Pub Date : 2024-08-13DOI: 10.1016/j.jajp.2024.100241
Rittichai Phaoniam, Komgrit Lawanwong
In this study, both experiments and finite-element analysis are performed to elucidate the effect of weld-line position on the springback behavior of advanced high-strength steel tailor-welded blanks (AHSS-TWBs). AHSS-TWBs are fabricated from grade 590Y high-strength steel and 980Y advanced high-strength steel, each with a thickness of 1.2 mm. Gas tungsten arc welding is performed to obtain autogenous butt-weld joints. Three distinct weld-line position patterns are systematically analyzed to investigate the springback phenomenon via hat-shaped draw bending. Experiments on the AHSS-TWBs show that the weld-line position affects springback. The stress distribution changes with the weld-line position, thereby initiating variations in both the components of the bending moment and the corresponding springback angle. Depending on the weld-line position, different springback behaviors and bending moments are resulted on the components.
{"title":"Effect of weld-line position on springback behavior in advanced high-strength steel tailor-welded blanks on hat-shaped bending application","authors":"Rittichai Phaoniam, Komgrit Lawanwong","doi":"10.1016/j.jajp.2024.100241","DOIUrl":"10.1016/j.jajp.2024.100241","url":null,"abstract":"<div><p>In this study, both experiments and finite-element analysis are performed to elucidate the effect of weld-line position on the springback behavior of advanced high-strength steel tailor-welded blanks (AHSS-TWBs). AHSS-TWBs are fabricated from grade 590Y high-strength steel and 980Y advanced high-strength steel, each with a thickness of 1.2 mm. Gas tungsten arc welding is performed to obtain autogenous butt-weld joints. Three distinct weld-line position patterns are systematically analyzed to investigate the springback phenomenon via hat-shaped draw bending. Experiments on the AHSS-TWBs show that the weld-line position affects springback. The stress distribution changes with the weld-line position, thereby initiating variations in both the components of the bending moment and the corresponding springback angle. Depending on the weld-line position, different springback behaviors and bending moments are resulted on the components.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100241"},"PeriodicalIF":3.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000578/pdfft?md5=428b51fc4d13681df3ff6261a668485b&pid=1-s2.0-S2666330924000578-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.jajp.2024.100242
Yifeng Xiao , Zhang Song , Qiankun Zhang , Rui Zhang , Shijie Bai , Liang Wu
Ni foam was introduced as an interlayer to improve the performance of the brazed C/C composite-TC4 titanium alloy joint, and high-quality brazed connections of c/c composites and TC4 were realized. Compared to a brazing joint without foam, the introduction of a foam Ni interlayer can achieve a more uniform bonding interface. The effects of the thickness and pore size of the foam Ni interlayer on the microstructure, mechanical properties and residual stresses of the joints were investigated. With increasing thickness and pore diameter, Ag-based solid solutions and Ti–Cu intermetallic compounds first become more dispersed and smaller at the center of the brazed joints, and then aggregate to become larger. The brazed interface microstructure with a 0.4 mm thick foam Ni interlayer with a pore size of 0.5 mm was more uniform, and the shear strength of the joint reached 21.23 MPa, representing an 85.96 % increase compared to the joint without the foam Ni interlayer. The residual stress and its distribution calculated by finite element method (FEM), and the residual stress of the brazed joint decreased from 467 MPa/-289.53 MPa to 457.96 MPa/-234.98 MPa. These results indicated that the Ni foam could act as a buffer layer to reduce the residual thermal stress, and improve the mechanical properties of C/C composite-TC4 titanium alloy joint.
{"title":"Effect of foam interlayer thickness and pore size on the microstructure and properties of brazed joints","authors":"Yifeng Xiao , Zhang Song , Qiankun Zhang , Rui Zhang , Shijie Bai , Liang Wu","doi":"10.1016/j.jajp.2024.100242","DOIUrl":"10.1016/j.jajp.2024.100242","url":null,"abstract":"<div><p>Ni foam was introduced as an interlayer to improve the performance of the brazed C/C composite-TC4 titanium alloy joint, and high-quality brazed connections of c/c composites and TC4 were realized. Compared to a brazing joint without foam, the introduction of a foam Ni interlayer can achieve a more uniform bonding interface. The effects of the thickness and pore size of the foam Ni interlayer on the microstructure, mechanical properties and residual stresses of the joints were investigated. With increasing thickness and pore diameter, Ag-based solid solutions and Ti–Cu intermetallic compounds first become more dispersed and smaller at the center of the brazed joints, and then aggregate to become larger. The brazed interface microstructure with a 0.4 mm thick foam Ni interlayer with a pore size of 0.5 mm was more uniform, and the shear strength of the joint reached 21.23 MPa, representing an 85.96 % increase compared to the joint without the foam Ni interlayer. The residual stress and its distribution calculated by finite element method (FEM), and the residual stress of the brazed joint decreased from 467 MPa/-289.53 MPa to 457.96 MPa/-234.98 MPa. These results indicated that the Ni foam could act as a buffer layer to reduce the residual thermal stress, and improve the mechanical properties of C/C composite-TC4 titanium alloy joint.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100242"},"PeriodicalIF":3.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266633092400058X/pdfft?md5=d396e81f9ecdb9fd147835189740a0c4&pid=1-s2.0-S266633092400058X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.jajp.2024.100240
Cheolho Park , Hyunbin Nam , Namhyun Kang
This study investigated the effect of welding current during gas metal arc welding (GMAW) on the microstructure and composition of an Al 5083 alloy. As the welding current increased from 650 to 950 A, several changes were observed in the heat-affected zone (HAZ): grain coarsening and the formation of liquation cracks, and in the weld zone (WZ): increasing average secondary arm spacing and Mg loss. Therefore, the welding currents above 800 A are likely to cause liquation cracks in the HAZ and deterioration of the alloy's mechanical properties. Thus, welding condition with low heat input must be applied to improve the mechanical properties of the welds. This study provides a correlation between the weldability of Al 5083 alloy and welding current, offering a competitive advantage of liquid hydrogen storage containers.
本研究探讨了气体金属弧焊(GMAW)过程中焊接电流对铝 5083 合金微观结构和成分的影响。随着焊接电流从 650 A 增加到 950 A,在热影响区(HAZ)观察到了几种变化:晶粒粗化和液化裂纹的形成;在焊接区(WZ)观察到了几种变化:平均副臂间距增加和镁流失。因此,800 A 以上的焊接电流很可能会导致 HAZ 出现液化裂纹,并使合金的机械性能下降。因此,必须采用低热输入的焊接条件来改善焊缝的机械性能。本研究提供了 Al 5083 合金焊接性与焊接电流之间的相关性,为液氢储存容器提供了竞争优势。
{"title":"Effect of welding current on the mechanical properties of Al 5083 alloy processed using high-current gas metal arc welding","authors":"Cheolho Park , Hyunbin Nam , Namhyun Kang","doi":"10.1016/j.jajp.2024.100240","DOIUrl":"10.1016/j.jajp.2024.100240","url":null,"abstract":"<div><p>This study investigated the effect of welding current during gas metal arc welding (GMAW) on the microstructure and composition of an Al 5083 alloy. As the welding current increased from 650 to 950 A, several changes were observed in the heat-affected zone (HAZ): grain coarsening and the formation of liquation cracks, and in the weld zone (WZ): increasing average secondary arm spacing and Mg loss. Therefore, the welding currents above 800 A are likely to cause liquation cracks in the HAZ and deterioration of the alloy's mechanical properties. Thus, welding condition with low heat input must be applied to improve the mechanical properties of the welds. This study provides a correlation between the weldability of Al 5083 alloy and welding current, offering a competitive advantage of liquid hydrogen storage containers.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100240"},"PeriodicalIF":3.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000566/pdfft?md5=cbb7eec009a68bb35d90f8a5e128eea2&pid=1-s2.0-S2666330924000566-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A high-strength low-alloy (HSLA) steel plate of 10 mm thickness underwent submerged arc welding with enhanced fluxes containing additional titanium oxide (TiO2) or vanadium oxide (V2O5). The addition of TiO2 led to the development of a finer acicular ferrite structure but coarsening the carbide and martensite/austenite (M/A) constituents, which marginally improved the hardness, tensile strength, and ductility of weld metal. Conversely, incorporating V2O5 facilitated a substantial vanadium absorption (0.7 wt. %) in the weld metal, giving rise to a distinctive acicular microstructure less reliant on ferrite nucleation at non-metallic inclusions than conventional acicular ferrite. The distinctive microstructure, unique to vanadium steels, combined lath bainite with irregularly shaped granular bainite. The resultant dual-mode bainitic structure, coupled with a more uniform distribution of refined microphase constituents, outperformed the conventional acicular ferrite, delivering more than 20% and 13% improvements in yield and tensile strengths respectively, as evidenced by transverse tensile tests on the weld metals.
{"title":"Flux enhancement with titanium or vanadium oxides addition for superior submerged arc welding of HSLA steel plates","authors":"Majid Malekinia , Habib Hamed Zargari , Kazuhiro Ito , Syamak Hossein Nedjad","doi":"10.1016/j.jajp.2024.100238","DOIUrl":"10.1016/j.jajp.2024.100238","url":null,"abstract":"<div><p>A high-strength low-alloy (HSLA) steel plate of 10 mm thickness underwent submerged arc welding with enhanced fluxes containing additional titanium oxide (TiO<sub>2</sub>) or vanadium oxide (V<sub>2</sub>O<sub>5</sub>). The addition of TiO<sub>2</sub> led to the development of a finer acicular ferrite structure but coarsening the carbide and martensite/austenite (M/A) constituents, which marginally improved the hardness, tensile strength, and ductility of weld metal. Conversely, incorporating V<sub>2</sub>O<sub>5</sub> facilitated a substantial vanadium absorption (0.7 wt. %) in the weld metal, giving rise to a distinctive acicular microstructure less reliant on ferrite nucleation at non-metallic inclusions than conventional acicular ferrite. The distinctive microstructure, unique to vanadium steels, combined lath bainite with irregularly shaped granular bainite. The resultant dual-mode bainitic structure, coupled with a more uniform distribution of refined microphase constituents, outperformed the conventional acicular ferrite, delivering more than 20% and 13% improvements in yield and tensile strengths respectively, as evidenced by transverse tensile tests on the weld metals.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100238"},"PeriodicalIF":3.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000542/pdfft?md5=72b4df01a39d4eb29881c56a83a0f7e1&pid=1-s2.0-S2666330924000542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.jajp.2024.100239
Kazuhiro kusukawa
Here, two single-lap adhesive joints (SLJs) of dissimilar materials were subjected to static and cyclic loading tests. A2017 aluminum alloy was used as an adherend for one, and carbon fiber reinforced plastic (CFRP) was used as the adherend for the other. Four types of orthogonal laminated CFRPs with different laminate stacking sequences were used as adherends to investigate the effect of adherend stiffness on the strength properties of the joints. Furthermore, the results of the finite element analysis of the dissimilar SLJs revealed that when the tensile load was applied to them, the out-of-plane deformation asymmetry increased with increasing difference in stiffness between both adherends. This asymmetry affected the peel and shear stress distributions. Furthermore, the experiments revealed that the static tensile strength of the SLJs increased with increasing stiffness of the CFRP adherend. Additionally, fracture simulation using cohesive-zone modeling (CZM) revealed that the SLJs with higher CFRP stiffness exhibited higher strength, qualitatively agreeing with the experimental results. CZM analysis and adhesion strain measurements during the tests indicated that failure occurred at the A2017 adherend–adhesive interface. In contrast, no differences were observed between the fatigue strengths of the different types of adherends in the short-life region, with a number of cycles to failure (Nf) being ≤ 2 × 105. However, in the long-life region, beyond Nf = 2 × 105, the SLJ bearing the unidirectional CFRP adherend exhibited lower fatigue strength than the others. The anodizing process on A2017 was found to improve fatigue strength by a factor of two or more.
{"title":"Effects of laminate stacking sequence on the strength properties of aluminum alloy–carbon fiber-reinforced plastic dissimilar single-lap adhesive joints","authors":"Kazuhiro kusukawa","doi":"10.1016/j.jajp.2024.100239","DOIUrl":"10.1016/j.jajp.2024.100239","url":null,"abstract":"<div><p>Here, two single-lap adhesive joints (SLJs) of dissimilar materials were subjected to static and cyclic loading tests. A2017 aluminum alloy was used as an adherend for one, and carbon fiber reinforced plastic (CFRP) was used as the adherend for the other. Four types of orthogonal laminated CFRPs with different laminate stacking sequences were used as adherends to investigate the effect of adherend stiffness on the strength properties of the joints. Furthermore, the results of the finite element analysis of the dissimilar SLJs revealed that when the tensile load was applied to them, the out-of-plane deformation asymmetry increased with increasing difference in stiffness between both adherends. This asymmetry affected the peel and shear stress distributions. Furthermore, the experiments revealed that the static tensile strength of the SLJs increased with increasing stiffness of the CFRP adherend. Additionally, fracture simulation using cohesive-zone modeling (CZM) revealed that the SLJs with higher CFRP stiffness exhibited higher strength, qualitatively agreeing with the experimental results. CZM analysis and adhesion strain measurements during the tests indicated that failure occurred at the A2017 adherend–adhesive interface. In contrast, no differences were observed between the fatigue strengths of the different types of adherends in the short-life region, with a number of cycles to failure (N<sub>f</sub>) being ≤ 2 × 10<sup>5</sup>. However, in the long-life region, beyond N<sub>f</sub> = 2 × 10<sup>5</sup>, the SLJ bearing the unidirectional CFRP adherend exhibited lower fatigue strength than the others. The anodizing process on A2017 was found to improve fatigue strength by a factor of two or more.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100239"},"PeriodicalIF":3.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000554/pdfft?md5=fc35686a8b4ac80f50530c5b1ef9a771&pid=1-s2.0-S2666330924000554-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.jajp.2024.100237
Mehdi Khalasi Dezfuli , Ali Heidary Moghadam , Mehdi Ghobeiti Hasab , Rouholah Ashiri
In this study, welding a Ni-Mo-based superalloy (Hastelloy B-2) was examined in order to characterize the microstructure and mechanical performance of joints along with assessing the effects of current intensity on the microstructure and mechanical responses of different weld zones. The gas tungsten arc welding (GTAW) process was used to weld the samples using ERNiCrMo-2 filler metal. The pulsed current GTAW process was used to weld the superalloy sheets of thickness of 1 mm with background current (Ib) of 20 A and 40 A and peak current (Ip) of 80 A and 60 A. Tensile and Vickers microhardness tests were conducted to evaluate the effect of pulsed current on mechanical properties of the welds along with chemistry and microstructure characterizations. Finally, the fracture surfaces after the tensile test were studied using SEM fractography analysis. The results indicated that increasing Ib and decreasing Ip led to low heat input and high cooling rate resulting in a high thermal gradient. This caused microstructure transition from the columnar dendrites to the coaxial ones in the weld zone; molten metal convection in the fusion zone led to fine grains in the weld zone during welding time. Moreover, a significant decrease in the amount of molybdenum carbides at the interdendritic regions of the weld metal was observed under these conditions. The tensile strength of the weld metal was higher than that of the base metal resulting in the fracture of all welds from the base metal. Additionally, the microhardness results indicated a significant increase for the weld metal compared to both heat-affected zone (HAZ) and base metal. The higher mechanical properties of the weld metal is attributed to the increase in background current and decrease in peak current leading to a fine grain microstructure. Fractography following the tensile test showed a completely ductile fracture.
本研究考察了镍钼基超级合金(哈氏合金 B-2)的焊接情况,以确定接头的微观结构和机械性能,同时评估电流强度对不同焊接区的微观结构和机械响应的影响。使用 ERNiCrMo-2 填充金属对样品进行了气体钨极氩弧焊 (GTAW) 焊接。采用脉冲电流 GTAW 工艺焊接厚度为 1 毫米的超耐热合金板,背景电流 (Ib) 为 20 A 和 40 A,峰值电流 (Ip) 为 80 A 和 60 A。最后,使用扫描电镜断口分析法研究了拉伸试验后的断裂面。结果表明,增加 Ib 和减小 Ip 会导致低热输入和高冷却速率,从而产生高热梯度。这导致微观结构从焊接区的柱状树枝状转变为同轴树枝状;熔合区的熔融金属对流导致焊接区在焊接期间出现细小晶粒。此外,在这些条件下,焊缝金属枝晶间区域的钼碳化物数量明显减少。焊接金属的抗拉强度高于母材金属,导致所有焊缝都从母材金属断裂。此外,显微硬度结果表明,与热影响区(HAZ)和母材金属相比,焊缝金属的显微硬度显著提高。焊接金属机械性能较高的原因是本底电流增加,峰值电流减少,从而形成了细晶粒微观结构。拉伸试验后的断裂图显示了完全韧性断裂。
{"title":"Disclosing connection links between microstructure and mechanical performance in pulsating current gas tungsten arc welding of Hastelloy B-2 superalloy","authors":"Mehdi Khalasi Dezfuli , Ali Heidary Moghadam , Mehdi Ghobeiti Hasab , Rouholah Ashiri","doi":"10.1016/j.jajp.2024.100237","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100237","url":null,"abstract":"<div><p>In this study, welding a Ni-Mo-based superalloy (Hastelloy B-2) was examined in order to characterize the microstructure and mechanical performance of joints along with assessing the effects of current intensity on the microstructure and mechanical responses of different weld zones. The gas tungsten arc welding (GTAW) process was used to weld the samples using ERNiCrMo-2 filler metal. The pulsed current GTAW process was used to weld the superalloy sheets of thickness of 1 mm with background current (I<sub>b</sub>) of 20 A and 40 A and peak current (I<sub>p</sub>) of 80 A and 60 A. Tensile and Vickers microhardness tests were conducted to evaluate the effect of pulsed current on mechanical properties of the welds along with chemistry and microstructure characterizations. Finally, the fracture surfaces after the tensile test were studied using SEM fractography analysis. The results indicated that increasing I<sub>b</sub> and decreasing I<sub>p</sub> led to low heat input and high cooling rate resulting in a high thermal gradient. This caused microstructure transition from the columnar dendrites to the coaxial ones in the weld zone; molten metal convection in the fusion zone led to fine grains in the weld zone during welding time. Moreover, a significant decrease in the amount of molybdenum carbides at the interdendritic regions of the weld metal was observed under these conditions. The tensile strength of the weld metal was higher than that of the base metal resulting in the fracture of all welds from the base metal. Additionally, the microhardness results indicated a significant increase for the weld metal compared to both heat-affected zone (HAZ) and base metal. The higher mechanical properties of the weld metal is attributed to the increase in background current and decrease in peak current leading to a fine grain microstructure. Fractography following the tensile test showed a completely ductile fracture.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100237"},"PeriodicalIF":3.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000530/pdfft?md5=b8f5e1a7f4a5a0f82392aba7f95844d3&pid=1-s2.0-S2666330924000530-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.jajp.2024.100236
Hyo-Nam Choi , Jeong-Won Choi , Heon Kang , Hidetoshi Fujii , Seung-Joon Lee
This study aims to elucidate the effect of stacking fault energy (SFE) on the microstructural evolution and related hardening mechanisms of Fe−18Mn−0.6C−(0 and 1.5)Al and Fe−30Mn−3Al−3Si (wt.%) twinning−induced plasticity (TWIP) steels during friction stir welding (FSW) using a high−resolution electron backscattered diffractometer. With increasing SFE, the intensities of the Goss, CuT, and Brass components increased via active dynamic recrystallization (DRX) accompanied by twinning. The 30Mn weld, which had the highest SFE, exhibited the highest recrystallization fraction (94.8 %) and an increasing rate of hardness (40.9 %). This is because a higher SFE can enhance dislocation mobility, leading to an active rate of continuous DRX as well as discontinuous DRX. Consequently, the refinement of the recrystallized grains effectively assisted the hardening of the 30Mn weld after FSW. Hence, we concluded that SFE should be considered to improve the properties of TWIP steels after FSW.
{"title":"Effect of stacking-fault energy on dynamic recrystallization, textural evolution, and strengthening mechanism of Fe−Mn based twinning-induced plasticity (TWIP) steels during friction-stir welding","authors":"Hyo-Nam Choi , Jeong-Won Choi , Heon Kang , Hidetoshi Fujii , Seung-Joon Lee","doi":"10.1016/j.jajp.2024.100236","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100236","url":null,"abstract":"<div><p>This study aims to elucidate the effect of stacking fault energy (SFE) on the microstructural evolution and related hardening mechanisms of Fe−18Mn−0.6C−(0 and 1.5)Al and Fe−30Mn−3Al−3Si (wt.%) twinning−induced plasticity (TWIP) steels during friction stir welding (FSW) using a high−resolution electron backscattered diffractometer. With increasing SFE, the intensities of the Goss, CuT, and Brass components increased via active dynamic recrystallization (DRX) accompanied by twinning. The 30Mn weld, which had the highest SFE, exhibited the highest recrystallization fraction (94.8 %) and an increasing rate of hardness (40.9 %). This is because a higher SFE can enhance dislocation mobility, leading to an active rate of continuous DRX as well as discontinuous DRX. Consequently, the refinement of the recrystallized grains effectively assisted the hardening of the 30Mn weld after FSW. Hence, we concluded that SFE should be considered to improve the properties of TWIP steels after FSW.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100236"},"PeriodicalIF":3.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000529/pdfft?md5=e6671d015e66fa13f220e57320998bdb&pid=1-s2.0-S2666330924000529-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.jajp.2024.100234
Dario Croccolo , Massimiliano De Agostinis , Stefano Fini , Mattia Mele , Sayed Nassar , Giorgio Olmi , Chiara Scapecchi , Muhammad Yasir Khan , Muhammad Hassaan Bin Tariq
Lubrication is essential to ensure the proper performance of threaded joints subjected to multiple tightenings. Previous research has investigated the effectiveness of various mineral and synthetic lubricants, but no studies have been conducted on those derived from renewable sources. In this study, the performances of sesame, sunflower, coconut, and castor oil are compared to traditional VG46 oil and MoS grease. First, the rheological properties of the oils have been characterized. Then, tightening tests have been carried out to measure the coefficients of friction at the underhead and thread. The results demonstrate that vegetable oils outperform mineral VG46, especially in terms of repeatability. In particular, fractionated coconut oil exhibits exceptionally low coefficients of friction, which are not influenced by the tightening speed, unlike all other tested lubricants.
{"title":"Replacing non-renewable lubricants with vegetables oils in threaded joints","authors":"Dario Croccolo , Massimiliano De Agostinis , Stefano Fini , Mattia Mele , Sayed Nassar , Giorgio Olmi , Chiara Scapecchi , Muhammad Yasir Khan , Muhammad Hassaan Bin Tariq","doi":"10.1016/j.jajp.2024.100234","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100234","url":null,"abstract":"<div><p>Lubrication is essential to ensure the proper performance of threaded joints subjected to multiple tightenings. Previous research has investigated the effectiveness of various mineral and synthetic lubricants, but no studies have been conducted on those derived from renewable sources. In this study, the performances of sesame, sunflower, coconut, and castor oil are compared to traditional VG46 oil and MoS<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> grease. First, the rheological properties of the oils have been characterized. Then, tightening tests have been carried out to measure the coefficients of friction at the underhead and thread. The results demonstrate that vegetable oils outperform mineral VG46, especially in terms of repeatability. In particular, fractionated coconut oil exhibits exceptionally low coefficients of friction, which are not influenced by the tightening speed, unlike all other tested lubricants.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100234"},"PeriodicalIF":3.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000505/pdfft?md5=0fe4881aa94d22efd195a455d7a99e71&pid=1-s2.0-S2666330924000505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.jajp.2024.100235
M. Seibold , K. Schricker , L. Schmidt , D. Diegel , H. Friedmann , P. Hellwig , F. Fröhlich , F. Nagel , P. Kallage , A. Rack , H. Requardt , Y. Chen , J.P. Bergmann
Pulsed laser beam welding is primarily used to join thin-walled components. The use of 6xxx group aluminum alloys is characterized by good mechanical properties but these alloys are prone to hot cracking during solidification, i.e., requirements regarding strength and tightness, as increasingly important for electromobility related applications, cannot be fulfilled. The solidification rate has been identified as dominant factor in pulsed conduction welding which can be adjusted by the pulse shape, i.e., by varying the beam power over time for a single pulse.
Pulse shapes with different, linear ramp-down slopes were studied to describe the interaction between beam power and resulting solidification rate for spot welds. Based on rotationally symmetric conditions of the spot welds, the solidification rate can be measured in radial and vertical directions. The welding process of EN AW 6082 alloy was examined by in situ high-speed synchrotron X-ray imaging at the European Synchrotron Radiation Facility (ESRF) for this reason. Frame rates up to 120,000 Hz and subsequent image analysis allowed in-depth analysis of the solidification processes, their dependence on different spatial directions, and the resulting effects on hot crack formation.
脉冲激光束焊接主要用于连接薄壁部件。使用 6xxx 组铝合金具有良好的机械性能,但这些合金在凝固过程中容易产生热裂纹,因此无法满足强度和密封性方面的要求,而这对于电动汽车相关应用来说越来越重要。凝固速率已被确定为脉冲传导焊接中的主导因素,可通过脉冲形状进行调节,即通过改变单个脉冲的束功率随时间的变化来调节凝固速率。根据点焊的旋转对称条件,可在径向和纵向测量凝固速率。为此,我们在欧洲同步辐射设施(ESRF)利用原位高速同步 X 射线成像技术对 EN AW 6082 合金的焊接过程进行了研究。通过高达 120,000 Hz 的帧频和后续图像分析,可以深入分析凝固过程、凝固过程对不同空间方向的依赖性以及由此对热裂纹形成的影响。
{"title":"Temporal and spatial determination of solidification rate during pulsed laser beam welding of hot-crack susceptible aluminum alloys by means of high-speed synchrotron X-ray imaging","authors":"M. Seibold , K. Schricker , L. Schmidt , D. Diegel , H. Friedmann , P. Hellwig , F. Fröhlich , F. Nagel , P. Kallage , A. Rack , H. Requardt , Y. Chen , J.P. Bergmann","doi":"10.1016/j.jajp.2024.100235","DOIUrl":"10.1016/j.jajp.2024.100235","url":null,"abstract":"<div><p>Pulsed laser beam welding is primarily used to join thin-walled components. The use of 6xxx group aluminum alloys is characterized by good mechanical properties but these alloys are prone to hot cracking during solidification, i.e., requirements regarding strength and tightness, as increasingly important for electromobility related applications, cannot be fulfilled. The solidification rate has been identified as dominant factor in pulsed conduction welding which can be adjusted by the pulse shape, i.e., by varying the beam power over time for a single pulse.</p><p>Pulse shapes with different, linear ramp-down slopes were studied to describe the interaction between beam power and resulting solidification rate for spot welds. Based on rotationally symmetric conditions of the spot welds, the solidification rate can be measured in radial and vertical directions. The welding process of EN AW 6082 alloy was examined by in situ high-speed synchrotron X-ray imaging at the European Synchrotron Radiation Facility (ESRF) for this reason. Frame rates up to 120,000 Hz and subsequent image analysis allowed in-depth analysis of the solidification processes, their dependence on different spatial directions, and the resulting effects on hot crack formation.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100235"},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000517/pdfft?md5=671fe0d549916cdad86564cd55cbc805&pid=1-s2.0-S2666330924000517-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The feasibility of welding a CuAlBe SMA by continuous drive friction welding was evaluated. The metallurgical state (annealed/quenched) before welding and frictional pressure (5 and 10 MPa) were varied and their effects on joint quality were analyzed. Static tensile tests, microhardness, thermal analysis by DSC, and optical microscopy were carried out to characterize the welded joint. The results indicated joints of excellent thermomechanical quality. The welding zones are well-defined, narrow, and have a very refined microstructure compared to the base metal. The phase transition temperatures along the welded assemblies were not changed when welding was performed on the quenched samples, except in the welding zone of the sample welded with 10 MPa. Maximum tensile strength was obtained by using maximum friction pressure during welding of the annealed alloy (quenching after welding). To fill the gap in bibliographical research in this field of study, this work innovatively presents the possibility of welding Cu-based SMAs by rotary friction, including the welding of quenched parts without the need for subsequent heat treatments and without compromising the shape memory effect.
评估了通过连续驱动摩擦焊焊接 CuAlBe SMA 的可行性。改变了焊接前的冶金状态(退火/淬火)和摩擦压力(5 和 10 兆帕),并分析了它们对接头质量的影响。对焊接接头进行了静态拉伸试验、显微硬度、DSC 热分析和光学显微镜检查。结果表明,焊点具有优异的热机械质量。与母材相比,焊接区轮廓分明、狭窄,并且具有非常精细的微观结构。在淬火试样上进行焊接时,除 10 兆帕焊接试样的焊接区外,焊接组件沿线的相变温度没有变化。在退火合金焊接过程中使用最大摩擦压力(焊后淬火)可获得最大抗拉强度。为了填补这一研究领域的文献空白,这项工作创新性地提出了通过旋转摩擦焊接铜基 SMA 的可能性,包括焊接淬火部件,而无需进行后续热处理,也不会影响形状记忆效果。
{"title":"Rotary friction welding applied to Cu11.8Al0.45Be shape memory alloy","authors":"A.A.de Albuquerque , H. Louche , D.F.de Oliveira , I.C.A. Brito","doi":"10.1016/j.jajp.2024.100233","DOIUrl":"https://doi.org/10.1016/j.jajp.2024.100233","url":null,"abstract":"<div><p>The feasibility of welding a CuAlBe SMA by continuous drive friction welding was evaluated. The metallurgical state (annealed/quenched) before welding and frictional pressure (5 and 10 MPa) were varied and their effects on joint quality were analyzed. Static tensile tests, microhardness, thermal analysis by DSC, and optical microscopy were carried out to characterize the welded joint. The results indicated joints of excellent thermomechanical quality. The welding zones are well-defined, narrow, and have a very refined microstructure compared to the base metal. The phase transition temperatures along the welded assemblies were not changed when welding was performed on the quenched samples, except in the welding zone of the sample welded with 10 MPa. Maximum tensile strength was obtained by using maximum friction pressure during welding of the annealed alloy (quenching after welding). To fill the gap in bibliographical research in this field of study, this work innovatively presents the possibility of welding Cu-based SMAs by rotary friction, including the welding of quenched parts without the need for subsequent heat treatments and without compromising the shape memory effect.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100233"},"PeriodicalIF":4.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000499/pdfft?md5=02c3b41a224ce56ef8cf188c0b1cc15d&pid=1-s2.0-S2666330924000499-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}