Current lithium-ion battery recycling processes are based on high-temperature calcination (pyrometallurgy) or leaching treatments (hydrometallurgy), requiring huge amounts of energy and producing considerable waste. Direct recycling protocols are based on the reconstruction and regeneration of materials, eliminating the need for further material processing. In this paper, graphite electrodes have been recycled via a direct recycling protocol based on mild leaching with H2SO4 and H2O2 and calcination to eliminate the impurities and regenerate the structure. A Design of Experiments (DOE) has been proposed to determine the leaching conditions that reduce the generated waste and environmental impact, for which a Life Cycle Assessment (LCA) has been carried out. This combination of experimental and analytical methods has been useful to determine the parameters that have the greatest impact on the environment and select the most sustainable leaching condition, which, in this case, has shown a reduction of 36 % in acidification and 14 % in water use. The established recycling route has been validated with graphite anodes from production scraps and cycled cells (End-of-Life condition, EoL, SOH%<80 %), and in both cases, the polymeric compounds used in the electrode slurry preparation have been eliminated and the graphitization degree has been restored. These results show that graphite can be recycled from LIBs to develop a direct recycling route that promotes a sustainable circular economy and diminishes material waste.
扫码关注我们
求助内容:
应助结果提醒方式:
