X 射线成像技术确定脉冲激光束焊接易产生热裂纹的铝合金过程中凝固速率的时间和空间参数
IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1016/j.jajp.2024.100235
M. Seibold , K. Schricker , L. Schmidt , D. Diegel , H. Friedmann , P. Hellwig , F. Fröhlich , F. Nagel , P. Kallage , A. Rack , H. Requardt , Y. Chen , J.P. Bergmann

Pulsed laser beam welding is primarily used to join thin-walled components. The use of 6xxx group aluminum alloys is characterized by good mechanical properties but these alloys are prone to hot cracking during solidification, i.e., requirements regarding strength and tightness, as increasingly important for electromobility related applications, cannot be fulfilled. The solidification rate has been identified as dominant factor in pulsed conduction welding which can be adjusted by the pulse shape, i.e., by varying the beam power over time for a single pulse.

Pulse shapes with different, linear ramp-down slopes were studied to describe the interaction between beam power and resulting solidification rate for spot welds. Based on rotationally symmetric conditions of the spot welds, the solidification rate can be measured in radial and vertical directions. The welding process of EN AW 6082 alloy was examined by in situ high-speed synchrotron X-ray imaging at the European Synchrotron Radiation Facility (ESRF) for this reason. Frame rates up to 120,000 Hz and subsequent image analysis allowed in-depth analysis of the solidification processes, their dependence on different spatial directions, and the resulting effects on hot crack formation.

脉冲激光束焊接主要用于连接薄壁部件。使用 6xxx 组铝合金具有良好的机械性能,但这些合金在凝固过程中容易产生热裂纹,因此无法满足强度和密封性方面的要求,而这对于电动汽车相关应用来说越来越重要。凝固速率已被确定为脉冲传导焊接中的主导因素,可通过脉冲形状进行调节,即通过改变单个脉冲的束功率随时间的变化来调节凝固速率。根据点焊的旋转对称条件,可在径向和纵向测量凝固速率。为此,我们在欧洲同步辐射设施(ESRF)利用原位高速同步 X 射线成像技术对 EN AW 6082 合金的焊接过程进行了研究。通过高达 120,000 Hz 的帧频和后续图像分析,可以深入分析凝固过程、凝固过程对不同空间方向的依赖性以及由此对热裂纹形成的影响。
{"title":"Temporal and spatial determination of solidification rate during pulsed laser beam welding of hot-crack susceptible aluminum alloys by means of high-speed synchrotron X-ray imaging","authors":"M. Seibold ,&nbsp;K. Schricker ,&nbsp;L. Schmidt ,&nbsp;D. Diegel ,&nbsp;H. Friedmann ,&nbsp;P. Hellwig ,&nbsp;F. Fröhlich ,&nbsp;F. Nagel ,&nbsp;P. Kallage ,&nbsp;A. Rack ,&nbsp;H. Requardt ,&nbsp;Y. Chen ,&nbsp;J.P. Bergmann","doi":"10.1016/j.jajp.2024.100235","DOIUrl":"10.1016/j.jajp.2024.100235","url":null,"abstract":"<div><p>Pulsed laser beam welding is primarily used to join thin-walled components. The use of 6xxx group aluminum alloys is characterized by good mechanical properties but these alloys are prone to hot cracking during solidification, i.e., requirements regarding strength and tightness, as increasingly important for electromobility related applications, cannot be fulfilled. The solidification rate has been identified as dominant factor in pulsed conduction welding which can be adjusted by the pulse shape, i.e., by varying the beam power over time for a single pulse.</p><p>Pulse shapes with different, linear ramp-down slopes were studied to describe the interaction between beam power and resulting solidification rate for spot welds. Based on rotationally symmetric conditions of the spot welds, the solidification rate can be measured in radial and vertical directions. The welding process of EN AW 6082 alloy was examined by in situ high-speed synchrotron X-ray imaging at the European Synchrotron Radiation Facility (ESRF) for this reason. Frame rates up to 120,000 Hz and subsequent image analysis allowed in-depth analysis of the solidification processes, their dependence on different spatial directions, and the resulting effects on hot crack formation.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100235"},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000517/pdfft?md5=671fe0d549916cdad86564cd55cbc805&pid=1-s2.0-S2666330924000517-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotary friction welding applied to Cu11.8Al0.45Be shape memory alloy 旋转摩擦焊应用于 Cu11.8Al0.45Be 形状记忆合金
IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-11 DOI: 10.1016/j.jajp.2024.100233
A.A.de Albuquerque , H. Louche , D.F.de Oliveira , I.C.A. Brito

The feasibility of welding a CuAlBe SMA by continuous drive friction welding was evaluated. The metallurgical state (annealed/quenched) before welding and frictional pressure (5 and 10 MPa) were varied and their effects on joint quality were analyzed. Static tensile tests, microhardness, thermal analysis by DSC, and optical microscopy were carried out to characterize the welded joint. The results indicated joints of excellent thermomechanical quality. The welding zones are well-defined, narrow, and have a very refined microstructure compared to the base metal. The phase transition temperatures along the welded assemblies were not changed when welding was performed on the quenched samples, except in the welding zone of the sample welded with 10 MPa. Maximum tensile strength was obtained by using maximum friction pressure during welding of the annealed alloy (quenching after welding). To fill the gap in bibliographical research in this field of study, this work innovatively presents the possibility of welding Cu-based SMAs by rotary friction, including the welding of quenched parts without the need for subsequent heat treatments and without compromising the shape memory effect.

评估了通过连续驱动摩擦焊焊接 CuAlBe SMA 的可行性。改变了焊接前的冶金状态(退火/淬火)和摩擦压力(5 和 10 兆帕),并分析了它们对接头质量的影响。对焊接接头进行了静态拉伸试验、显微硬度、DSC 热分析和光学显微镜检查。结果表明,焊点具有优异的热机械质量。与母材相比,焊接区轮廓分明、狭窄,并且具有非常精细的微观结构。在淬火试样上进行焊接时,除 10 兆帕焊接试样的焊接区外,焊接组件沿线的相变温度没有变化。在退火合金焊接过程中使用最大摩擦压力(焊后淬火)可获得最大抗拉强度。为了填补这一研究领域的文献空白,这项工作创新性地提出了通过旋转摩擦焊接铜基 SMA 的可能性,包括焊接淬火部件,而无需进行后续热处理,也不会影响形状记忆效果。
{"title":"Rotary friction welding applied to Cu11.8Al0.45Be shape memory alloy","authors":"A.A.de Albuquerque ,&nbsp;H. Louche ,&nbsp;D.F.de Oliveira ,&nbsp;I.C.A. Brito","doi":"10.1016/j.jajp.2024.100233","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100233","url":null,"abstract":"<div><p>The feasibility of welding a CuAlBe SMA by continuous drive friction welding was evaluated. The metallurgical state (annealed/quenched) before welding and frictional pressure (5 and 10 MPa) were varied and their effects on joint quality were analyzed. Static tensile tests, microhardness, thermal analysis by DSC, and optical microscopy were carried out to characterize the welded joint. The results indicated joints of excellent thermomechanical quality. The welding zones are well-defined, narrow, and have a very refined microstructure compared to the base metal. The phase transition temperatures along the welded assemblies were not changed when welding was performed on the quenched samples, except in the welding zone of the sample welded with 10 MPa. Maximum tensile strength was obtained by using maximum friction pressure during welding of the annealed alloy (quenching after welding). To fill the gap in bibliographical research in this field of study, this work innovatively presents the possibility of welding Cu-based SMAs by rotary friction, including the welding of quenched parts without the need for subsequent heat treatments and without compromising the shape memory effect.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100233"},"PeriodicalIF":4.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000499/pdfft?md5=02c3b41a224ce56ef8cf188c0b1cc15d&pid=1-s2.0-S2666330924000499-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Advanced Joining Processes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1