首页 > 最新文献

The Journal of Cell Biology最新文献

英文 中文
TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1 脂质门控TRPC3通道需要定位在STIM1定义的ER/PM连接处
Pub Date : 2022-04-13 DOI: 10.1083/jcb.202107120
Haiping Liu, Wei Lin, Spencer R Leibow, Alexander J Morateck, Malini Ahuja, S. Muallem
PI(4,5)P2, a key lipid at ER/PM junctions, has multiple roles in regulating TRPC channels, which includes recruitment of the channel to the junctions to facilitate activation by receptor stimulation, channel pore opening, and channel ionic selectivity.
PI(4,5)P2是ER/PM连接处的关键脂质,在调节TRPC通道中具有多种作用,包括将通道招募到连接处以促进受体刺激激活、通道开孔和通道离子选择性。
{"title":"TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1","authors":"Haiping Liu, Wei Lin, Spencer R Leibow, Alexander J Morateck, Malini Ahuja, S. Muallem","doi":"10.1083/jcb.202107120","DOIUrl":"https://doi.org/10.1083/jcb.202107120","url":null,"abstract":"PI(4,5)P2, a key lipid at ER/PM junctions, has multiple roles in regulating TRPC channels, which includes recruitment of the channel to the junctions to facilitate activation by receptor stimulation, channel pore opening, and channel ionic selectivity.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"427-429 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124029925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity HOPS捆绑复合物是维持信号内体身份和TORC1活性所必需的
Pub Date : 2022-04-11 DOI: 10.1083/jcb.202109084
Jieqiong Gao, Raffaele Nicastro, Marie-Pierre Péli-Gulli, Sophie Grziwa, Zilei Chen, Rainer Kurre, J. Piehler, C. De Virgilio, F. Fröhlich, C. Ungermann
Gao et al. show that an endosomal population carrying the TORC1 signaling complex, which they term signaling endosomes (SEs), requires the HOPS tethering complex and MVB biogenesis for their formation and identity and for efficient TORC1 signaling.
Gao等人表明,携带TORC1信号复合物的内体群体(他们称之为信号传导内体(signaling endosome, SEs))需要HOPS系住复合物和MVB生物发生才能形成和识别,并实现有效的TORC1信号传导。
{"title":"The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity","authors":"Jieqiong Gao, Raffaele Nicastro, Marie-Pierre Péli-Gulli, Sophie Grziwa, Zilei Chen, Rainer Kurre, J. Piehler, C. De Virgilio, F. Fröhlich, C. Ungermann","doi":"10.1083/jcb.202109084","DOIUrl":"https://doi.org/10.1083/jcb.202109084","url":null,"abstract":"Gao et al. show that an endosomal population carrying the TORC1 signaling complex, which they term signaling endosomes (SEs), requires the HOPS tethering complex and MVB biogenesis for their formation and identity and for efficient TORC1 signaling.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127312509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
CPAP insufficiency leads to incomplete centrioles that duplicate but fragment CPAP功能不全导致中心粒不完整,中心粒复制但断裂
Pub Date : 2022-04-11 DOI: 10.1083/jcb.202108018
A. Vásquez-Limeta, Kimberly Lukasik, Dong Kong, Catherine Sullenberger, Delgermaa Luvsanjav, Natalie Sahabandu, R. Chari, J. Loncarek
Vasquez-Limeta et al. use human cells engineered for fast degradation of centrosomal protein CPAP. Using superresolution microscopy, they show that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that convert to centrosomes and duplicate, but fragment owing to loss of cohesion between microtubule blades.
Vasquez-Limeta等人使用经过工程改造的人类细胞快速降解中心体蛋白CPAP。使用超分辨率显微镜,他们发现CPAP不足导致中心粒具有不完整的微管三胞胎,它们转化为中心体并复制,但由于微管叶片之间的内聚性丧失而碎片化。
{"title":"CPAP insufficiency leads to incomplete centrioles that duplicate but fragment","authors":"A. Vásquez-Limeta, Kimberly Lukasik, Dong Kong, Catherine Sullenberger, Delgermaa Luvsanjav, Natalie Sahabandu, R. Chari, J. Loncarek","doi":"10.1083/jcb.202108018","DOIUrl":"https://doi.org/10.1083/jcb.202108018","url":null,"abstract":"Vasquez-Limeta et al. use human cells engineered for fast degradation of centrosomal protein CPAP. Using superresolution microscopy, they show that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that convert to centrosomes and duplicate, but fragment owing to loss of cohesion between microtubule blades.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128003599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes dple从连接极性复合体协调顶端肌动球蛋白组装
Pub Date : 2022-04-07 DOI: 10.1083/jcb.202111002
A. Marivin, R. Ho, M. Garcia-Marcos
Marivin et al. show how association of the protein DAPLE with PAR polarity complexes at cell–cell junctions maintains an apical cytoskeletal network in epithelial cells by simultaneously activating heterotrimeric G proteins and recruiting the actin-stabilizing protein CD2AP.
Marivin等人通过同时激活异源三聚体G蛋白和募集肌动蛋白稳定蛋白CD2AP,展示了DAPLE蛋白与PAR极性复合物在细胞-细胞连接处的关联如何维持上皮细胞的顶端细胞骨架网络。
{"title":"DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes","authors":"A. Marivin, R. Ho, M. Garcia-Marcos","doi":"10.1083/jcb.202111002","DOIUrl":"https://doi.org/10.1083/jcb.202111002","url":null,"abstract":"Marivin et al. show how association of the protein DAPLE with PAR polarity complexes at cell–cell junctions maintains an apical cytoskeletal network in epithelial cells by simultaneously activating heterotrimeric G proteins and recruiting the actin-stabilizing protein CD2AP.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117057897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Material properties of phase-separated TFEB condensates regulate the autophagy-lysosome pathway 相分离TFEB凝聚物的材料特性调节自噬-溶酶体途径
Pub Date : 2022-03-16 DOI: 10.1083/jcb.202112024
Zheng Wang, Di Chen, Dongshi Guan, Xiaobo Liang, Jianfeng Xue, Hongyu Zhao, G. Song, J. Lou, Yan He, Hong Zhang
Protein condensates possess distinct material properties. Wang et al. show that the material properties of TFEB condensates govern their size and transcriptional activity. These properties can be manipulated to modulate the activity of TFEB in the autophagy-lysosome pathway.
蛋白质凝聚物具有独特的物质特性。Wang等人的研究表明,TFEB凝聚物的材料性质决定了它们的大小和转录活性。这些特性可以调节TFEB在自噬-溶酶体途径中的活性。
{"title":"Material properties of phase-separated TFEB condensates regulate the autophagy-lysosome pathway","authors":"Zheng Wang, Di Chen, Dongshi Guan, Xiaobo Liang, Jianfeng Xue, Hongyu Zhao, G. Song, J. Lou, Yan He, Hong Zhang","doi":"10.1083/jcb.202112024","DOIUrl":"https://doi.org/10.1083/jcb.202112024","url":null,"abstract":"Protein condensates possess distinct material properties. Wang et al. show that the material properties of TFEB condensates govern their size and transcriptional activity. These properties can be manipulated to modulate the activity of TFEB in the autophagy-lysosome pathway.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"487 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129413954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Structural and biochemical insights into lipid transport by VPS13 proteins VPS13蛋白对脂质转运的结构和生化研究
Pub Date : 2022-03-12 DOI: 10.1101/2022.03.11.484024
J. Adlakha, Zhouping Hong, PeiQi Li, K. Reinisch
VPS13 proteins are proposed to function at contact sites between organelles as bridges for lipids to move directionally and in bulk between organellar membranes. VPS13s are anchored between membranes via interactions with receptors, including both peripheral or integral membrane proteins. Here we present the crystal structure of VPS13s adaptor binding domain (VAB) complexed with a Pro-X-Pro peptide recognition motif present in one such receptor, the integral membrane protein Mcp1p, and show biochemically that other Pro-X-Pro motifs bind the VAB in the same site. We further demonstrate that Mcp1p and another integral membrane protein that interacts directly with human VPS13A, XK, are scramblases. This finding supports an emerging paradigm of a partnership between bulk lipid transport proteins and scramblases. Scramblases can re-equilibrate lipids between membrane leaflets as lipids are removed from or inserted into, respectively, the cytosolic leaflet of donor and acceptor organelles in the course of protein-mediated transport.
VPS13蛋白被认为在细胞器之间的接触点起作用,作为脂质在细胞器膜之间定向和批量移动的桥梁。VPS13s通过与受体(包括外周或整体膜蛋白)的相互作用锚定在膜之间。在这里,我们展示了VPS13s适配器结合域(VAB)与存在于一个这样的受体(完整膜蛋白Mcp1p)中的Pro-X-Pro肽识别基序络合的晶体结构,并从生物化学角度证明了其他Pro-X-Pro基序在同一位点与VAB结合。我们进一步证明Mcp1p和另一种直接与人类VPS13A相互作用的完整膜蛋白XK都是扰变酶。这一发现支持了大量脂质转运蛋白和超燃酶之间的伙伴关系的新兴范例。在蛋白质介导的运输过程中,当脂质分别从供体细胞器和受体细胞器的细胞质小叶中移出或插入时,超合酶可以在膜小叶之间重新平衡脂质。
{"title":"Structural and biochemical insights into lipid transport by VPS13 proteins","authors":"J. Adlakha, Zhouping Hong, PeiQi Li, K. Reinisch","doi":"10.1101/2022.03.11.484024","DOIUrl":"https://doi.org/10.1101/2022.03.11.484024","url":null,"abstract":"VPS13 proteins are proposed to function at contact sites between organelles as bridges for lipids to move directionally and in bulk between organellar membranes. VPS13s are anchored between membranes via interactions with receptors, including both peripheral or integral membrane proteins. Here we present the crystal structure of VPS13s adaptor binding domain (VAB) complexed with a Pro-X-Pro peptide recognition motif present in one such receptor, the integral membrane protein Mcp1p, and show biochemically that other Pro-X-Pro motifs bind the VAB in the same site. We further demonstrate that Mcp1p and another integral membrane protein that interacts directly with human VPS13A, XK, are scramblases. This finding supports an emerging paradigm of a partnership between bulk lipid transport proteins and scramblases. Scramblases can re-equilibrate lipids between membrane leaflets as lipids are removed from or inserted into, respectively, the cytosolic leaflet of donor and acceptor organelles in the course of protein-mediated transport.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124911354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
The multi-factor modulated biogenesis of the mitochondrial multi-span protein Om14 线粒体多跨蛋白Om14的多因子调控生物发生
Pub Date : 2022-03-09 DOI: 10.1083/jcb.202112030
Jialin Zhou, M. Jung, K. Dimmer, D. Rapaport
Zhou et al. provide new insights to the biogenesis of mitochondrial outer membrane proteins. They demonstrate that such proteins can follow various routes where both proteinaceous elements and membrane behavior regulate the efficiency and specificity of this process.
Zhou等人对线粒体外膜蛋白的生物发生提供了新的见解。他们证明,这些蛋白质可以遵循多种途径,其中蛋白质元素和膜行为调节这一过程的效率和特异性。
{"title":"The multi-factor modulated biogenesis of the mitochondrial multi-span protein Om14","authors":"Jialin Zhou, M. Jung, K. Dimmer, D. Rapaport","doi":"10.1083/jcb.202112030","DOIUrl":"https://doi.org/10.1083/jcb.202112030","url":null,"abstract":"Zhou et al. provide new insights to the biogenesis of mitochondrial outer membrane proteins. They demonstrate that such proteins can follow various routes where both proteinaceous elements and membrane behavior regulate the efficiency and specificity of this process.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131824910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sidekick dynamically rebalances contractile and protrusive forces to control tissue morphogenesis Sidekick动态地重新平衡收缩和突出的力量来控制组织形态发生
Pub Date : 2022-03-08 DOI: 10.1083/jcb.202107035
Jacob Malin, Christian Rosa Birriel, Sergio Astigarraga, J. Treisman, V. Hatini
Malin et al. show that the homophilic adhesion molecule Sidekick interacts alternately with the WAVE regulatory complex and with Polychaetoid/Zonula occludence-1 at tricellular adherens junctions to dynamically rebalance opposing protrusive and contractile forces that repeatedly expand and contract cell contacts to maintain cell–cell contacts and ensure proper epithelial remodeling.
Malin等人的研究表明,亲同质粘附分子Sidekick与WAVE调节复合体和三细胞粘附连接处的Polychaetoid/Zonula occludence-1交替相互作用,动态地重新平衡对立的伸缩力,这些伸缩力反复扩大和收缩细胞接触,以维持细胞间接触并确保适当的上皮重塑。
{"title":"Sidekick dynamically rebalances contractile and protrusive forces to control tissue morphogenesis","authors":"Jacob Malin, Christian Rosa Birriel, Sergio Astigarraga, J. Treisman, V. Hatini","doi":"10.1083/jcb.202107035","DOIUrl":"https://doi.org/10.1083/jcb.202107035","url":null,"abstract":"Malin et al. show that the homophilic adhesion molecule Sidekick interacts alternately with the WAVE regulatory complex and with Polychaetoid/Zonula occludence-1 at tricellular adherens junctions to dynamically rebalance opposing protrusive and contractile forces that repeatedly expand and contract cell contacts to maintain cell–cell contacts and ensure proper epithelial remodeling.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117764782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling 机械敏感钙闪烁促进紧密连接重塑过程中RhoA的持续激活
Pub Date : 2022-03-07 DOI: 10.1083/jcb.202105107
Saranyaraajan Varadarajan, Shahana A Chumki, Rachel E. Stephenson, Eileen Misterovich, Jessica L. Wu, Claire E Dudley, I. Erofeev, A. Goryachev, Ann L. Miller
Varadarajan et al. find that calcium flashes regulate epithelial barrier function. Using live imaging, optogenetics, and laser-induced tight junction injury, they show that mechanosensitive channel-dependent calcium flashes promote sustained local activation of RhoA, allowing cells to repair tight junction leaks induced by mechanical stimuli.
Varadarajan等人发现钙闪光调节上皮屏障功能。通过实时成像、光遗传学和激光诱导的紧密连接损伤,他们发现机械敏感通道依赖性钙闪烁促进RhoA的持续局部激活,使细胞能够修复由机械刺激引起的紧密连接泄漏。
{"title":"Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling","authors":"Saranyaraajan Varadarajan, Shahana A Chumki, Rachel E. Stephenson, Eileen Misterovich, Jessica L. Wu, Claire E Dudley, I. Erofeev, A. Goryachev, Ann L. Miller","doi":"10.1083/jcb.202105107","DOIUrl":"https://doi.org/10.1083/jcb.202105107","url":null,"abstract":"Varadarajan et al. find that calcium flashes regulate epithelial barrier function. Using live imaging, optogenetics, and laser-induced tight junction injury, they show that mechanosensitive channel-dependent calcium flashes promote sustained local activation of RhoA, allowing cells to repair tight junction leaks induced by mechanical stimuli.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123983006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole 植物自噬体在进入中央液泡之前成熟为两性体
Pub Date : 2022-02-26 DOI: 10.1101/2022.02.26.482093
Jierui Zhao, Mai Thu Bui, Juncai Ma, Fabian Künzl, Lorenzo Picchianti, Juan Carlos De la Concepcion, Yixuan Chen, Sofia Petsangouraki, Azadeh Mohseni, M. García-León, Marta Salas Gomez, Caterina Giannini, Dubois Gwennogan, Roksolana Kobylinska, Marion Clavel, S. Schellmann, Y. Jaillais, J. Friml, Byungho Kang, Yasin F. Dagdas
Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, mechanisms of autophagosome maturation, i.e., delivery and fusion with the vacuole, remain largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by connecting autophagosomes with the ESCRT-I component VPS23, leading to the formation of amphisomes. Disrupting the VPS23-CFS1 interaction affects autophagic flux and renders plants sensitive to starvation stress. Altogether, our results reveal a deeply conserved mechanism of vacuolar delivery in plants that is mediated by amphisomes.
自噬体是双层膜的囊泡,它将有害或不需要的细胞大分子输送到液泡中进行再循环。尽管自噬体的生物发生已被广泛研究,但自噬体成熟的机制,即与液泡的传递和融合,在植物中仍然知之甚少。在这里,我们已经确定了一个自噬接头CFS1,它直接与自噬体标记物ATG8相互作用,并定位于自噬体的两个膜上。自噬体在拟南芥cfs1突变体中正常形成,但它们向液泡的传递被中断。CFS1的功能在植物中是进化保守的,因为它也定位于自噬体,并在多形地草的自噬通量中起作用。CFS1通过连接自噬体与ESCRT-I组分VPS23来调节自噬通量,导致两性体的形成。破坏VPS23-CFS1相互作用会影响自噬通量,使植物对饥饿胁迫敏感。总之,我们的研究结果揭示了一个由两性体介导的植物液泡输送的深度保守机制。
{"title":"Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole","authors":"Jierui Zhao, Mai Thu Bui, Juncai Ma, Fabian Künzl, Lorenzo Picchianti, Juan Carlos De la Concepcion, Yixuan Chen, Sofia Petsangouraki, Azadeh Mohseni, M. García-León, Marta Salas Gomez, Caterina Giannini, Dubois Gwennogan, Roksolana Kobylinska, Marion Clavel, S. Schellmann, Y. Jaillais, J. Friml, Byungho Kang, Yasin F. Dagdas","doi":"10.1101/2022.02.26.482093","DOIUrl":"https://doi.org/10.1101/2022.02.26.482093","url":null,"abstract":"Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, mechanisms of autophagosome maturation, i.e., delivery and fusion with the vacuole, remain largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by connecting autophagosomes with the ESCRT-I component VPS23, leading to the formation of amphisomes. Disrupting the VPS23-CFS1 interaction affects autophagic flux and renders plants sensitive to starvation stress. Altogether, our results reveal a deeply conserved mechanism of vacuolar delivery in plants that is mediated by amphisomes.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115122979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
The Journal of Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1