This paper aims to investigate the thermal behavior and crystallization kinetics of TiZrHfNiCu high entropy bulk metallic glass (HE-BMG) alloy using the standard procedure of Differential Scanning Calorimetric (DSC) annealing technique. The alloy was produced using an arc melting machine with a critical diameter of 1.5 mm. The crystallization kinetics and phase transformation mechanism of TiZrHfNiCu HE-BMG was investigated under the isochronal condition at a single heating run based on the Johnson-Mehl- Avrami (JMA) theory. In isochronal heating, the apparent activation energy for glass transition and crystallization events was analyzed by Kissinger and Ozawa methods. The average activation energy value for crystallization of TiZrHfNiCu amorphous alloys in isochronal modes was 226.41 kJ/mol for the first crystallization and 297.72 kJ/mol for second crystallization stages. The crystallization mechanism of the first step was dominated by two- and three-dimensional growth with increasing nucleation rate, while the crystallization mechanism in the second stage was dominated by two-dimensional crystallization growth with a constant nucleation rate. The diffusion mechanism result proved the theory of sluggish atomic diffusion of HEA at elevated temperature.
{"title":"Non-Isothermal Crystallization Kinetics of a Rapidly Solidified as-Cast TiZrHfNiCu High Entropy Bulk Metallic Glass","authors":"N. H. Nordin, Faizi Mohamad, N. A. Jamal","doi":"10.4236/wjet.2020.83023","DOIUrl":"https://doi.org/10.4236/wjet.2020.83023","url":null,"abstract":"This paper aims to investigate the thermal behavior and crystallization kinetics of TiZrHfNiCu high entropy bulk metallic glass (HE-BMG) alloy using the standard procedure of Differential Scanning Calorimetric (DSC) annealing technique. The alloy was produced using an arc melting machine with a critical diameter of 1.5 mm. The crystallization kinetics and phase transformation mechanism of TiZrHfNiCu HE-BMG was investigated under the isochronal condition at a single heating run based on the Johnson-Mehl- Avrami (JMA) theory. In isochronal heating, the apparent activation energy for glass transition and crystallization events was analyzed by Kissinger and Ozawa methods. The average activation energy value for crystallization of TiZrHfNiCu amorphous alloys in isochronal modes was 226.41 kJ/mol for the first crystallization and 297.72 kJ/mol for second crystallization stages. The crystallization mechanism of the first step was dominated by two- and three-dimensional growth with increasing nucleation rate, while the crystallization mechanism in the second stage was dominated by two-dimensional crystallization growth with a constant nucleation rate. The diffusion mechanism result proved the theory of sluggish atomic diffusion of HEA at elevated temperature.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130436933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Jiarong Tibetan traditional residence is a characteristic regional architecture, located in a high-intensity, high-altitude and cold area, with geographic identification, and is a typical representative of this ethnic group. It has also become an important tourist destination and has important research value. The research used the methods of field survey surveying and mapping to conduct field survey and surveying on 20 buildings in Xisuo Village, a traditional village in the Jiarong Tibetan area. Measure building plans, elevations, and building sections, and collect measurement data for statistical analysis. The results show that the average total height of the building is 10.08 m, the average total building span is 12.44 m, the average total depth is 10.87 m, and the squareness is 0.87. The square shape of the building is more in line with the seismic requirements of high-intensity areas and the local terrain environment. The maximum window-wall ratio in the building is 0.18 south for the second floor, and 0.025 west for the first floor. Smaller window-to- wall ratios have better adaptability to high-altitude cold areas. The height of the building beam section is generally from 0.17 m to 0.32 m, and the average Beam span-depth ratio is 0.10. The building space construction has a good match with the properties of wood materials. These conclusions quantitatively analyze the characteristics of stone-built houses in high-intensity, high-altitude and cold areas, supplement the research on ethnic regional architecture, and provide materials and references for the design, repair and update of related buildings.
嘉荣藏族传统民居是一种具有特色的地域性建筑,地处高强度、高海拔、寒冷地区,具有地理识别性,是该民族的典型代表。它也成为一个重要的旅游目的地,具有重要的研究价值。本研究采用实地调查测绘的方法,对嘉荣藏区传统村落西所村的20栋建筑进行了实地调查和测量。测量建筑平面、立面和建筑剖面,收集测量数据进行统计分析。结果表明:该建筑平均总高度为10.08 m,平均总跨度为12.44 m,平均总深度为10.87 m,方形度为0.87。建筑的方形造型更符合高烈度地区的抗震要求和当地的地形环境。建筑的最大窗墙比为二楼南侧0.18,一楼西侧0.025。窗墙比越小,对高海拔寒冷地区的适应性越好。建筑梁段高度一般为0.17 m ~ 0.32 m,平均梁跨深比为0.10。建筑空间施工与木质材料的性能有很好的匹配。这些结论定量分析了高强度、高海拔、寒冷地区石屋的特点,对民族地域建筑的研究进行了补充,为相关建筑的设计、修缮和更新提供了资料和参考。
{"title":"Research on the Construction Characteristics of Stone-Built Folk Houses in Jiarong Tibetan Area —Take the Stone-Built Houses in Xisuo Village as an Example","authors":"Xinwen Hou, B. Cheng","doi":"10.4236/wjet.2020.83035","DOIUrl":"https://doi.org/10.4236/wjet.2020.83035","url":null,"abstract":"The Jiarong Tibetan traditional residence is a characteristic regional architecture, located in a high-intensity, high-altitude and cold area, with geographic identification, and is a typical representative of this ethnic group. It has also become an important tourist destination and has important research value. The research used the methods of field survey surveying and mapping to conduct field survey and surveying on 20 buildings in Xisuo Village, a traditional village in the Jiarong Tibetan area. Measure building plans, elevations, and building sections, and collect measurement data for statistical analysis. The results show that the average total height of the building is 10.08 m, the average total building span is 12.44 m, the average total depth is 10.87 m, and the squareness is 0.87. The square shape of the building is more in line with the seismic requirements of high-intensity areas and the local terrain environment. The maximum window-wall ratio in the building is 0.18 south for the second floor, and 0.025 west for the first floor. Smaller window-to- wall ratios have better adaptability to high-altitude cold areas. The height of the building beam section is generally from 0.17 m to 0.32 m, and the average Beam span-depth ratio is 0.10. The building space construction has a good match with the properties of wood materials. These conclusions quantitatively analyze the characteristics of stone-built houses in high-intensity, high-altitude and cold areas, supplement the research on ethnic regional architecture, and provide materials and references for the design, repair and update of related buildings.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116583287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM; this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM) in Nairobi Kenya. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM; when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.
{"title":"Influence of Building Information Modelling (BIM) on Engineering Contract Management in Nairobi, Kenya","authors":"Hellen Nyaboke Mosse, M. Njuguna, C. Kabubo","doi":"10.4236/wjet.2020.83026","DOIUrl":"https://doi.org/10.4236/wjet.2020.83026","url":null,"abstract":"Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM; this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM) in Nairobi Kenya. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM; when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124142176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The market worth of the crude oil transported to the international market has a great influence on the crude’s physical properties, as such demands that certain desirable physical properties ought to be possessed. The distillation of crude oil is the first process in the sequence of refining operation and is key to refinery operations profitability. In this work, five crude oil samples were collected from a reservoir in the Niger Delta designated as S11A, S12A, S13A, S14A and S15A. Sample S11A was not treated with bio-disc while samples S12A-S15A were treated with bio-disc at different number of times. This was necessary to ascertain the effect of the bio-disc on crude oil physical properties and their distillate yield. After the treatment, the specific gravity, American Petroleum Institute (API), pour point, flash point and viscosity of the treated and untreated crude samples were determined and then the samples distilled with a distillation tester. From the results obtained, the bio-disc had a great influence on the physical properties of the samples as well as on the distillate yield. The specific gravities of the oil samples decreased as the number of times the samples were treated with bio-disc increases and this in turn increased the crudes’ API. The pourpoint and viscosity decreased with increase in number of treatments of crude samples with bio-disc. As the number of treatments increased, the crude samples which were originally paraffinic were tending towards being naphthenic. The flash point and distillate yield increased with increase in number of treatments of crude samples with bio-disc. Thus, treatment of crude oil with bio-dic alters the physical properties of the crude.
{"title":"Effect of Bio-Disc on Distillate Yield and Crude Oil Properties","authors":"A. Kerunwa, Princewill O. Ariche","doi":"10.4236/wjet.2020.83028","DOIUrl":"https://doi.org/10.4236/wjet.2020.83028","url":null,"abstract":"The market worth of the crude oil transported to the international market has a great influence on the crude’s physical properties, as such demands that certain desirable physical properties ought to be possessed. The distillation of crude oil is the first process in the sequence of refining operation and is key to refinery operations profitability. In this work, five crude oil samples were collected from a reservoir in the Niger Delta designated as S11A, S12A, S13A, S14A and S15A. Sample S11A was not treated with bio-disc while samples S12A-S15A were treated with bio-disc at different number of times. This was necessary to ascertain the effect of the bio-disc on crude oil physical properties and their distillate yield. After the treatment, the specific gravity, American Petroleum Institute (API), pour point, flash point and viscosity of the treated and untreated crude samples were determined and then the samples distilled with a distillation tester. From the results obtained, the bio-disc had a great influence on the physical properties of the samples as well as on the distillate yield. The specific gravities of the oil samples decreased as the number of times the samples were treated with bio-disc increases and this in turn increased the crudes’ API. The pourpoint and viscosity decreased with increase in number of treatments of crude samples with bio-disc. As the number of treatments increased, the crude samples which were originally paraffinic were tending towards being naphthenic. The flash point and distillate yield increased with increase in number of treatments of crude samples with bio-disc. Thus, treatment of crude oil with bio-dic alters the physical properties of the crude.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124284575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Servando De la Cruz, M. Barrón, D. Medina, Joan Reyes
Three lance designs for argon bubbling in molten steel are presented. Bottom bubbling is considered too. Geometries considered are straight-shaped, T-shaped, and disk-shaped. The bubbling behavior of these lances is analyzed using Computational Fluid Dynamics, so transient three dimensional, isothermal, two-phase, numerical simulations were carried out. Using the numerical results, the bubble distribution and the open eye area are analyzed for the considered lance geometries. The plume volume is calculated from the open eye area and the lance immersion depth using geometrical considerations. Among the three lance designs considered, disk-shaped lance has the bigger plume volume and the smaller mixing time. As the injection lance is deeper immersed, the power stirring is increased and the mixing time is decreased.
{"title":"Lance Design for Argon Bubbling in Molten Steel","authors":"Servando De la Cruz, M. Barrón, D. Medina, Joan Reyes","doi":"10.4236/wjet.2020.83025","DOIUrl":"https://doi.org/10.4236/wjet.2020.83025","url":null,"abstract":"Three lance designs for argon bubbling in molten steel are presented. Bottom bubbling is considered too. Geometries considered are straight-shaped, T-shaped, and disk-shaped. The bubbling behavior of these lances is analyzed using Computational Fluid Dynamics, so transient three dimensional, isothermal, two-phase, numerical simulations were carried out. Using the numerical results, the bubble distribution and the open eye area are analyzed for the considered lance geometries. The plume volume is calculated from the open eye area and the lance immersion depth using geometrical considerations. Among the three lance designs considered, disk-shaped lance has the bigger plume volume and the smaller mixing time. As the injection lance is deeper immersed, the power stirring is increased and the mixing time is decreased.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130913237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When energy distribution X-ray fluorescence analysis method (EDXRF) is used to measure the pulp grade of iron concentrate, the parameters such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry, etc. have a greater influence on the measurement results. In order to more accurately measure the grade of iron ore pulp, the Monte Carlo method was used to study the different pulp grades of samples of the iron ore concentrate under different conditions such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry. By studying the relationship between different influencing factors and counting rate, the error of the actual measurement time and the pulp grade of iron concentrate can be reduced. The pulp grade of iron concentrate is improved, and the in-situ EDXRF analysis of iron concentrate slurry is more in line with the actual grade.
{"title":"Study on Pulp Grade of Iron Ore Concentrate by Monte Carlo","authors":"Jie Xu, Jiawen Fan, Changming Wang, Yujie Qiao","doi":"10.4236/wjet.2020.83029","DOIUrl":"https://doi.org/10.4236/wjet.2020.83029","url":null,"abstract":"When energy distribution X-ray fluorescence analysis method (EDXRF) is used to measure the pulp grade of iron concentrate, the parameters such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry, etc. have a greater influence on the measurement results. In order to more accurately measure the grade of iron ore pulp, the Monte Carlo method was used to study the different pulp grades of samples of the iron ore concentrate under different conditions such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry. By studying the relationship between different influencing factors and counting rate, the error of the actual measurement time and the pulp grade of iron concentrate can be reduced. The pulp grade of iron concentrate is improved, and the in-situ EDXRF analysis of iron concentrate slurry is more in line with the actual grade.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"228 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130852213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article predicts Southeast Asia’s logistics needs from a Southeast Asian logistics development perspective. This is not only an important prerequisite for supporting Southeast Asia’s trade policy, but also promoting the development of Southeast Asia’s logistics industry, building logistics infrastructure and improving the level of logistics services. Due to differences in economic development levels, trade structures, infrastructure construction and logistics development levels of Southeast Asian countries. Therefore, considering the actual situation of Southeast Asian countries, this article selected 21 cities in Southeast Asia as the research object. Use L-OD logistics demand forecasting method to forecast logistics demand in Southeast Asia. Obtain the amount of logistics occurrence and attraction in 21 cities in Southeast Asia in the future. And construct a double constrained gravity model to predict logistics distribution in Southeast Asia. The forecast results provide scientific data support for future logistics development planning in Southeast Asia.
{"title":"Research on Logistics Demand Forecast in Southeast Asia","authors":"Thi Hai Yen Nguyen","doi":"10.4236/wjet.2020.83020","DOIUrl":"https://doi.org/10.4236/wjet.2020.83020","url":null,"abstract":"This article predicts Southeast Asia’s logistics needs from a Southeast Asian logistics development perspective. This is not only an important prerequisite for supporting Southeast Asia’s trade policy, but also promoting the development of Southeast Asia’s logistics industry, building logistics infrastructure and improving the level of logistics services. Due to differences in economic development levels, trade structures, infrastructure construction and logistics development levels of Southeast Asian countries. Therefore, considering the actual situation of Southeast Asian countries, this article selected 21 cities in Southeast Asia as the research object. Use L-OD logistics demand forecasting method to forecast logistics demand in Southeast Asia. Obtain the amount of logistics occurrence and attraction in 21 cities in Southeast Asia in the future. And construct a double constrained gravity model to predict logistics distribution in Southeast Asia. The forecast results provide scientific data support for future logistics development planning in Southeast Asia.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129109822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Moses, H. Shimada, T. Sasaoka, A. Hamanaka, T. Dintwe, Sugeng Wahyudi
Slope stability assessment is an essential aspect of mining and civil engineering. In this study, Songwe open-pit mine in Malawi was investigated to establish possible pit slope instability. In performing the analysis, an integrated approach entailing rock mass characterisation, kinematic and numerical methods were applied. Based on rock mass classification system, Songwe Hill carbonatite rock mass is characterised as a good rock but still it possesses numerous random discontinuities that present a complex challenge in geotechnical engineering. Dip 6.0 software was used in carrying out kinematic analysis based on the attributes of discontinuities. The results show that there is a 16% likelihood of planar failure in the divided slope sections of the planned pit. Thus, slope angle optimisation to 41° has been proposed as a counter-measure to minimise the potential risk of planar failure. At the optimised angle, the risk of planar failure could be reduced by 44%. On the other hand, wedge failure was found to be improbable since no joint intersections were found in the critical zone of potential failure. For numerical analysis, finite element code was applied using FLAC3D 5.0 application. The results demonstrate that overall slope angle of 41° would offer a favourable balance between safety and mining economics as mining operations progress to deeper horizons thereby avoiding a costly push back solution due to instability.
{"title":"Rock Slope Stability Analysis by Using Integrated Approach","authors":"D. Moses, H. Shimada, T. Sasaoka, A. Hamanaka, T. Dintwe, Sugeng Wahyudi","doi":"10.4236/wjet.2020.83031","DOIUrl":"https://doi.org/10.4236/wjet.2020.83031","url":null,"abstract":"Slope stability assessment is an essential aspect of mining and civil engineering. In this study, Songwe open-pit mine in Malawi was investigated to establish possible pit slope instability. In performing the analysis, an integrated approach entailing rock mass characterisation, kinematic and numerical methods were applied. Based on rock mass classification system, Songwe Hill carbonatite rock mass is characterised as a good rock but still it possesses numerous random discontinuities that present a complex challenge in geotechnical engineering. Dip 6.0 software was used in carrying out kinematic analysis based on the attributes of discontinuities. The results show that there is a 16% likelihood of planar failure in the divided slope sections of the planned pit. Thus, slope angle optimisation to 41° has been proposed as a counter-measure to minimise the potential risk of planar failure. At the optimised angle, the risk of planar failure could be reduced by 44%. On the other hand, wedge failure was found to be improbable since no joint intersections were found in the critical zone of potential failure. For numerical analysis, finite element code was applied using FLAC3D 5.0 application. The results demonstrate that overall slope angle of 41° would offer a favourable balance between safety and mining economics as mining operations progress to deeper horizons thereby avoiding a costly push back solution due to instability.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"16 12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126165353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Batassou Guilzia Jeannot, Mandeng Jean Jacques, Mane Mane Jeannot
This article describes a technique that allows a photovoltaic (PV) production unit to obtain the maximum power at all times. Here, we use the MPPT control via fuzzy logic on a DC/DC boost-type converter. In order to achieve our goals, we first proceeded to model a PV panel. The resulting model offers the possibility to better account for the influence of different physical quantities such as temperature, irradiation, series resistance, shunt resistance and diode saturation current. Thus, the maximum power to be provided by the PV system is acquired by fuzzification and defuzzification of the input and output variables of the converter. Subsequently, a virtual model of an 800 Watt PV prototype is implemented in the Matlab environment. The simulation results obtained and presented, show the feasibility and efficiency of the proposed technology. Indeed, for a disturbance caused by a variation in brightness, our system guarantees the maximum stable power after 1.4 s. While for a load variation, the maximum power is continuous.
{"title":"Reliability of the MPPT Control on the Energy Parameters of a Photovoltaic Generator","authors":"Batassou Guilzia Jeannot, Mandeng Jean Jacques, Mane Mane Jeannot","doi":"10.4236/wjet.2020.83038","DOIUrl":"https://doi.org/10.4236/wjet.2020.83038","url":null,"abstract":"This article describes a technique that allows a photovoltaic (PV) production unit to obtain the maximum power at all times. Here, we use the MPPT control via fuzzy logic on a DC/DC boost-type converter. In order to achieve our goals, we first proceeded to model a PV panel. The resulting model offers the possibility to better account for the influence of different physical quantities such as temperature, irradiation, series resistance, shunt resistance and diode saturation current. Thus, the maximum power to be provided by the PV system is acquired by fuzzification and defuzzification of the input and output variables of the converter. Subsequently, a virtual model of an 800 Watt PV prototype is implemented in the Matlab environment. The simulation results obtained and presented, show the feasibility and efficiency of the proposed technology. Indeed, for a disturbance caused by a variation in brightness, our system guarantees the maximum stable power after 1.4 s. While for a load variation, the maximum power is continuous.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115064670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Because of its advantages of light weight, high strength and convenient construction, steel structure has gradually become the first choice for large-span and high-rise structures. The use of high strength steel in building engineering can reduce the section size of components and the weight of the structure, thus increasing the building area. But steel is not fire-resistant, when the temperature reaches 600°C, steel loses most of the stiffness and strength. Therefore, it is of great significance to study the fire resistance of steel structures, and the mechanical properties of steel structures at high temperature are the foundation of the fire resistance research. The mechanical properties of steel after high temperature are the basis for the safety assessment of steel structure after fire. Therefore, this paper studies the mechanical properties of Q345 steel after high temperature cooling.
{"title":"Experimental Study on Mechanical Properties of Q345 Steel after High Temperature Cooling","authors":"Feiyan Zhu, Yu Zhang, C. Zhang","doi":"10.4236/wjet.2020.83021","DOIUrl":"https://doi.org/10.4236/wjet.2020.83021","url":null,"abstract":"Because of its advantages of light weight, high strength and convenient construction, steel structure has gradually become the first choice for large-span and high-rise structures. The use of high strength steel in building engineering can reduce the section size of components and the weight of the structure, thus increasing the building area. But steel is not fire-resistant, when the temperature reaches 600°C, steel loses most of the stiffness and strength. Therefore, it is of great significance to study the fire resistance of steel structures, and the mechanical properties of steel structures at high temperature are the foundation of the fire resistance research. The mechanical properties of steel after high temperature are the basis for the safety assessment of steel structure after fire. Therefore, this paper studies the mechanical properties of Q345 steel after high temperature cooling.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124079615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}