Pub Date : 2025-11-05DOI: 10.1016/j.jajp.2025.100357
Amin Shafinejad Bejandi, Hamid Khorsand, Mehdi Moslemi, Ali Ostad Akbarian Azar
Integrating tungsten carbide (WC–8Co) with steel is a pivotal aspect of cutting tool manufacturing, as monolithic carbide tools are inherently brittle and cannot be fabricated as a single component. To enhance toughness and resistance to dynamic stresses, WC is brazed to steels with greater ductility. Given WC's high melting temperature, conventional welding methods are ineffective, making brazing one of the most suitable techniques for joining dissimilar materials. This study aimed to optimize the brazing process to minimize the loss of WC hardness, as a reduction in hardness compromises tool efficiency and lifespan. In this research, WC–8Co was brazed to AISI 1006 steel using a silver-based filler (BAg22) through tube, induction, and infrared furnaces at temperatures of 800 °C, 850 °C, and 900 °C under vacuum conditions, with induction powers set at 10 and 15 kW. The microstructural and mechanical properties were assessed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), microhardness testing, and shear testing. The initial hardness of WC was measured at 2202 HV, with decreases of 1.8%, 10%, and 22% observed for the induction, infrared, and tube furnaces, respectively. The shear strength was highest for the induction furnace (294 MPa), followed by the infrared furnace (268 MPa) and the tube furnace (202 MPa). OM/SEM/EDS analyses revealed a silver- and copper-rich eutectic structure, while elevated temperatures enhanced filler wettability and diffusion, resulting in uniform, defect-free joints. These findings yield quantitative insights for optimizing the brazing of WC–steel joints, facilitating the manufacturing of high-performance cutting tools.
{"title":"Investigation of microstructural and mechanical properties of dissimilar WC–8 %Co/AISI 1006 steel joints brazed using tube, induction, and infrared furnaces","authors":"Amin Shafinejad Bejandi, Hamid Khorsand, Mehdi Moslemi, Ali Ostad Akbarian Azar","doi":"10.1016/j.jajp.2025.100357","DOIUrl":"10.1016/j.jajp.2025.100357","url":null,"abstract":"<div><div>Integrating tungsten carbide (WC–8Co) with steel is a pivotal aspect of cutting tool manufacturing, as monolithic carbide tools are inherently brittle and cannot be fabricated as a single component. To enhance toughness and resistance to dynamic stresses, WC is brazed to steels with greater ductility. Given WC's high melting temperature, conventional welding methods are ineffective, making brazing one of the most suitable techniques for joining dissimilar materials. This study aimed to optimize the brazing process to minimize the loss of WC hardness, as a reduction in hardness compromises tool efficiency and lifespan. In this research, WC–8Co was brazed to AISI 1006 steel using a silver-based filler (BAg22) through tube, induction, and infrared furnaces at temperatures of 800 °C, 850 °C, and 900 °C under vacuum conditions, with induction powers set at 10 and 15 kW. The microstructural and mechanical properties were assessed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), microhardness testing, and shear testing. The initial hardness of WC was measured at 2202 HV, with decreases of 1.8%, 10%, and 22% observed for the induction, infrared, and tube furnaces, respectively. The shear strength was highest for the induction furnace (294 MPa), followed by the infrared furnace (268 MPa) and the tube furnace (202 MPa). OM/SEM/EDS analyses revealed a silver- and copper-rich eutectic structure, while elevated temperatures enhanced filler wettability and diffusion, resulting in uniform, defect-free joints. These findings yield quantitative insights for optimizing the brazing of WC–steel joints, facilitating the manufacturing of high-performance cutting tools.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"13 ","pages":"Article 100357"},"PeriodicalIF":4.0,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145738199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-27DOI: 10.1016/j.jajp.2025.100356
Wei-Rong Yang , Kiyokazu Yasuda , Jenn-Ming Song
Nanoindentation technique is applied as the key tool to investigated mechanical properties of intermetallic compounds, particularly those formed at solder joint interfaces, which are essential for the mechanical stability and reliability of electronic packaging. This article reviews the findings on mechanical properties of various intermetallic compounds using nanoindentation, including the dependences of crystal orientation and structure, alloying effects, and how these influence hardness, Young’s modulus, plastic ability, and creep resistance. Young’s modulus/hardness ratio was proposed to evaluate toughness, and creep resistance, and to predict reliability of the joints. The reviews shed a brand-new approach for the alloy/substrate material design enhancing interconnect durability.
{"title":"Mechanical properties of intermetallic compounds at solder joint interfaces investigated using nanoindentation technique","authors":"Wei-Rong Yang , Kiyokazu Yasuda , Jenn-Ming Song","doi":"10.1016/j.jajp.2025.100356","DOIUrl":"10.1016/j.jajp.2025.100356","url":null,"abstract":"<div><div>Nanoindentation technique is applied as the key tool to investigated mechanical properties of intermetallic compounds, particularly those formed at solder joint interfaces, which are essential for the mechanical stability and reliability of electronic packaging. This article reviews the findings on mechanical properties of various intermetallic compounds using nanoindentation, including the dependences of crystal orientation and structure, alloying effects, and how these influence hardness, Young’s modulus, plastic ability, and creep resistance. Young’s modulus/hardness ratio was proposed to evaluate toughness, and creep resistance, and to predict reliability of the joints. The reviews shed a brand-new approach for the alloy/substrate material design enhancing interconnect durability.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100356"},"PeriodicalIF":4.0,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145415252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-10DOI: 10.1016/j.jajp.2025.100354
Maria R.F. Barros , Pedro M.S. Rosado , Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins
This paper explores a new hybrid manufacturing approach that combines wire-arc additive manufacturing (WAAM) with resistance spot welding (RSW). The approach integrates additively deposited materials with commercial sheets, which can serve as either supporting or functional elements. Experimental testing and finite element modelling allowed defining the weld lobe and optimizing key parameters such as electric current and welding time. Optimization was based on nugget shape, microstructure, and mechanical performance from destructive shear and peel tests. Two distinct joining modes were identified: symmetric and asymmetric weld nuggets, with the former exhibiting higher strength but requiring a higher heat input. A proof-of-concept prototype was developed to demonstrate the potential of this innovative hybrid manufacturing approach, combining WAAM, machining, forming, and RSW to fabricate complex, multi-thickness components with improved structural integrity.
{"title":"Exploring the hybridization of wire-arc additive manufacturing and resistance spot welding","authors":"Maria R.F. Barros , Pedro M.S. Rosado , Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins","doi":"10.1016/j.jajp.2025.100354","DOIUrl":"10.1016/j.jajp.2025.100354","url":null,"abstract":"<div><div>This paper explores a new hybrid manufacturing approach that combines wire-arc additive manufacturing (WAAM) with resistance spot welding (RSW). The approach integrates additively deposited materials with commercial sheets, which can serve as either supporting or functional elements. Experimental testing and finite element modelling allowed defining the weld lobe and optimizing key parameters such as electric current and welding time. Optimization was based on nugget shape, microstructure, and mechanical performance from destructive shear and peel tests. Two distinct joining modes were identified: symmetric and asymmetric weld nuggets, with the former exhibiting higher strength but requiring a higher heat input. A proof-of-concept prototype was developed to demonstrate the potential of this innovative hybrid manufacturing approach, combining WAAM, machining, forming, and RSW to fabricate complex, multi-thickness components with improved structural integrity.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100354"},"PeriodicalIF":4.0,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145324211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.jajp.2025.100353
Farzad Khodabakhshi, Mark Turezki, Adrian P. Gerlich
In this research, an innovative solid-state joining technology has been introduced for butt-welding of circular sections with dissimilar tube and rod geometries, using induction kinetic welding (IKW). This process involves using induction to preheat material before bringing the pieces together, where rapid heating to below the base metal melting temperature followed quickly by applying axial force and shear rotation at the joint interface. A homogeneous weld microstructure consisting of refined grains and minimal heat affected zone (HAZ) is formed at the contact interface. The present work demonstrates this for a specific application involving a circular plug (with a diameter of ∼13 mm) and thin-walled tube (with a diameter of ∼13.4 mm and a wall thickness of ∼0.35 mm) both consisting of Zircaloy-4. Among the IKW processing parameters, the influence of preheating temperature and rotational shear displacement angle are the most critical inputs examined. The final joint stress distribution near the peak fracture load was modelled using finite element analysis (FEA). To this end, induction heating up to the temperature of ∼1400°C followed by a frictional shear-rotation angle of 60-degrees achieved formation of a sound solid-state weld with upset and removal of oxides from the contact interface. Afterward, the microstructural characteristics across the welding line and mechanical properties of the produced weldments were examined. A joining efficiency of 100% was achieved during the tensile fracture of the tube/plug weldment where fracture of the tube base metal has been achieved.
{"title":"Induction kinetic welding (IKW): An innovative one-shot solid-state technique for circular joints","authors":"Farzad Khodabakhshi, Mark Turezki, Adrian P. Gerlich","doi":"10.1016/j.jajp.2025.100353","DOIUrl":"10.1016/j.jajp.2025.100353","url":null,"abstract":"<div><div>In this research, an innovative solid-state joining technology has been introduced for butt-welding of circular sections with dissimilar tube and rod geometries, using induction kinetic welding (IKW). This process involves using induction to preheat material before bringing the pieces together, where rapid heating to below the base metal melting temperature followed quickly by applying axial force and shear rotation at the joint interface. A homogeneous weld microstructure consisting of refined grains and minimal heat affected zone (HAZ) is formed at the contact interface. The present work demonstrates this for a specific application involving a circular plug (with a diameter of ∼13 mm) and thin-walled tube (with a diameter of ∼13.4 mm and a wall thickness of ∼0.35 mm) both consisting of Zircaloy-4. Among the IKW processing parameters, the influence of preheating temperature and rotational shear displacement angle are the most critical inputs examined. The final joint stress distribution near the peak fracture load was modelled using finite element analysis (FEA). To this end, induction heating up to the temperature of ∼1400°C followed by a frictional shear-rotation angle of 60-degrees achieved formation of a sound solid-state weld with upset and removal of oxides from the contact interface. Afterward, the microstructural characteristics across the welding line and mechanical properties of the produced weldments were examined. A joining efficiency of 100% was achieved during the tensile fracture of the tube/plug weldment where fracture of the tube base metal has been achieved.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100353"},"PeriodicalIF":4.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the influence of externally applied magnetic fields—both alternating and rotating—on the microstructural evolution and interface integrity of laser-welded dissimilar joints between titanium and 316 L stainless steel. A fiber laser system was employed to perform keyhole-mode lap welding, with various magnetic field orientations introduced to actively manipulate the melt pool dynamics. Alternating fields (Bx, By, Bz) promoted grain refinement (reducing average grain size from 51.8 ± 4.1 µm to 36.2 ± 3.1 µm) and enhanced recrystallization (increasing the recrystallized fraction to ∼0.69), resulting in a finer microstructure and more discrete intermetallic compound (IMC) formation at the Ti–316 L interface. In contrast, rotating magnetic fields (Bxy, Byz, Bxz) encouraged coarser grain growth (increasing average grain size up to 80.1 ± 4.5 µm) and increased the presence of unrecrystallized regions (up to 0.484 fraction) due to stabilized melt flow and slower cooling rates. These conditions facilitated deeper interdiffusion and led to thicker, more continuous IMC layers, correlating with a peak microhardness of 576 ± 8 HV, potentially compromising joint integrity. The findings demonstrate that precise control of magnetic field configuration during laser processing offers a powerful tool to tailor interfacial microstructures and minimize brittle phase formation. This approach provides new opportunities to enhance the performance and reliability of dissimilar metal joints in critical structural applications.
{"title":"Tailoring microstructure and interface integrity in Ti–316L dissimilar keyhole laser welding using controlled 3d magnetic field stimulation","authors":"Pinku Yadav , Simone Gervasoni , David Sargent , Patrik Hoffmann , Sergey Shevchik","doi":"10.1016/j.jajp.2025.100352","DOIUrl":"10.1016/j.jajp.2025.100352","url":null,"abstract":"<div><div>This study investigates the influence of externally applied magnetic fields—both alternating and rotating—on the microstructural evolution and interface integrity of laser-welded dissimilar joints between titanium and 316 L stainless steel. A fiber laser system was employed to perform keyhole-mode lap welding, with various magnetic field orientations introduced to actively manipulate the melt pool dynamics. Alternating fields (Bx, By, Bz) promoted grain refinement (reducing average grain size from 51.8 ± 4.1 µm to 36.2 ± 3.1 µm) and enhanced recrystallization (increasing the recrystallized fraction to ∼0.69), resulting in a finer microstructure and more discrete intermetallic compound (IMC) formation at the Ti–316 L interface. In contrast, rotating magnetic fields (Bxy, Byz, Bxz) encouraged coarser grain growth (increasing average grain size up to 80.1 ± 4.5 µm) and increased the presence of unrecrystallized regions (up to 0.484 fraction) due to stabilized melt flow and slower cooling rates. These conditions facilitated deeper interdiffusion and led to thicker, more continuous IMC layers, correlating with a peak microhardness of 576 ± 8 HV, potentially compromising joint integrity. The findings demonstrate that precise control of magnetic field configuration during laser processing offers a powerful tool to tailor interfacial microstructures and minimize brittle phase formation. This approach provides new opportunities to enhance the performance and reliability of dissimilar metal joints in critical structural applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100352"},"PeriodicalIF":4.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1016/j.jajp.2025.100351
Hamidreza Rohani Raftar , Amir Khodabakhshi , Tomi Suikkari , Antti Ahola , Tuomas Skriko
Welding of aluminum alloys often introduces residual stress and deflection, compromising dimensional precision and structural performance. This study investigates the influence of key process parameters of gas metal arc welding on the thermo-mechanical response of 6082-T6 aluminum alloy butt joints. A numerical method was developed and validated using experimental measurements of temperature distribution (thermocouples), deflection (3D laser scanning), and residual stress(X-ray diffraction). A full-factorial design of experiments (DOE) was conducted, varying clamping configuration, plate thickness, welding sequence, and cooling conditions. Analysis of variance (ANOVA) quantified main and interaction effects. The study identified a trade-off between deflection and residual stress, which was addressed through multi-objective optimization using a desirability function approach. Deflection was reduced from 1.44 mm (measured experimentally) to 0.6 mm under optimized conditions, while the minimum residual stress was 171 MPa, representing a decrease of approximately 12%. The optimum condition corresponded to a partially restrained clamping configuration, a plate thickness of 4 mm, a continuous single pass welding sequence, and natural air cooling. Predictive models based on ensemble regression techniques were constructed using the 72 DOE-based FEM cases and validated with experimental measurements to estimate responses and rank influential parameters. The models achieved an R² values of 0.93 for deflection and an R² value of 0.94 for residual stress. Consistency between statistical and predictive analyses confirmed the dominant factors. The optimization framework offers a data-driven approach to improve welded structural integrity and highlights the potential of integrated simulation and data analysis in materials processing and design.
{"title":"Multi-objective optimization of welding-induced residual stress and deflection in 6082-T6 aluminum alloy using validated thermo-mechanical modeling","authors":"Hamidreza Rohani Raftar , Amir Khodabakhshi , Tomi Suikkari , Antti Ahola , Tuomas Skriko","doi":"10.1016/j.jajp.2025.100351","DOIUrl":"10.1016/j.jajp.2025.100351","url":null,"abstract":"<div><div>Welding of aluminum alloys often introduces residual stress and deflection, compromising dimensional precision and structural performance. This study investigates the influence of key process parameters of gas metal arc welding on the thermo-mechanical response of 6082-T6 aluminum alloy butt joints. A numerical method was developed and validated using experimental measurements of temperature distribution (thermocouples), deflection (3D laser scanning), and residual stress(X-ray diffraction). A full-factorial design of experiments (DOE) was conducted, varying clamping configuration, plate thickness, welding sequence, and cooling conditions. Analysis of variance (ANOVA) quantified main and interaction effects. The study identified a trade-off between deflection and residual stress, which was addressed through multi-objective optimization using a desirability function approach. Deflection was reduced from 1.44 mm (measured experimentally) to 0.6 mm under optimized conditions, while the minimum residual stress was 171 MPa, representing a decrease of approximately 12%. The optimum condition corresponded to a partially restrained clamping configuration, a plate thickness of 4 mm, a continuous single pass welding sequence, and natural air cooling. Predictive models based on ensemble regression techniques were constructed using the 72 DOE-based FEM cases and validated with experimental measurements to estimate responses and rank influential parameters. The models achieved an R² values of 0.93 for deflection and an R² value of 0.94 for residual stress. Consistency between statistical and predictive analyses confirmed the dominant factors. The optimization framework offers a data-driven approach to improve welded structural integrity and highlights the potential of integrated simulation and data analysis in materials processing and design.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100351"},"PeriodicalIF":4.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-17DOI: 10.1016/j.jajp.2025.100350
Sathishkumar Duraisamy , Ana Horovistiz , Antonio Bastos , Bernardo Mascate , João M.S. Dias
Copper welding presents significant challenges due to its high thermal conductivity and reflectivity, making traditional welding methods largely ineffective. Electron Beam Welding (EBW) offers a promising solution but requires precise parameter control to achieve optimal results. This study is a systematic review following a structured search of Scopus and Web of Science. After title–abstract–full text screening using predefined inclusion criteria (experimental EBW of copper or copper–dissimilar joints reporting process parameters and weld performance), 163 peer-reviewed articles were retained. For each study, the authors extracted process parameters (accelerating voltage, beam current, welding speed, focus/defocus, beam oscillation), material characteristics (alloy type, thickness, surface preparation), and outcomes (penetration, porosity, microstructure, mechanical properties). Reported statistical measures were consolidated to quantify the dominant influences of the parameters, and a SWOT analysis, along with a research gap analysis, was performed. Research indicates that vacuum-based EBW effectively overcomes copper welding difficulties while producing superior joint quality compared to other fusion processes. EBW achieves deep weld penetrations of up to 30 mm with minimal defects in copper, producing joint strengths of up to 264 MPa, equivalent to approximately 95% of the base material strength. Key welding parameters, including beam current, welding speed, focus position, and oscillation patterns, significantly influence weld quality, with beam current exerting the strongest effect on penetration depth. When joining copper to different materials, careful beam positioning and oscillation techniques successfully control unwanted compound formation while maintaining joint strength. Key findings establish that beam current accounts for 81% of the variance in weld quality control; strategic beam positioning with 0.4–0.5 mm offsets optimizes dissimilar joints, achieving strengths of 250 MPa; oscillation patterns reduce porosity by 30% while controlling intermetallic formation; and significant research gaps remain in copper tube joining applications for thermal management systems. This framework enables precision joining of high-performance copper systems for next-generation energy and electronics applications.
由于铜的高导热性和反射率,传统的焊接方法在很大程度上是无效的,因此铜焊接面临着巨大的挑战。电子束焊接(EBW)提供了一个很有前途的解决方案,但需要精确的参数控制以达到最佳效果。本研究是对Scopus和Web of Science进行结构化搜索后的系统综述。在使用预先定义的纳入标准(铜或铜异种接头的实验EBW报告工艺参数和焊接性能)对标题-摘要-全文进行筛选后,保留了163篇同行评审的文章。对于每项研究,作者提取了工艺参数(加速电压、光束电流、焊接速度、聚焦/离焦、光束振荡)、材料特性(合金类型、厚度、表面处理)和结果(渗透、孔隙度、微观结构、机械性能)。合并报告的统计措施,以量化参数的主导影响,并进行SWOT分析,以及研究差距分析。研究表明,真空电弧焊有效地克服了铜焊接的困难,同时产生的接头质量优于其他熔合工艺。EBW在铜缺陷最小的情况下实现了30毫米的深焊缝穿透,接头强度高达264兆帕,相当于基材强度的约95%。梁电流、焊接速度、焦点位置、振荡模式等关键焊接参数对焊接质量影响显著,其中梁电流对焊深影响最大。当将铜连接到不同的材料时,仔细的梁定位和振荡技术成功地控制了不必要的化合物形成,同时保持了连接强度。主要研究结果包括:焊缝质量控制中81%的变化是由光束电流引起的;偏移量为0.4 ~ 0.5 mm的策略梁定位优化了不同节点,实现了250 MPa的强度;振荡模式在控制金属间形成的同时降低了30%的孔隙度;在热管理系统的铜管连接应用方面仍存在重大的研究空白。该框架能够精确连接下一代能源和电子应用的高性能铜系统。
{"title":"Electron beam welding parameters for copper and dissimilar copper joints: Review, research gaps, and future challenges","authors":"Sathishkumar Duraisamy , Ana Horovistiz , Antonio Bastos , Bernardo Mascate , João M.S. Dias","doi":"10.1016/j.jajp.2025.100350","DOIUrl":"10.1016/j.jajp.2025.100350","url":null,"abstract":"<div><div>Copper welding presents significant challenges due to its high thermal conductivity and reflectivity, making traditional welding methods largely ineffective. Electron Beam Welding (EBW) offers a promising solution but requires precise parameter control to achieve optimal results. This study is a systematic review following a structured search of Scopus and Web of Science. After title–abstract–full text screening using predefined inclusion criteria (experimental EBW of copper or copper–dissimilar joints reporting process parameters and weld performance), 163 peer-reviewed articles were retained. For each study, the authors extracted process parameters (accelerating voltage, beam current, welding speed, focus/defocus, beam oscillation), material characteristics (alloy type, thickness, surface preparation), and outcomes (penetration, porosity, microstructure, mechanical properties). Reported statistical measures were consolidated to quantify the dominant influences of the parameters, and a SWOT analysis, along with a research gap analysis, was performed. Research indicates that vacuum-based EBW effectively overcomes copper welding difficulties while producing superior joint quality compared to other fusion processes. EBW achieves deep weld penetrations of up to 30 mm with minimal defects in copper, producing joint strengths of up to 264 MPa, equivalent to approximately 95% of the base material strength. Key welding parameters, including beam current, welding speed, focus position, and oscillation patterns, significantly influence weld quality, with beam current exerting the strongest effect on penetration depth. When joining copper to different materials, careful beam positioning and oscillation techniques successfully control unwanted compound formation while maintaining joint strength. Key findings establish that beam current accounts for 81% of the variance in weld quality control; strategic beam positioning with 0.4–0.5 mm offsets optimizes dissimilar joints, achieving strengths of 250 MPa; oscillation patterns reduce porosity by 30% while controlling intermetallic formation; and significant research gaps remain in copper tube joining applications for thermal management systems. This framework enables precision joining of high-performance copper systems for next-generation energy and electronics applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100350"},"PeriodicalIF":4.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-16DOI: 10.1016/j.jajp.2025.100349
Eko Prasetya Budiana, Anas Fikri Makarim, Heru Sukanto, Nurul Muhayat, Triyono
Aluminum is widely used in industry due to its lightweight, high strength, and cost-effectiveness. However, conventional fusion welding of aluminum often results in porosity defects. One-step Double-Acting Friction Stir Welding (ODFSW) is an advancement of the FSW technique that enables simultaneous double-sided welding in a single pass at sub-melting temperatures, thereby overcoming porosity issues in fusion welding while also addressing challenges in single-sided FSW of thicker plates, such as incomplete penetration and root flaws. The quality of ODFSW joints is strongly influenced by the material flow behavior during welding. To investigate this flow, the Tracer Insert Technique was employed. This study examines the effect of tracer material type and form on the visibility of material flow in ODFSW of AA1100 aluminum with a 1 mm pin overlap. Three types of tracers were used: SiO₂ powder, AA6061 powder, and ER5356 wire. Results revealed that powder-form tracers, particularly AA6061, provided better visualization due to more uniform distribution and higher color contrast caused by the presence of Mg₂Si precipitates. Multi-Attribute Decision Making (MADM) evaluation identified AA6061 as the most effective tracer, exhibiting minimal defects. Material flow visualization indicated distinct patterns, including flow from the advancing side (AS) to the retreating side (RS), material accumulation at the weld exit, onion ring formation, microvoids at pin tips, and homogeneous mixing in the mid-plate region. Additionally, a funnel-shaped flow profile and material concentration at the mid-thickness zone were observed, attributed to the mechanical interaction between the upper and lower tools.
{"title":"Visualization of material flow in one-step double-acting FSW of AA1100: role of tracer type and morphology","authors":"Eko Prasetya Budiana, Anas Fikri Makarim, Heru Sukanto, Nurul Muhayat, Triyono","doi":"10.1016/j.jajp.2025.100349","DOIUrl":"10.1016/j.jajp.2025.100349","url":null,"abstract":"<div><div>Aluminum is widely used in industry due to its lightweight, high strength, and cost-effectiveness. However, conventional fusion welding of aluminum often results in porosity defects. One-step Double-Acting Friction Stir Welding (ODFSW) is an advancement of the FSW technique that enables simultaneous double-sided welding in a single pass at sub-melting temperatures, thereby overcoming porosity issues in fusion welding while also addressing challenges in single-sided FSW of thicker plates, such as incomplete penetration and root flaws. The quality of ODFSW joints is strongly influenced by the material flow behavior during welding. To investigate this flow, the Tracer Insert Technique was employed. This study examines the effect of tracer material type and form on the visibility of material flow in ODFSW of AA1100 aluminum with a 1 mm pin overlap. Three types of tracers were used: SiO₂ powder, AA6061 powder, and ER5356 wire. Results revealed that powder-form tracers, particularly AA6061, provided better visualization due to more uniform distribution and higher color contrast caused by the presence of Mg₂Si precipitates. Multi-Attribute Decision Making (MADM) evaluation identified AA6061 as the most effective tracer, exhibiting minimal defects. Material flow visualization indicated distinct patterns, including flow from the advancing side (AS) to the retreating side (RS), material accumulation at the weld exit, onion ring formation, microvoids at pin tips, and homogeneous mixing in the mid-plate region. Additionally, a funnel-shaped flow profile and material concentration at the mid-thickness zone were observed, attributed to the mechanical interaction between the upper and lower tools.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100349"},"PeriodicalIF":4.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145095122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-04DOI: 10.1016/j.jajp.2025.100347
Michael Unger , Sebastian Zehetner , Thomas Klein , Aurel Arnoldt , Martin Schnall
Shielding gases are used in welding technologies to prevent contamination and protect the metallic melt from disadvantageous effects that air could cause on the weld. While argon is mostly used for gas metal arc welding of aluminum, this paper investigates the use of mixtures with traces of different gases. Various properties of the weld seams are assessed: Effects on bead geometry, microstructure, defects, and mechanical characteristics of the resulting material. Investigations were performed for single welds as well as directed energy deposited wire-arc specimens. For this purpose, single bead on plate with CO2, N2, and O2 in the mixture and wall geometry samples with N2 and O2 were manufactured and subsequently analyzed. Nitrogen in the gas mixture is reducing the bead and deposit width and decreasing the grain size compared to the reference sample. This grain size reduction is due to the formation of nitrides in the weld material acting as nucleants for new grains. Nitrides were identified by energy dispersive X-ray spectroscopy. Furthermore, nitrogen is reducing the number of pores but not significantly their volume fraction. A similar effect is reported for used amounts of O2 on smaller scale. The characteristic mechanical strength values are comparable to reported data, but the elongation is reduced when nitrogen is present in the shielding gas mixture.
{"title":"Effect of process gas mixtures on weld material characteristics and bead geometry for wire-arc directed energy deposition","authors":"Michael Unger , Sebastian Zehetner , Thomas Klein , Aurel Arnoldt , Martin Schnall","doi":"10.1016/j.jajp.2025.100347","DOIUrl":"10.1016/j.jajp.2025.100347","url":null,"abstract":"<div><div>Shielding gases are used in welding technologies to prevent contamination and protect the metallic melt from disadvantageous effects that air could cause on the weld. While argon is mostly used for gas metal arc welding of aluminum, this paper investigates the use of mixtures with traces of different gases. Various properties of the weld seams are assessed: Effects on bead geometry, microstructure, defects, and mechanical characteristics of the resulting material. Investigations were performed for single welds as well as directed energy deposited wire-arc specimens. For this purpose, single bead on plate with CO<sub>2</sub>, N<sub>2</sub>, and O<sub>2</sub> in the mixture and wall geometry samples with N<sub>2</sub> and O<sub>2</sub> were manufactured and subsequently analyzed. Nitrogen in the gas mixture is reducing the bead and deposit width and decreasing the grain size compared to the reference sample. This grain size reduction is due to the formation of nitrides in the weld material acting as nucleants for new grains. Nitrides were identified by energy dispersive X-ray spectroscopy. Furthermore, nitrogen is reducing the number of pores but not significantly their volume fraction. A similar effect is reported for used amounts of O<sub>2</sub> on smaller scale. The characteristic mechanical strength values are comparable to reported data, but the elongation is reduced when nitrogen is present in the shielding gas mixture.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100347"},"PeriodicalIF":4.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145044702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-21DOI: 10.1016/j.jajp.2025.100343
Yoshitake Suganuma, James A. Elliott
This work studies a polymer–metal oxide bonded interface consisting of isotactic polypropylene (iPP) and a porous surface, and examines the impact of the stiffness of the polymeric component on the tensile strength of the interface using the dissipative particle dynamics (DPD) method. Our calculations reveal that an increase in the stiffness of iPP component leads to an increased tensile strength on the porous alumina even in an interfacial failure. The tensile failure mode observed on the porous surface is caused by the slippage of iPP component along the pore walls. An iPP component with a higher Young’s modulus is more resistant to deformation during tensile tests, which makes it difficult for the interfacial stress to reach the critical strain for the slippage, and thus results in an increased tensile strength of the bonded interface.
{"title":"Effect of varying stiffness on the interfacial failure behavior of isotactic polypropylene and porous alumina studied via DPD simulation","authors":"Yoshitake Suganuma, James A. Elliott","doi":"10.1016/j.jajp.2025.100343","DOIUrl":"10.1016/j.jajp.2025.100343","url":null,"abstract":"<div><div>This work studies a polymer–metal oxide bonded interface consisting of isotactic polypropylene (iPP) and a porous surface, and examines the impact of the stiffness of the polymeric component on the tensile strength of the interface using the dissipative particle dynamics (DPD) method. Our calculations reveal that an increase in the stiffness of iPP component leads to an increased tensile strength on the porous alumina even in an interfacial failure. The tensile failure mode observed on the porous surface is caused by the slippage of iPP component along the pore walls. An iPP component with a higher Young’s modulus is more resistant to deformation during tensile tests, which makes it difficult for the interfacial stress to reach the critical strain for the slippage, and thus results in an increased tensile strength of the bonded interface.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100343"},"PeriodicalIF":4.0,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144917747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}