首页 > 最新文献

Journal of Power Sources Advances最新文献

英文 中文
Thermodynamic and kinetic examination of the glassy carbon electrode in neutral aqueous electrolytes 中性水溶液中玻碳电极的热力学和动力学研究
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.powera.2021.100062
Sofia B. Davey, Amanda P. Cameron, Kenneth G. Latham, Scott W. Donne

Herein we report on the charge storage behaviour of a non-porous planar glassy carbon electrode (GCE) in an aqueous electrolyte of 0.5 M Na2SO4 at temperatures in the range 25 °C to 50 °C. Preliminary cyclic voltammetry (CV) data indicate a decrease in electrode performance at increasing temperatures, and this was supported by detailed analysis of step potential electrochemical spectroscopy (SPECS) data. Kinetic analysis of the deconvoluted SPECS data using the Arrhenius equation has indicated that diffusional charge storage is not thermally activated, instead being possibly influenced by thermal scattering of electrolyte ions. Entropimetric analysis of the SPECS data has generated entropy and enthalpy data for charge storage in this system. These results are discussed in terms of charge storage at this interface.

本文报道了无孔平面玻碳电极(GCE)在0.5 M Na2SO4水溶液中在25℃至50℃温度范围内的电荷存储行为。初步的循环伏安(CV)数据表明,随着温度的升高,电极的性能会下降,这一点得到了阶跃电位电化学光谱(SPECS)数据的详细分析的支持。利用Arrhenius方程对反卷积SPECS数据进行动力学分析表明,扩散电荷存储不是热激活的,而是可能受到电解质离子热散射的影响。对SPECS数据进行熵分析,得到系统中电荷存储的熵和焓数据。从电荷存储的角度对这些结果进行了讨论。
{"title":"Thermodynamic and kinetic examination of the glassy carbon electrode in neutral aqueous electrolytes","authors":"Sofia B. Davey,&nbsp;Amanda P. Cameron,&nbsp;Kenneth G. Latham,&nbsp;Scott W. Donne","doi":"10.1016/j.powera.2021.100062","DOIUrl":"10.1016/j.powera.2021.100062","url":null,"abstract":"<div><p>Herein we report on the charge storage behaviour of a non-porous planar glassy carbon electrode (GCE) in an aqueous electrolyte of 0.5 M Na2SO4 at temperatures in the range 25 °C to 50 °C. Preliminary cyclic voltammetry (CV) data indicate a decrease in electrode performance at increasing temperatures, and this was supported by detailed analysis of step potential electrochemical spectroscopy (SPECS) data. Kinetic analysis of the deconvoluted SPECS data using the Arrhenius equation has indicated that diffusional charge storage is not thermally activated, instead being possibly influenced by thermal scattering of electrolyte ions. Entropimetric analysis of the SPECS data has generated entropy and enthalpy data for charge storage in this system. These results are discussed in terms of charge storage at this interface.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100062"},"PeriodicalIF":4.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48648591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Wet/dry cycle durability of polyphenylene ionomer membranes in PEFC 聚苯乙烯离聚体膜在PEFC中的湿/干循环耐久性
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.powera.2021.100063
Toshiki Tanaka , Haruhiko Shintani , Yasushi Sugawara , Akihiro Masuda , Nobuyuki Sato , Makoto Uchida , Kenji Miyatake

The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H2 crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H2 crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.

根据美国能源部(US-DOE)的协议,在燃料电池的湿/干循环测试中评估了我们的碳氢聚合物电解质膜(聚(亚砜-醌-苯炔)(SPP-QP)或聚苯离聚物的机械耐久性,其中研究了气体扩散层(硬或软GDL)的影响。经过4000次循环后,膜表现出机械失效,硬GDL和H2交叉(通过膜的渗透率)从0.01%跃升至约2%。测试后分析表明,衬垫下的膜边缘受损最严重,在加湿/除湿时尺寸变化受到限制。使用软GDL显著提高了膜的湿/干循环耐久性,即使在3万次循环后,H2交叉也没有实际变化,因为GDL与催化剂层的粘附性很强。SPP-QP膜的机械耐久性优于我们之前在主链上含有醚和酮基团的芳香族离聚体膜。SPP-QP膜的分子量和磺酸基损失较小,表明该膜在严重干湿循环条件下具有化学稳健性。
{"title":"Wet/dry cycle durability of polyphenylene ionomer membranes in PEFC","authors":"Toshiki Tanaka ,&nbsp;Haruhiko Shintani ,&nbsp;Yasushi Sugawara ,&nbsp;Akihiro Masuda ,&nbsp;Nobuyuki Sato ,&nbsp;Makoto Uchida ,&nbsp;Kenji Miyatake","doi":"10.1016/j.powera.2021.100063","DOIUrl":"10.1016/j.powera.2021.100063","url":null,"abstract":"<div><p>The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H<sub>2</sub> crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H<sub>2</sub> crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100063"},"PeriodicalIF":4.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41668117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Impact of catalyst loading, ionomer content, and carbon support on the performance of direct isopropanol fuel cells 催化剂负载、离子含量和碳负载对直接异丙醇燃料电池性能的影响
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.powera.2021.100064
Pascal Hauenstein , Iosif Mangoufis-Giasin , Dominik Seeberger , Peter Wasserscheid , Karl J.J. Mayrhofer , Ioannis Katsounaros , Simon Thiele

Liquid Organic Hydrogen Carriers (LOHC) offer a promising solution for hydrogen storage in the existing infrastructure for conventional fuels. Within this framework, the isopropanol/acetone couple as a light-LOHC system is used to generate electricity in a direct isopropanol fuel cell (DIFC). This work focuses on the impact of catalyst loading, ionomer content and catalyst support on the performance of DIFCs. We achieve a performance rise from 95 mW cm-2 to 219 mW cm-2 under air operation by increasing the anode catalyst loading from 0.5 mg cm-2 to 4 mg cm-2, which can be attributed to the increased abundance of active catalyst sites with higher loadings. In contrast, we find that the cathode loading for the oxygen reduction reaction (ORR) plays a minor role in the performance of DIFCs. Therefore, the cathode loading can be minimized to decrease the total amount of platinum-group metals and, consequently, to save cost. It was also found that an ionomer content of 30% on the anode side is optimal. Additionally, different carbon supports were investigated, where advanced high surface area carbon support showed superior performance to Vulcan with an increase of 20% in power density, motivating the development of new carbon supports for DIFCs.

液态有机氢载体(LOHC)为现有的传统燃料基础设施中的氢储存提供了一个很有前途的解决方案。在此框架下,异丙醇/丙酮偶对作为轻lohc系统用于直接异丙醇燃料电池(DIFC)的发电。本文主要研究了催化剂负载、离子含量和催化剂负载对difc性能的影响。通过将阳极催化剂负载从0.5 mg cm-2增加到4 mg cm-2,我们在空气操作下将性能从95 mW cm-2提高到219 mW cm-2,这可以归因于高负载下活性催化剂位点的丰度增加。相比之下,我们发现氧还原反应(ORR)的阴极负载对difc的性能影响较小。因此,阴极负载可以最小化,以减少铂族金属的总量,从而节省成本。阳极侧离子单体含量为30%为最佳。此外,对不同的碳支架进行了研究,其中先进的高表面积碳支架的性能优于Vulcan,功率密度提高了20%,推动了新型difc碳支架的开发。
{"title":"Impact of catalyst loading, ionomer content, and carbon support on the performance of direct isopropanol fuel cells","authors":"Pascal Hauenstein ,&nbsp;Iosif Mangoufis-Giasin ,&nbsp;Dominik Seeberger ,&nbsp;Peter Wasserscheid ,&nbsp;Karl J.J. Mayrhofer ,&nbsp;Ioannis Katsounaros ,&nbsp;Simon Thiele","doi":"10.1016/j.powera.2021.100064","DOIUrl":"10.1016/j.powera.2021.100064","url":null,"abstract":"<div><p>Liquid Organic Hydrogen Carriers (LOHC) offer a promising solution for hydrogen storage in the existing infrastructure for conventional fuels. Within this framework, the isopropanol/acetone couple as a light-LOHC system is used to generate electricity in a direct isopropanol fuel cell (DIFC). This work focuses on the impact of catalyst loading, ionomer content and catalyst support on the performance of DIFCs. We achieve a performance rise from 95 mW cm<sup>-2</sup> to 219 mW cm<sup>-2</sup> under air operation by increasing the anode catalyst loading from 0.5 mg cm<sup>-2</sup> to 4 mg cm<sup>-2</sup>, which can be attributed to the increased abundance of active catalyst sites with higher loadings. In contrast, we find that the cathode loading for the oxygen reduction reaction (ORR) plays a minor role in the performance of DIFCs. Therefore, the cathode loading can be minimized to decrease the total amount of platinum-group metals and, consequently, to save cost. It was also found that an ionomer content of 30% on the anode side is optimal. Additionally, different carbon supports were investigated, where advanced high surface area carbon support showed superior performance to <span>Vulcan</span> with an increase of 20% in power density, motivating the development of new carbon supports for DIFCs.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100064"},"PeriodicalIF":4.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48461074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Electrode performance of amorphous MoS3 in all-solid-state sodium secondary batteries 非晶MoS3在全固态钠二次电池中的电极性能
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.powera.2021.100061
Gaku Shirota, Akira Nasu, Minako Deguchi, Atsushi Sakuda, Masahiro Tatsumisago, Akitoshi Hayashi

All-solid-state Na–S secondary batteries that use sodium and sulfur, both available in abundance, are the most attractive next-generation batteries. In this study, two types of amorphous MoS3 (a-MoS3) were prepared as electrode active materials for use in all-solid-state sodium secondary batteries using the thermal decomposition (TD) of (NH4)2MoS4 and mechanochemical (MC) processes, denoted a-MoS3 (TD) and a-MoS3 (MC), respectively. X-ray diffraction, thermogravimetric-differential thermal analysis, and X-ray photoelectron spectroscopy (XPS) analyses revealed that a-MoS3 (TD) and a-MoS3 (MC) had different local structures. The a-MoS3 (TD) and a-MoS3 (MC) electrodes showed high reversible capacities of 310 mAh g−1 and 260 mAh g−1, respectively, for five cycles in all-solid-state sodium secondary batteries. XPS analysis of the discharge–charge products suggested that the dissociation and formation of disulfide bonds occurred during the discharge–charge reaction. The results show that a-MoS3 is a promising active electrode material for all-solid-state sodium batteries.

全固态Na-S二次电池使用大量的钠和硫,是最有吸引力的下一代电池。本研究采用(NH4)2MoS4热分解(TD)和机械化学(MC)工艺制备了两种非晶MoS3 (a-MoS3)作为全固态钠二次电池的电极活性材料,分别为a-MoS3 (TD)和a-MoS3 (MC)。x射线衍射、热重差热分析和x射线光电子能谱(XPS)分析表明,a-MoS3 (TD)和a-MoS3 (MC)具有不同的局部结构。a-MoS3 (TD)和a-MoS3 (MC)电极在全固态钠二次电池中表现出高可逆容量,分别为310 mAh g - 1和260 mAh g - 1。对充放电产物的XPS分析表明,在充放电反应过程中发生了二硫键的解离和形成。结果表明,a- mos3是一种很有前途的全固态钠电池活性电极材料。
{"title":"Electrode performance of amorphous MoS3 in all-solid-state sodium secondary batteries","authors":"Gaku Shirota,&nbsp;Akira Nasu,&nbsp;Minako Deguchi,&nbsp;Atsushi Sakuda,&nbsp;Masahiro Tatsumisago,&nbsp;Akitoshi Hayashi","doi":"10.1016/j.powera.2021.100061","DOIUrl":"10.1016/j.powera.2021.100061","url":null,"abstract":"<div><p>All-solid-state Na–S secondary batteries that use sodium and sulfur, both available in abundance, are the most attractive next-generation batteries. In this study, two types of amorphous MoS<sub>3</sub> (a-MoS<sub>3</sub>) were prepared as electrode active materials for use in all-solid-state sodium secondary batteries using the thermal decomposition (TD) of (NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub> and mechanochemical (MC) processes, denoted a-MoS<sub>3</sub> (TD) and a-MoS<sub>3</sub> (MC), respectively. X-ray diffraction, thermogravimetric-differential thermal analysis, and X-ray photoelectron spectroscopy (XPS) analyses revealed that a-MoS<sub>3</sub> (TD) and a-MoS<sub>3</sub> (MC) had different local structures. The a-MoS<sub>3</sub> (TD) and a-MoS<sub>3</sub> (MC) electrodes showed high reversible capacities of 310 mAh g<sup>−1</sup> and 260 mAh g<sup>−1</sup>, respectively, for five cycles in all-solid-state sodium secondary batteries. XPS analysis of the discharge–charge products suggested that the dissociation and formation of disulfide bonds occurred during the discharge–charge reaction. The results show that a-MoS<sub>3</sub> is a promising active electrode material for all-solid-state sodium batteries.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100061"},"PeriodicalIF":4.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45446527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Three-dimensional foam-type current collectors for rechargeable batteries: A short review 可充电电池三维泡沫型集流器:简要综述
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.powera.2021.100065
Nurbolat Issatayev , Arailym Nuspeissova , Gulnur Kalimuldina , Zhumabay Bakenov

Energy storage systems as lithium-ion batteries (LIBs) have become an essential part of our lives, powering on-the-go technologies we use every day. Until recently, immense attention was paid to designing and synthesizing advanced active materials for LIBs to enhance the battery characteristics. However, not the least crucial part of the battery, the current collector, was left unattended for a long time. Therefore, it is not surprising that the batteries reached their limits in power and energy densities, leaving the battery progress equal to an almost flat line. The only way to go ahead with the battery technology would be to design new architectures or to investigate new materials. Changing the battery current collector from planar to three-dimensional (3D) would offer dimensionality to the electrodes meaning short diffusion length for Li-ions, which will boost power density, more active material, and mechanical stability. Herein, in this review, various 3D architecture current collectors will be summarized, and recent advances in synthesis routes will be discussed to point out the importance of 3D structures. In addition, the correlation between the electrochemical performances of batteries and current collector architecture will be reviewed. More than 50 research publications related to the synthesis and performance of different 3D current collectors were reviewed and compared. The review results suggest that despite the outstanding performance, currently used technologies to obtain 3D current collectors make them unacceptable in the commercial sphere, and cheaper, faster and simple synthesis routes are desired to be explored.

作为锂离子电池(lib)的储能系统已经成为我们生活中必不可少的一部分,为我们每天使用的移动技术提供动力。直到最近,设计和合成先进的锂离子电池活性材料以提高电池的性能受到了极大的关注。然而,电池中最重要的部分——集电器却长期无人看管。因此,电池达到其功率和能量密度的极限也就不足为奇了,这使得电池的进步几乎等于一条平坦的线。推进电池技术的唯一途径是设计新的架构或研究新的材料。将电池电流收集器从平面改为三维(3D)将为电极提供维度,这意味着锂离子的扩散长度缩短,这将提高功率密度,更多的活性材料和机械稳定性。在此,本文将总结各种3D结构的现状收集器,并讨论合成路线的最新进展,以指出3D结构的重要性。此外,还综述了电池电化学性能与集流结构之间的关系。综述和比较了50多篇与不同3D集流器的合成和性能相关的研究论文。综述结果表明,尽管3D集流器性能优异,但目前使用的3D集流器技术在商业领域尚不能接受,需要探索更便宜、更快速、更简单的合成路线。
{"title":"Three-dimensional foam-type current collectors for rechargeable batteries: A short review","authors":"Nurbolat Issatayev ,&nbsp;Arailym Nuspeissova ,&nbsp;Gulnur Kalimuldina ,&nbsp;Zhumabay Bakenov","doi":"10.1016/j.powera.2021.100065","DOIUrl":"10.1016/j.powera.2021.100065","url":null,"abstract":"<div><p>Energy storage systems as lithium-ion batteries (LIBs) have become an essential part of our lives, powering on-the-go technologies we use every day. Until recently, immense attention was paid to designing and synthesizing advanced active materials for LIBs to enhance the battery characteristics. However, not the least crucial part of the battery, the current collector, was left unattended for a long time. Therefore, it is not surprising that the batteries reached their limits in power and energy densities, leaving the battery progress equal to an almost flat line. The only way to go ahead with the battery technology would be to design new architectures or to investigate new materials. Changing the battery current collector from planar to three-dimensional (3D) would offer dimensionality to the electrodes meaning short diffusion length for Li-ions, which will boost power density, more active material, and mechanical stability. Herein, in this review, various 3D architecture current collectors will be summarized, and recent advances in synthesis routes will be discussed to point out the importance of 3D structures. In addition, the correlation between the electrochemical performances of batteries and current collector architecture will be reviewed. More than 50 research publications related to the synthesis and performance of different 3D current collectors were reviewed and compared. The review results suggest that despite the outstanding performance, currently used technologies to obtain 3D current collectors make them unacceptable in the commercial sphere, and cheaper, faster and simple synthesis routes are desired to be explored.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"10 ","pages":"Article 100065"},"PeriodicalIF":4.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46961550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry 利用合成充放电曲线伏安法研究锂离子电池电解质的氧化稳定性
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-06-25 DOI: 10.33774/chemrxiv-2021-2kgjv
Alma Mathew, M. Lacey, D. Brandell
Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability is a key parameter to consider. The conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone, and carbonate-sulfone mixtures, all with LiPF6 salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.
在决定锂离子电池电解液适用性的众多特性中,电化学稳定性是一个需要考虑的关键参数。传统的线性扫描伏安法(LSV)技术往往导致氧化稳定性的高估。在这项研究中,一种替代方法被称为合成充放电曲线伏安法(SCPV)被探索来研究氧化电解质的稳定性。我们发现这是一种方便的方法,以一种更实际的代表性的方式量化电解质的阳极稳定性,其中钝化动力学和电极电位在电极-电解质界面的变化更适当地再现。该技术的可行性与基于乙醚、碳酸盐、砜和碳酸盐-砜混合物的液体电解质进行了探讨,所有液体电解质都含有LiPF6盐,测试了相当于LiNi0.5Mn1.5O4电极的电位分布。通过与相应半电池的库仑效率的相关性验证了该技术的可靠性。
{"title":"Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry","authors":"Alma Mathew, M. Lacey, D. Brandell","doi":"10.33774/chemrxiv-2021-2kgjv","DOIUrl":"https://doi.org/10.33774/chemrxiv-2021-2kgjv","url":null,"abstract":"Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability is a key parameter to consider. The conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone, and carbonate-sulfone mixtures, all with LiPF6 salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42650612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes 利用富镍正极活性材料和硅-石墨复合阳极的锂离子电池袋电池自下而上的性能和成本评估
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-06-01 DOI: 10.1016/j.powera.2021.100055
Matthew Greenwood , Marc Wentker , Jens Leker

Nickel-rich cathode active materials (CAMs) and silicon-graphite composite anodes promise substantial lithium-ion battery (LIB) performance increases over state-of-the-art technologies. In order to compete with current LIB technologies, however, they must also be producible at a cost competitive with that of their predecessors. In this paper, full pouch cells based on state-of-the-art and prospective future CAMs are modeled using both graphite and silicon-graphite composite anodes to examine each technology's performance. Current open-market material costs are then utilized to estimate the costs of producing each cell. The two are then related to determine each cell's value on a USD kWh−1 basis. Future nickel-rich CAMs are shown to provide a strong performance advantage over current technologies, especially if their laboratory-scale performance can be replicated at a commercial scale. Silicon-graphite anodes likewise display performance gains, though these are shown to be highly dependent on cell chemistry and design. The collected current open-market prices of the materials needed to produce these technologies, however, are shown to be too high to result in a value improvement. Cost reductions necessary to achieve value parity with current technologies are thus calculated and possible future developments are discussed.

与最先进的技术相比,富镍阴极活性材料(CAMs)和硅石墨复合阳极有望大幅提高锂离子电池(LIB)的性能。然而,为了与当前的LIB技术竞争,它们也必须以与它们的前辈具有竞争力的成本生产。本文采用石墨和硅-石墨复合阳极对基于当前和未来cam的全袋电池进行了建模,以检验每种技术的性能。然后利用当前公开市场的材料成本来估计生产每个电池的成本。然后将两者联系起来,以确定每个电池在USD kWh−1的基础上的值。未来的富镍cam将比目前的技术提供强大的性能优势,特别是如果它们的实验室规模的性能可以在商业规模上复制。硅石墨阳极同样显示出性能的提高,尽管这高度依赖于电池的化学和设计。然而,目前收集到的生产这些技术所需材料的公开市场价格太高,无法带来价值的提高。因此,计算了实现与当前技术同等价值所需的成本削减,并讨论了未来可能的发展。
{"title":"A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes","authors":"Matthew Greenwood ,&nbsp;Marc Wentker ,&nbsp;Jens Leker","doi":"10.1016/j.powera.2021.100055","DOIUrl":"10.1016/j.powera.2021.100055","url":null,"abstract":"<div><p>Nickel-rich cathode active materials (CAMs) and silicon-graphite composite anodes promise substantial lithium-ion battery (LIB) performance increases over state-of-the-art technologies. In order to compete with current LIB technologies, however, they must also be producible at a cost competitive with that of their predecessors. In this paper, full pouch cells based on state-of-the-art and prospective future CAMs are modeled using both graphite and silicon-graphite composite anodes to examine each technology's performance. Current open-market material costs are then utilized to estimate the costs of producing each cell. The two are then related to determine each cell's value on a USD kWh<sup>−1</sup> basis. Future nickel-rich CAMs are shown to provide a strong performance advantage over current technologies, especially if their laboratory-scale performance can be replicated at a commercial scale. Silicon-graphite anodes likewise display performance gains, though these are shown to be highly dependent on cell chemistry and design. The collected current open-market prices of the materials needed to produce these technologies, however, are shown to be too high to result in a value improvement. Cost reductions necessary to achieve value parity with current technologies are thus calculated and possible future developments are discussed.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"9 ","pages":"Article 100055"},"PeriodicalIF":4.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"112570328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models 基于物理模型的相变电极材料电荷状态相关扩散系数和动力学速率常数的测定
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-06-01 DOI: 10.1016/j.powera.2021.100056
Kudakwashe Chayambuka , Grietus Mulder , Dmitri L. Danilov , Peter H.L. Notten

The simplified gravimetric intermittent titration technique (GITT) model, which was first proposed by Weppner and Huggins in 1977, remains a popular method to determine the solid-state diffusion coefficient (D1) and the electrochemical kinetic rate constant (k). This is despite the model having been developed on the premise of a single-slab electrode and other gross simplification which are not applicable to modern-day porous battery electrodes. Recently however, more realistic and conceptually descriptive models have emerged, which make use of the increased availability of computational power. Chief among them is the P2D model developed by Newman et al., which has been validated for various porous battery electrodes. Herein, a P2D GITT model is presented and coupled with grid search optimization to determine state-of-charge (SOC) dependent D1 and k parameters for a sodium-ion battery (SIB) cathode. Using this approach, experimental GITT steps could be well fitted and thus validated at different SOC points. This work demonstrates the first usage of the P2D GITT model coupled with optimization as an analytical method to derive and validate physically meaningful parameters. The accurate knowledge of D1 and k as a function of the SOC gives further insight into the SIB intercalation dynamics and rate capability.

Weppner和Huggins于1977年首次提出的简化重力间歇滴定技术(git)模型,仍然是确定固态扩散系数(D1)和电化学动力学速率常数(k)的常用方法。尽管该模型是在单片电极和其他粗糙简化的前提下开发的,这些简化并不适用于现代多孔电池电极。然而,最近出现了更现实和概念性描述的模型,这些模型利用了日益增加的计算能力。其中最主要的是Newman等人开发的P2D模型,该模型已经对各种多孔电池电极进行了验证。本文提出了一个P2D GITT模型,并结合网格搜索优化来确定钠离子电池(SIB)阴极与荷电状态(SOC)相关的D1和k参数。使用该方法,可以很好地拟合实验git步骤,从而在不同的SOC点进行验证。这项工作首次展示了P2D GITT模型与优化相结合的分析方法,以推导和验证物理上有意义的参数。准确了解D1和k作为SOC的函数,可以进一步了解SIB插入动力学和速率能力。
{"title":"Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models","authors":"Kudakwashe Chayambuka ,&nbsp;Grietus Mulder ,&nbsp;Dmitri L. Danilov ,&nbsp;Peter H.L. Notten","doi":"10.1016/j.powera.2021.100056","DOIUrl":"10.1016/j.powera.2021.100056","url":null,"abstract":"<div><p>The simplified gravimetric intermittent titration technique (GITT) model, which was first proposed by Weppner and Huggins in 1977, remains a popular method to determine the solid-state diffusion coefficient (<span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span>) and the electrochemical kinetic rate constant (<span><math><mrow><mi>k</mi></mrow></math></span>). This is despite the model having been developed on the premise of a single-slab electrode and other gross simplification which are not applicable to modern-day porous battery electrodes. Recently however, more realistic and conceptually descriptive models have emerged, which make use of the increased availability of computational power. Chief among them is the P2D model developed by Newman et al., which has been validated for various porous battery electrodes. Herein, a P2D GITT model is presented and coupled with grid search optimization to determine state-of-charge (SOC) dependent <span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><mi>k</mi></mrow></math></span> parameters for a sodium-ion battery (SIB) cathode. Using this approach, experimental GITT steps could be well fitted and thus validated at different SOC points. This work demonstrates the first usage of the P2D GITT model coupled with optimization as an analytical method to derive and validate physically meaningful parameters. The accurate knowledge of <span><math><mrow><msub><mi>D</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><mi>k</mi></mrow></math></span> as a function of the SOC gives further insight into the SIB intercalation dynamics and rate capability.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"9 ","pages":"Article 100056"},"PeriodicalIF":4.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45029147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Coupled nonlinear stress and electric field numerical simulation for all-solid-state lithium-ion batteries 全固态锂离子电池非线性应力-电场耦合数值模拟
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-04-01 DOI: 10.1016/j.powera.2021.100049
M. Kodama, N. Horikawa, A. Ohashi, S. Hirai

An accurate analysis of ion transportation in an all-solid-state battery is crucial to improve and estimate performance. For an all-solid-state battery using sulfide solid electrolytes, coupling the stress and electric field simulations is required because the battery is pressurized, this affects the void space, which then affects ion transportation. In this paper, we propose a new method to analyze the ionic conductivity in a pressurized all-solid-state battery by coupling nonlinear stress analysis and electric field analysis. The nonlinear stress analysis can estimate the stress distribution of solid electrolyte and it was found that nonlinear stress-strain characteristics that originate from the voids diminished with increased pressure. The numerical results based on a model-electrode were nearly identical to the experimental results.

对全固态电池中离子输运的准确分析对于提高和评估电池性能至关重要。对于使用硫化物固体电解质的全固态电池,需要耦合应力和电场模拟,因为电池是加压的,这会影响空隙空间,进而影响离子传输。本文提出了一种用非线性应力分析和电场分析相结合的方法来分析加压全固态电池中离子电导率的新方法。非线性应力分析可以估计固体电解质的应力分布,发现由孔隙引起的非线性应力-应变特性随着压力的增加而减弱。基于模型电极的数值计算结果与实验结果基本一致。
{"title":"Coupled nonlinear stress and electric field numerical simulation for all-solid-state lithium-ion batteries","authors":"M. Kodama,&nbsp;N. Horikawa,&nbsp;A. Ohashi,&nbsp;S. Hirai","doi":"10.1016/j.powera.2021.100049","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100049","url":null,"abstract":"<div><p>An accurate analysis of ion transportation in an all-solid-state battery is crucial to improve and estimate performance. For an all-solid-state battery using sulfide solid electrolytes, coupling the stress and electric field simulations is required because the battery is pressurized, this affects the void space, which then affects ion transportation. In this paper, we propose a new method to analyze the ionic conductivity in a pressurized all-solid-state battery by coupling nonlinear stress analysis and electric field analysis. The nonlinear stress analysis can estimate the stress distribution of solid electrolyte and it was found that nonlinear stress-strain characteristics that originate from the voids diminished with increased pressure. The numerical results based on a model-electrode were nearly identical to the experimental results.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100049"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91991944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell 介孔铁氮共掺杂碳材料作为阴离子交换膜燃料电池的阴极催化剂
IF 4.5 Q2 CHEMISTRY, PHYSICAL Pub Date : 2021-04-01 DOI: 10.1016/j.powera.2021.100052
Jaana Lilloja , Marek Mooste , Elo Kibena-Põldsepp , Ave Sarapuu , Barr Zulevi , Arvo Kikas , Helle-Mai Piirsoo , Aile Tamm , Vambola Kisand , Steven Holdcroft , Alexey Serov , Kaido Tammeveski

A novel and commercially available electrocatalyst is characterised and used as cathode catalyst in an anion-exchange membrane fuel cell (AEMFC). The catalyst material is prepared using VariPore™ method by Pajarito Powder, LLC, and as dopants iron and nitrogen are used, making it a mesoporous transition metal-nitrogen-carbon type catalyst. The physico-chemical characterisation shows the success of doping as well as almost completely mesoporous structure (average pore size of approximately 7 nm) with high specific surface area. The initial assessment of the oxygen reduction reaction (ORR) activity by the rotating ring-disc electrode method reveals that the material exhibits a very good electrocatalytic performance in alkaline media having a half-wave potential of 0.89 V. The catalyst material is employed as an anion exchange membrane fuel cell cathode and it shows AEMFC performance as good as that of the Pt-based material. The high ORR electrocatalytic activity of this material is due to the synergy of nitrogen-moieties, namely pyrrolic-N, pyridinic-N and graphitic-N, with iron as well as the highly mesoporous nature.

介绍了一种新型的电催化剂,并将其用作阴离子交换膜燃料电池(AEMFC)的阴极催化剂。催化剂材料由Pajarito Powder, LLC采用VariPore™方法制备,并使用铁和氮作为掺杂剂,使其成为介孔过渡金属-氮-碳型催化剂。理化表征表明,掺杂成功,具有几乎完全的介孔结构(平均孔径约为7 nm),具有较高的比表面积。通过旋转环盘电极法对氧还原反应(ORR)活性的初步评价表明,该材料在碱性介质中表现出良好的电催化性能,半波电位为0.89 V。该催化剂材料作为阴离子交换膜燃料电池正极,具有与pt基材料相当的AEMFC性能。该材料的高ORR电催化活性是由于氮基团(吡咯- n、吡啶- n和石墨- n)与铁的协同作用以及高介孔性质。
{"title":"Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell","authors":"Jaana Lilloja ,&nbsp;Marek Mooste ,&nbsp;Elo Kibena-Põldsepp ,&nbsp;Ave Sarapuu ,&nbsp;Barr Zulevi ,&nbsp;Arvo Kikas ,&nbsp;Helle-Mai Piirsoo ,&nbsp;Aile Tamm ,&nbsp;Vambola Kisand ,&nbsp;Steven Holdcroft ,&nbsp;Alexey Serov ,&nbsp;Kaido Tammeveski","doi":"10.1016/j.powera.2021.100052","DOIUrl":"https://doi.org/10.1016/j.powera.2021.100052","url":null,"abstract":"<div><p>A novel and commercially available electrocatalyst is characterised and used as cathode catalyst in an anion-exchange membrane fuel cell (AEMFC). The catalyst material is prepared using VariPore™ method by Pajarito Powder, LLC, and as dopants iron and nitrogen are used, making it a mesoporous transition metal-nitrogen-carbon type catalyst. The physico-chemical characterisation shows the success of doping as well as almost completely mesoporous structure (average pore size of approximately 7 nm) with high specific surface area. The initial assessment of the oxygen reduction reaction (ORR) activity by the rotating ring-disc electrode method reveals that the material exhibits a very good electrocatalytic performance in alkaline media having a half-wave potential of 0.89 V. The catalyst material is employed as an anion exchange membrane fuel cell cathode and it shows AEMFC performance as good as that of the Pt-based material. The high ORR electrocatalytic activity of this material is due to the synergy of nitrogen-moieties, namely pyrrolic-N, pyridinic-N and graphitic-N, with iron as well as the highly mesoporous nature.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"8 ","pages":"Article 100052"},"PeriodicalIF":4.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2021.100052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137252983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
期刊
Journal of Power Sources Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1